Advertisement

Differentiation of Constructive Functions of a Real Variable and Relative Computability

  • Osvald Demuth
  • Pavel Filipec

Abstract

The paper belongs to constructive mathematics of Markov school. The aim of it is to show an introducing of sane relativized notions into constructive mathematical analysis (CMA) and to present a few results concerning differentiability of constructive real-valued functions of a real variable as an example of the utilization of the relativization.

Keywords

Real Variable Recursive Function Double Negation Constructive Function Existential Quantifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Beeson, “Foundations of Constructive Mathematics,” Springer-Verlag, Berlin (1985).MATHGoogle Scholar
  2. 2.
    M. Beeson, Some problems in constructive mathematics, Rend.Sem.Mat. Univers. Politecn.Ttorino 38:13 (1980).MathSciNetMATHGoogle Scholar
  3. 3.
    N. A. Sanin, Constructive real numbers and constructive function spaces, in: “Translations of Mathematical Monographs 21,” Amer.Math.Soc., Providence, R.I. (1968).Google Scholar
  4. 4.
    B. A. Kušněr, “Lectures on Constructive Mathematical Analysis,” Amer. Math.Soc., Providence, R.I. (1984).Google Scholar
  5. 5.
    O. Demuth and A. Kučera, Remarks on constructive mathematical analysis, in: “Logic Colloquium ′78,” M. Boffa, D. van Dalen, K. McAloon, eds., North-Holland, Amsterdam (1979).Google Scholar
  6. 6.
    N. A. Šanin, On the constructive interpretation of mathematical judgements, in: “Amer.Math. Soc. Transl. (2) 23,” Auer.Math. Soc., Providence, R.I. (1963).Google Scholar
  7. 7.
    H. Rogers, “Theory of Recursive Functions and Effective Computability,” McGraw-Hill, New York (1967).MATHGoogle Scholar
  8. 8.
    O. Demuth, R. Kryl, A. Kučera, An application of the theory of functions partial recursive relative to number sets in constructive mathematics (Russian), Acta Univ. Carolinae-Math. et Phys. 19:15 (1978).MATHGoogle Scholar
  9. 9.
    O. Demuth, Some questions in the theory of constructive functions of a real variable (Russian), Acta Univ. Carolinae-Math. et Phys. 19:61 (1978).MathSciNetMATHGoogle Scholar
  10. 10.
    I. D. Zaslavskij, G. S. Cejtin. On singular coverings and properties of constructive functions connected with them, in: “Amer. Math Soc. Transl. (2) 98,” Amer.Math. Soc., Providence, R.I. (1971).Google Scholar
  11. 11.
    O. Demuth, On some classes of arithmetical real numbers (Russian), Comment.Math.Univ.Carolinae 23:453 (1982).MATHGoogle Scholar
  12. 12.
    P. Martin-Lof, “Notes on Constructive Mathematics,” Almquist and Wiksell, Stockholm (1970).Google Scholar
  13. 13.
    O. Demuth, An example of a construction of pseudonumbers by means of recursion theory (to appear).Google Scholar
  14. 14.
    O. Demuth, On arithmetical complexity of differentiation in constructive mathematics (Russian), Comment.Math.Univ.Carolinae 24:301 (1983).MathSciNetMATHGoogle Scholar
  15. 15.
    G. S. Cejtin, Algorithmic operators in constructive metric spaces, in: “Amer.Math. Soc. Transl. (2) 64,” Amer.Math. Soc., Providence, R.I. (1967).Google Scholar
  16. 16.
    A. Kučera, B. A. Kušněr, On the types of recursive isomorphism of some concepts of constructive analysis (Russian), Comment.Math.Univ.Carolinae 19:97 (1978).MathSciNetMATHGoogle Scholar
  17. 17.
    I. D. Zaslavskij, Some properties of constructive real numbers and constructive functions, in: “Amer.Math. Soc. Transl. (2) 57,” Amer.Math. Soc., Providence, R.I. (1966).Google Scholar
  18. 18.
    O. Demuth, Constructive functions of a real variable and reducibilities of sets (to appear).Google Scholar
  19. 19.
    O. Demuth, Derivatives of constructive functions (to appear).Google Scholar
  20. 20.
    O. Demuth, A constructive analogue of Garg’s theoron on Dini derivatives (Russian),. Comment.Math.Univ.Carolinae 21:457 (1980).MathSciNetMATHGoogle Scholar
  21. 21.
    J. Myhill, A recursive function defined on a compact interval and having a continuous derivative that is not recursive, Michigan Math.J. 18:97, (1971).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Osvald Demuth
    • 1
    • 2
  • Pavel Filipec
    • 1
    • 2
  1. 1.Department of Conputer ScienceCharles UniversityPragueCzechoslovakia
  2. 2.Institute of EconomicsCzechoslovak Academy of SciencesPragueCzechoslovakia

Personalised recommendations