Skip to main content

Abstract

In a brief historical introduction, the invention of the laser is presented as the culmination of prolonged, decades-long efforts in science and technology aimed at the generation and control of electromagnetic radiation of shorter and shorter wavelengths. The close genetic link of the laser with quantum optics, electronics, and electrical engineering is emphasized. The present status of laser R & D is reviewed within a descriptive framework that stresses the commonality in the function ot electronic and laser devices, and that places special emphasis on laser oscillators and amplifiers. Within the confines of the latter, the presentation focuses on the current status of R&D of solid-state laser materials, wherein the consistently successful development of semiconductor lasers is contrasted with alternating fortunes in the R&D of insulator-based solid-state materials.

Three factors are identified as the driving forces behind the renewed interest in insulator-based solid-state laser materials: the present technological requirements for tunable laser sources, either laser-pumped or flashlamp-pumped; the doubling in lasing efficiency in Nd-activated garnets, as resulting from Cr3+ cross-pumping; and Lawrence Livermore’s reassessment of solid-state laser materials for medium- to high-power applications.

As for the future trends in laser R&D, the revolutionary impact of the original discovery is far from being spent, as witnessed by the recent dramatic production of extremely short laser pulses in the femtosecond regime. In science and technology, laser radiation represents nowadays: a probe/tool of unsurpassed finesse in both the temporal and energetic domains; a means for the very precise delivery of energy, on both the short and long distances; a vehicle for ultrafast information transfer; and the key element in the very fast production, processing, storing and retrieval of data. Vigorous future growth is expected in those R&D areas that will skillfully take advantage of the unique properties of laser radiation in order to satisfy technological and societal needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. W. Townes, IEEE J. Quantum Electronics QE- 20, 547 (1984).

    Article  ADS  Google Scholar 

  2. W. E. Lamb, Jr., IEEE J. Quantum Electronics QE- 20, 551 (1984)

    Article  ADS  Google Scholar 

  3. N. Bloemberger, IEEEJ. Quantum Electronics QE- 20, 556 (1984).

    Article  ADS  Google Scholar 

  4. A. L. Schawlow, IEEE J. Quantum Electronics QE- 20, 558 (1984).

    Article  ADS  Google Scholar 

  5. C. K. N. Patel, IEEE J. Quantum Electronics QE- 20, 561 (1984).

    Article  ADS  Google Scholar 

  6. G. F. Smith, IEEE J. Quantum Electronics QE- 20, 577 (1984).

    Article  ADS  Google Scholar 

  7. P. P. Sorokin, IEEE J. Quantum Electronics QE- 20, 585 (1984).

    Article  ADS  Google Scholar 

  8. J. L. Emmett, W. F. Krupke, and J. I. Davis, IIIE J. Quantum Electronics QE- 20, 591 (1984).

    Article  ADS  Google Scholar 

  9. R. H. Rediker, I. Melngailis, and A. Mooradian, IIIE J. Quantum Electronics QE- 20, 602 (1984).

    Article  ADS  Google Scholar 

  10. R. T. Hodgson, Phys. Rev. Lett 25, 494 (1970).

    Article  ADS  Google Scholar 

  11. R. W. Dreyfus and R. T. Hodgson, J. Vac. Sci. Technol. 10, 1033 (1973).

    Article  ADS  Google Scholar 

  12. C. A. Brau and J. J. Ewing, Appl. Phys. Lett. _27, 435 (1975).

    Article  ADS  Google Scholar 

  13. S. K. Searles and G. A. Hart, Appl. Phys. Lett. 27, 243 (1975).

    Article  ADS  Google Scholar 

  14. E. R. Ault, R. S. Bradford, Jr., and M. L. Bhaumik, Appl. Phys. Lett. _27, 413 (1975).

    Article  ADS  Google Scholar 

  15. From the Sprite System of the Rutherford Laboratory, England, as quoted in Laser Focus 10, 20 (1985).

    Google Scholar 

  16. W. T. Walter, N. Solimene, M. Piltch, and G. Gould, IIIE J. Quantum Electronics QE- 2, 474 (1966).

    Article  ADS  Google Scholar 

  17. W. T. Walter,IEEE J. Quantum Electronics QE- 4, 355 (1968).

    Article  ADS  Google Scholar 

  18. A. M. Fauchet, J. Feinstein, A. Gover, and R. H. Pantell, IEEE J. Quantum Electronics QE- 20, 1332 (1984).

    Article  ADS  Google Scholar 

  19. A. A. Kaminskii, “Laser Crystals. Their Physics and Properties,” Springer-Verlag, Berlin, 1981.

    Google Scholar 

  20. H. P. Weber, T. C. Damen, H. G. Danielmeyer, and B. C. Tofield, Appl. Phys. Lett. 22, 534 (1973).

    Article  ADS  Google Scholar 

  21. J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, IEEE J. Quantum Electronics QE- 16, 1302 (1980).

    Article  ADS  Google Scholar 

  22. E. V. Zharikov, N. N. II’ichev, V. V. Laptev, A. A. Malyutin, V. G. Ostroumov, P. P. Pashinin, A. S. Pimenov, V. A. Smirnov, and I. A. Shcherbakov, Sov. J. Quant. Electronics 13, 82 (1983).

