Advertisement

Monte Carlo Renormalization Group Methods and Results in QCD

  • Peter Hasenfratz
Part of the The Subnuclear Series book series (SUS, volume 22)

Abstract

The way quantum field theory is defined and working beyond perturbation theory — this is the main topic of these lectures. The first part is a general introduction to renormalization group ideas, while the specific methods and results are discussed in the second part.
  1. I.
    1. 1.

      Introduction

       
    2. 2.

      Renormalization group

       
    3. 3.

      “Good” and “bad” regularizations, gauge theory on the lattice

       
    4. 4.

      The Gaussian fixed point in a Yang-Mills theory

       
    5. 5.

      Renormalizability

       
    6. 6.

      The β-function and Δβ(β)

       
     
  1. II.
    1. 1.

      Monte Carlo renormalization group methods; optimization

       
    2. 2.

      Results

       
     

Keywords

Gauge Theory Renorma1ization Group Correlation Length Continuum Limit String Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1a).
    V.N. Gribov and A.A. Migdal — Soviet Phys. JETP 28 (1968) 784Google Scholar
  2. 1b).
    A.A. Migdal — Soviet Phys. JETP 32 (1971) 552Google Scholar
  3. 1c).
    A.M. Polyakov — Soviet Phys. JETP 28 (1969) 533Google Scholar
  4. 1d).
    M.A. Moore — Nuovo Cimento 3 (1972) 275.Google Scholar
  5. 2a).
    The classical renormalization group theory has been formulated in the context of QFT and, in practice, relies on perturbative expansions: M. Gell-Mann and F.E. Low — Phys.Rev. 95 (1954) 1300CrossRefGoogle Scholar
  6. 2b).
    E.C.G. Stueckelberg and A. Peterman — Helv.Phys.Acta 26 (1953) 499Google Scholar
  7. 2c).
    C.G. Callan — Phys.Rev. D2 (1970) 1541Google Scholar
  8. 2d).
    K. Symanzik — Comm.Math.Phys. 18 (1970) 227.CrossRefGoogle Scholar
  9. 2e).
    Here we shall follow a different aspect of the RG theory which was initiated and largely developed by K. Wilson: K. Wilson — Phys.Rev. 140 (1965) B445CrossRefGoogle Scholar
  10. 2f).
    D2 (1970) 1438Google Scholar
  11. 2g).
    D3 (1971) 1818Google Scholar
  12. 2h).
    B4 (1971) 3174Google Scholar
  13. 2i).
    B4 (1971) 3184. There are many excellent reviews on the subject, a partial list is given by Refs. 3)–8). For a historical review, see Ref. 9).Google Scholar
  14. 3).
    K. Wilson and J. Kogut — Physics Reports 12C (1974) 75.CrossRefGoogle Scholar
  15. 4).
    S.K. Ma — Rev.Mod.Phys. 45 (1973) 589.CrossRefGoogle Scholar
  16. 5).
    K. Wilson — Rev.Mod.Phys. 47 (1975) 773.CrossRefGoogle Scholar
  17. 6a).
    K. Wilson — Adv.Math. 16 (1975) 176CrossRefGoogle Scholar
  18. 6b).
    K. Wilson — Adv.Math. 16 (1975) 444.CrossRefGoogle Scholar
  19. 7).
    S.K. Ma — Modern Theory of Critical Phenomena (Benjamin, Reading, MA, 1976).Google Scholar
  20. 8).
    L.P. Kadanoff — Rev.Mod.Phys. 49 (1977) 267.CrossRefGoogle Scholar
  21. 9).
    K. Wilson — Rev.Mod.Phys. 55 (1983) 583.CrossRefGoogle Scholar
  22. 10a).
    For an intuitive discussion on the idea of thinning out the variables, see: L.P. Kadanoff — Physics 2 (1966) 263Google Scholar
  23. 10b).
    L.P. Kadanoff et al. — Rev.Mod.Phys. 39 (1967) 395.CrossRefGoogle Scholar
  24. 11a).
    Block RG transformation in configuration space was first used in: Th. Niemeijer and J.M.J. van Leeuwen — Phys.Rev.Lett. 31 (1973) 1411CrossRefGoogle Scholar
  25. 11b).
    Physica 71 (1974) 17.CrossRefGoogle Scholar
  26. 12).
    The matrix Tαβ is infinite dimensional and non-Hermitian in general. As a Consequence of that, in certain cases, Eq. (12) might require modifications [see, for instance, Ref. 5), p. 784].CrossRefGoogle Scholar
  27. 13).
    The formal theory of fixed points and the general behaviour in the neighbourhood of them is discussed in: F. Wegner — Phys.Rev. B5 (1972) 4529.Google Scholar
  28. 14).
    S.H. Shenker — in Recent Advances in Field Theory and Statistical Mechanics [Eds. J.B. Zuber and R. Stora, North Holland (1984)].Google Scholar
  29. 15).
    If ζ‒2 is chosen smaller than 2‒(d+2/2) the \( {\vec q^2}\) term will be irrelevant and the fixed point action becomes trivial. In the opposite case, the \( {\vec q^2} \) term is relevant and its coefficient should be zero on the critical surface. The corresponding fixed point action starts with \( {\left( {{{\vec q}^2}} \right)^2} \) , a situation which has not found applications until now.Google Scholar
  30. 16).
    See, for instance: T.L. Bell and K. Wilson — Phys.Rev. B10 (1974) 3935.Google Scholar
  31. 17).
    Even in the case of the simple momentum space RG transformation, the operator, say ϕ4, is not an eigenoperator itself but it is mixed with ϕ2. In the following, I will use the notation “ϕ4” in referring to the eigenoperator whose eigenvalue corresponds to that obtained for ϕ4 on the basis of the simple dimension counting in Eq. (28) and in Table 1.Google Scholar
  32. 18a).
    This possibility was raised first by Wilson, see the last reference in 2), also 3) and: K. Wilson, Phys.Rev. D6 (1972) 419.Google Scholar
  33. 18b).
    The triviality of ϕ4 is shown rigorously in d > 4. Although in d = 4, no complete proof exists, the original problem has been reduced to a stage where the triviality seems to be plausible. An incomplete list of references is given below: M. Aizenman — Phys.Rev.Lett. 47 (1981) 1CrossRefGoogle Scholar
  34. 18c).
    J. Fröhlich — Nucl.Phys. B200 [FS4] (1982) 281CrossRefGoogle Scholar
  35. 18d).
    C. Aragão de Carvalho, S. Caracciolo and J. Fröhlich — Nucl. Phys. B215 [FS7] (1983) 209CrossRefGoogle Scholar
  36. 18e).
    D. Brydges, J. Fröhlich and A. Sokal — Comm. Math.Phys. 91 (1983) 117CrossRefGoogle Scholar
  37. 18f).
    J. Fröhlich — “Quantum Field Theory in Terms of Random Walks and Random Surfaces”, Cargèse Lectures (1983).Google Scholar
  38. 18g).
    Numerical studies on ϕ4 in d = 4 suggest triviality also: G.A. Baker Jr., L.P. Benofy, F. Cooper and D. Preston — Nucl. Phys. B210 (1982) 273CrossRefGoogle Scholar
  39. 18h).
    C.M. Bender, F. Cooper, G.S. Guralnik, R. Roskies and D.H. Sharp — Phys.Rev. D23 (1981) 2976Google Scholar
  40. 18i).
    ibid D23 (1981) 2999Google Scholar
  41. 18j).
    B. Freedman, P. Smolensky and D. Weingarten — Phys.Lett. 113B (1982) 481Google Scholar
  42. 18k).
    D.J. Callaway and R. Petronzio — CERN Preprint TH. 3844 (1984).Google Scholar
  43. 19).
    T.L. Bell and K. Wilson — Phys.Rev. B11 (1975) 3431.Google Scholar
  44. 20a).
    K. Wilson — Phys.Rev. D10 (1974) 2445Google Scholar
  45. 20b).
    D. Balian, J.-M. Drouffe and C. Itzykson — Phys.Rev. D10 (1974) 3376Google Scholar
  46. 20c).
    Phys.Rev. D11 (1974) 2098Google Scholar
  47. 20d).
    Phys.Rev. D11 (1975) 2104.Google Scholar
  48. 21a).
    An incomplete list of summary papers on the lattice formulation of gauge theories: J.-M. Drouffe and C. Itzykson — Physics Reports 38C (1978) 133CrossRefGoogle Scholar
  49. 21b).
    J.B. Kogut — Rev.Mod.Phys. 51 (1979) 659CrossRefGoogle Scholar
  50. 21c).
    J.B. Kogut — Rev.Mod.Phys. 55 (1983) 775CrossRefGoogle Scholar
  51. 21d).
    M. Creutz, L. Jacobs and C. Rebbi — Physics Reports 95 (1983) 201CrossRefGoogle Scholar
  52. 21e).
    J.-M. Drouffe and J.-B. Zuber — Physics Reports 102 (1983) 1CrossRefGoogle Scholar
  53. 21f).
    P. Hasenfratz — CERN Preprint TH. 3737 (1983).Google Scholar
  54. 22).
    F. Gutbrod, P. Hasenfratz, Z. Kunszt and I. Montvay — Phys. Lett. 128B (1983) 415.Google Scholar
  55. 23).
    T. Celik, J. Engels and H. Satz — Phys.Lett. 129B (1983) 323.Google Scholar
  56. 24a).
    S.K. Ma — Phys.Rev.Lett. 37 (1976) 461CrossRefGoogle Scholar
  57. 24b).
    R.H. Swendsen — Phys.Rev.Lett. 42 (1979) 859.CrossRefGoogle Scholar
  58. 25).
    R.H. Swendsen — “Monte Carlo Methods”, Lectures at the Scottish Universities Summer School in Physics (1983).Google Scholar
  59. 26a).
    The author’s understanding of the subject was greatly influenced by: K. Wilson — in Recent Developments of Gauge Theories, Eds. G. t’Hooft et al. (Plenum Press, 1980)Google Scholar
  60. 26b).
    see also Ref. 27).Google Scholar
  61. 27).
    S.H. Shenker and J. Tobochnik — Phys.Rev. B22 (1980) 4462.Google Scholar
  62. 28a).
    R.H. Swendsen — Phys.Rev.Lett. 52 (1984) 1165.CrossRefGoogle Scholar
  63. 28b).
    D.J. Callaway and R. Petronzio — Phys.Lett. 139B (1984) 189.Google Scholar
  64. 29a).
    This procedure was followed in Refs. 26) and 27). See also: A. Hasenfratz and T. Margaritis — Phys.Lett. 133B (1983) 211Google Scholar
  65. 29b).
    A. Guha, M. Okawa and J.-B. Zuber — Santa Barbara Preprint, ITP-SB-84-24 (1984);Google Scholar
  66. 29c).
    C. Zachos — Argonne Preprint, ANL-HEP-CP-84-20 (1984).Google Scholar
  67. 29d).
    There are many attempts of using similarly improved actions in a direct (i.e., not RG related) MC study, see for instance: Y. Iwasaki and T. Yoshié — Phys.Lett. 130B (1983) 77Google Scholar
  68. 29e).
    Y. Iwasaki, S. Sakai and Y. Yoshié, Phys.Lett. 136B (1984) 73Google Scholar
  69. 29f).
    Y. Iwasaki and T. Yoshié — Preprint UTHEP-111 (1984).Google Scholar
  70. 30).
    R.H. Swendsen — Phys.Rev.Lett. 52 (1984) 2321.CrossRefGoogle Scholar
  71. 31).
    A. Hasenfratz, P. Hasenfratz, U. Heller and F. Karsch — Phys. Lett. 140B (1984) 76.Google Scholar
  72. 32).
    K.C. Bowler, A. Hasenfratz, P. Hasenfratz, U. Heller, F. Karsch, R.D. Kenway, I. Montvay, G.S. Pawley and D.J. Wallace — CERN Preprint TH. 3952 (1984).Google Scholar
  73. 33a).
    A simple gauge invariant block transformation was first suggested by: R.H. Swendsen — Phys.Rev.Lett. 47 (1981) 1775.CrossRefGoogle Scholar
  74. 33b).
    For further details on the specific example discussed here, see Ref. 32).Google Scholar
  75. 34a).
    M. Creutz — Phys.Rev. D23 (1981) 1815Google Scholar
  76. 34b).
    R.W.B. Ardill, M. Creutz and K.J.M. Moriarty — Phys.Rev. D27 (1983) 1956.Google Scholar
  77. 35).
    A. Hasenfratz, P. Hasenfratz, U. Heller and F. Karsch — CERN Preprint TH. 3870 (1984).Google Scholar
  78. 36).
    U. Heller and F. Karsch — in preparation.Google Scholar
  79. 37a).
    In concentrating on recent MCRG results, I will not attempt to summarize earlier results obtained by different RG methods. The Migdal-Kadanoff recursion relation: A. Migdal — Soviet Phys. JETP 42 (1975) 413Google Scholar
  80. 37b).
    42 (1976) 743Google Scholar
  81. 37c).
    L. Kadanoff — Ann.Phys. (NY) 100 (1976) 359CrossRefGoogle Scholar
  82. 37d).
  83. 37e).
    reflects correctly many of the important qualitative properties of lattice gauge theories, but in its present form it is not applicable to the quantitative problems discussed here. M. Nauenberg and D. Toussaint — Nucl.Phys. B190 [FS3] (1981) 217CrossRefGoogle Scholar
  84. 37f).
    S. Caracciolo and P. Menotti — Nucl.Phys. B180 (1981) 428CrossRefGoogle Scholar
  85. 37g).
    K. Bitar, S. Gottlieb and C. Zachos — Phys.Rev. D26 (1982) 2853Google Scholar
  86. 37h).
    121B (1983) 163Google Scholar
  87. 37i).
    D. Horn and C Zachos — Phys.Rev. D29 (1984) 1202.Google Scholar
  88. 38a).
    See, for instance: C. Itzykson and J.-B. Zuber — J.Math.Phys. 21 (1980) 411CrossRefGoogle Scholar
  89. 38b).
    S. Wadia — Phys.Rev. D24 (1981) 970.Google Scholar
  90. 39a).
    A.M. Polyakov — Phys.Lett. 59B (1975) 79Google Scholar
  91. 39b).
    E. Brézin and J. Zinn-Justin — Phys.Rev. B14 (1976) 3110.Google Scholar
  92. 40).
    A detailed RG analysis of the O(N)N→∞ σ a model using the block transformation of Eq. (61) can be found in: J.E. Hirsch and S.H. Shenker — Phys.Rev. B27 (1983) 1736.Google Scholar
  93. 41).
    A. Hasenfratz and T. Margaritis — Michigan Preprint (1984).Google Scholar
  94. 42a).
    M. Fukugita and Y. Oyanagi — Phys.Lett. 123B (1983) 71Google Scholar
  95. 42b).
    B. Berg, S. Meyer. I. Montvay and K. Symanzik — Phys.Lett. 126B (1983) 467Google Scholar
  96. 42c).
    B. Berg, S. Meyer and I. Montvay — DESY Preprint 83–098 (1983).Google Scholar
  97. 43).
    K.C. Bowler, A. Hasenfratz, P. Hasenfratz, U. Heller, F. Karsch, R.D. Kenway, H. Meyer-Ortmanns, I. Montvay, G.S. Pawley and D.J. Wallace — in preparation.Google Scholar
  98. 44a).
    R. Gupta and A. Patel — CALTECH Preprint, CALT-68-1121 (1984);Google Scholar
  99. 44b).
    R. Gupta, G. Guralnik, A. Patel, T. Warnock and C. Zemach -CALTECH Preprint, CALT-68-1143 (1984).Google Scholar
  100. 45).
    R. Cordery, R. Gupta and M. Novotny — Phys.Lett. B128 (1983) 425.Google Scholar
  101. 46a).
    R.K. Ellis and G. Martinelli, Frascati Preprint, LNF-84/l(P) (1984);Google Scholar
  102. 46b).
    R.K. Ellis — Fermilab Preprint, FERMILAB-C0NF-84/41-T (1984).Google Scholar
  103. 47).
    D. Barkai, K.J.M. Moriarty and C. Rebbi — Brookhaven Preprint, BNL-34452 (1984).Google Scholar
  104. 48).
    F. Karsch and R. Petronzio — Phys.Lett. 139B (1984) 403.Google Scholar
  105. 49).
    A.D. Kennedy, J. Kuti, S. Meyer and B.J. Pendleton — Santa Barbara Preprint, NSF-ITP-84-61 (1984).Google Scholar
  106. 50).
    P.B. Mackenzie — Fermilab Preprint, FERMILAB-C0NF-84/48-T (1984).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Peter Hasenfratz
    • 1
  1. 1.Theoretical Physics DivisionCERNGeneva 23Switzerland

Personalised recommendations