    Article  Google Scholar 

  23. P. F. Moulton, Proceedings CLEO 1984, Anaheim, California, paper WA2.

    Google Scholar 

  24. E. Reed and E. G. Erikson, Proceedings CLEO 1984, Anaheim, California, paper WA3.

    Google Scholar 

  25. N. Wada and M. Abe, Proceedings CLEO 1984, Anaheim, California, paper WA4.

    Google Scholar 

  26. D. F. Heller and J. C. Walling, Proceedings CLEO 1984, Anaheim, California, paper WI4.

    Google Scholar 

  27. H. Samelson and D. J. Harter, Proceedings CLEO 1984, Anaheim, California, paper WI5.

    Google Scholar 

  28. R. C. Sam, R. Rapoport, and S. Matthews, Proceedings CLEO 1984, Anaheim, California, paper WI6.

    Google Scholar 

  29. B. Struve and G. Huber, Proceedings CLEO 1984, Anaheim, California, paper WI2.

    Google Scholar 

  30. Shui T. Lai and M. L. Shand, Proceedings CLEO 1984, Anaheim, California, paper WI3.

    Google Scholar 

  31. W. Kolbe, K. Petermann, and G. Huber, Proceedings CLEO 1984, Anaheim, California, paper WI1.

    Google Scholar 

  32. N. Menyuk, P. F. Moulton, D. K. Killinger, A. Mooradian, and S. Lovold, MIT Lincoln Lab. Tech. Rep. 1984:3, p. 19.

    Google Scholar 

  33. T P. F. Moulton, A. Mooradian. B. Reed, Opt. Letters 31, 164 (1978).

    Article  ADS  Google Scholar 

  34. L. F. Johnson, R. E. Dietz, and H. J. Guggenheim, Phys. Rev. Lett. 11, 318 (1963).

    Article  ADS  Google Scholar 

  35. B. C. Johnson, P. F. Moulton, A. Mooradian, and M. Rosenbluh, Proceedings CLEO 1984, Anaheim, California, paper WC2.

    Google Scholar 

  36. P. F. Moulton, Stanford University Workshop on Tunable Solid State Lasers (October 1984).

    Google Scholar 

  37. D. J. Ehrlich, P. F. Moulton, and R. M. Osgood, Jr., Optics Letters S 539 (1980).

    Google Scholar 

  38. A. Linz, M. Model, C. S. Naiman, F. R. Payne and H. P. Jenssen, Proceedings CLEO 1984, Anaheim, California.

    Google Scholar 

  39. N. P. Barnes, L. Esterowitz, and R. E. Allen, Proceedings CLEO 1984, Anaheim, California, paper WA5.

    Google Scholar 

  40. L. F. Mollenauer and D. H. Olson, Appl. Phys. Lett 24, 386 (1974).

    Article  ADS  Google Scholar 

  41. L. F. Mollenauer and D. M. Bloom, Opt. Lett. 4, 247 (1979).

    Article  ADS  Google Scholar 

  42. J. L. Emmett, W. F. Krupke, and W. R. Sooy, Lawrence Livermore National Laboratory, Report UCRL-5371 (September 1984).

    Google Scholar 

  43. D. R. Schifres, R. D. Burnham, and W. Streifer, Appl. Phys. Lett.41, 118 (1982).

    Article  ADS  Google Scholar 

  44. E. D. Hinkley and C. Freed, Phys. Rev. Lett. 23, 277 (1969).

    Article  ADS  Google Scholar 

  45. I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, Appl. Phys. Lett. 17, 109 (1970).

    Article  ADS  Google Scholar 

  46. C. B. Su, V. Lanzisera, W. Powaziniki, E. Meland, R. Olshansky, and R. B. Lauer, Appl. Phys. Lett. 46, 344 (1985).

    Article  ADS  Google Scholar 

  47. C. B. Su, V. Lanzisera, R. Olshansky, J. Schlafer, D. M. Fye, and R. B. Lauer, submitted to IOOC/ECOC 1985.

    Google Scholar 

  48. M. Dagenais and W. F. Scharfin, Appl. Phys. Lett. _46, 230 (1985).

    Article  ADS  Google Scholar 

  49. A. R. Chraplyvy and J. Stone, IQECf84, Anaheim, California, paper MBB2 (June 1984).

    Google Scholar 

  50. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).

    Article  ADS  Google Scholar 

  51. L. F. Mollenauer and R. H. Stolen, Optics Letters 9, 13 (1984).

    Article  ADS  Google Scholar 

  52. D. H. Auston, K. P. Cheung, J. A. Valdmanis, D. A. Kleinmann, and P. R. Smith, Proceedings CLEO 1984, paper TU11.

    Google Scholar 

  53. K. E. Meyer and G. A. Mourou, Proceedings CLEO 1984, paper TU12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pappalardo, R.G. (1987). Recent Trends in Laser Material Research. In: Di Bartolo, B. (eds) Spectroscopy of Solid-State Laser-Type Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0899-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0899-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8235-8

  • Online ISBN: 978-1-4613-0899-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics