Advertisement

Receptor Binding Techniques in Neurotoxicology

  • Lucio G. Costa
  • Marina Marinovich
  • Corrado L. Galli
Part of the NATO ASI Series book series (NSSA, volume 100)

Abstract

This chapter is intended to be an overview on receptor binding techniques and their application to the study of the neurotoxicity of chemicals. Although the theoretical basis of radioligand binding assays, the experimental methodologies and the basic processes of interpretation of binding data will be briefly considered, the reader is referred to other publications for more detailed theoretical and practical reviews (Peck and Kelner, 1983; Yamamura et al., 1978; Titeler, 1981; Williams and Lefkowitz, 1978). A few reviews on the use of radioligand techniques in neurotoxicology have also been recently published (Bondy, 1979; 1982; DeHaven and Mailman, 1983).

Keywords

Receptor Binding Muscarinic Receptor Neurotransmitter Receptor Scatchard Plot Radioreceptor Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaltonen, L. and Scheinin, M. Application of radioreceptor assay of benzodiazepines for Toxicology. Acta Pharmacol. Toxicol. 50: 206–212 (1982).CrossRefGoogle Scholar
  2. Abbassy, M.A., Eldefrawi, M.E. and Eldefrawi, A.T. Pyrethroid Action on the Nicotinic Acetylcholine Receptor/Channel. Pesticide Biochem. Physiol. 19: 299–308 (1983).CrossRefGoogle Scholar
  3. Abd-Elfattah, A.S.A. and Shamoo, A.E. Regeneration of a Functionally Active Rat Brain Muscarinic Receptor By D-Penicillamine After Inhibition with Methylmercury and Mercuric Chloride. Mol. Pharmacol. 20: 492–497 (1981).PubMedGoogle Scholar
  4. Abood, L.G., Saleti, N. MacNeil, M., Bloom, L. and Abood, M.E. Enhancement of opiate binding by various molecular forms of phosphatidylserine and inhibition by other unsaturated lipids. Biochem. Biophys. Acta 468: 51–62 (1977).PubMedCrossRefGoogle Scholar
  5. Abo-Khatwa, N. and Hollingworth, R.M. Chlordimeform: uncoupling activity against rat liver mitochondria. Pest. Biochem. Physiol. 3: 358–369 (1973).CrossRefGoogle Scholar
  6. Agrawal, A.K., Squibb, R.E. and Bondy, S.C. The effects of acrylamide treatment upon the dopamine receptor. Toxic. Appl. Pharmacol. 58: 84–99 (1981a).Google Scholar
  7. Agrawal, A.K., Seth, P.K., Squibb, R.E., Tilson, H.A., Uphouse, L.L. and Bondy, S.C. Neurotransmitter receptors in brain regions of acrylamide-treated rats. Is Effects of a single exposure to acrylamide. Pharmacol. Biochem. Behav. 14:527–531 (1981b).PubMedCrossRefGoogle Scholar
  8. Akera, T., Larsen, F.S. and Brody, T.M. Correlation of cardiac sodium - and potassium - activated adenosine triphosphatase activity with ouabain-induced inotropic stimulation. J. Pharmacol. Exp. Ther. 173: 145–151 (1970).PubMedGoogle Scholar
  9. Alexander, R.W., Williams, L.T. and Lefkowitz, R.J Identification of cardiac beta-adrenergic receptors by (-) [3H] alprenolol binding. Proc. Natl. Acad. Sci. USA 72: 1564–1568 (1975).PubMedCrossRefGoogle Scholar
  10. Ali, S.F., Cranmer, J.M., Goad, P.T., Sukker. W., Harbison, R.D. and Cranmer, M. F. Trimethyltin induced changes of neurotransmitter levels and brain receptor binding in the mouse. Neurotoxicology 4(1): 29–36 (1983).PubMedGoogle Scholar
  11. Amitai, G., Kloog, Y., Balderman, D. and Sokolovsky, M. The interaction of bis-pyridinium oximes with mouse brain muscarinic receptors. Biochem. Pharmacol. 29: 483–488 (1980).PubMedCrossRefGoogle Scholar
  12. Aronstam, R.S. and Eldefrawi, M.E. Transition and Heavy Metal Inhibition of Ligand Binding to Muscarinic Acetylcholine Receptors from Rat Brain. Toxicol. Appl. Pharmacol. 48: 489–496 (1979).PubMedCrossRefGoogle Scholar
  13. Aronstam, R.S., Abood, L.G. and Baumgold, J. Role of phospholipids in muscarinic binding by neural membranes. Biochem. Pharmacol. 26: 1689–1695 (1977).PubMedCrossRefGoogle Scholar
  14. Aronstam, H.S., Eldefrawi, A.T., Pessah, I.N., Daly, J.W., Albuquerque, E.X. and Eldefrawi, M.E. Regulation of [3H] perhydrohistrionicotoxin binding to Torpedo electroplax by effectors of the acetylcholine receptor. J. Biol. Chem. 256: 2843–2850 (1981).PubMedGoogle Scholar
  15. Aziz, S.A. and Knowles, C.O. Inhibition of Monoamine Oxidase by the Pesticide Chlordimeform and related compounds. Nature 242: 417–418 (1973).PubMedCrossRefGoogle Scholar
  16. Barnes, I.M. and Denz, F.A. The chronic toxicity of p-Nitrophenyl diethyl thiophosphate (E.605). J. Hyg. 49: 430–441 (1951).CrossRefGoogle Scholar
  17. Barnett, D.B. and Nahorski, S.R. Drug assays in plasma by radioreceptor techniques. Trends Pharmacol. Sci. 4: 407–409 (1983).CrossRefGoogle Scholar
  18. Bellett, E.M. and Casida, J.E. Bicyclic phosphorous esters: high toxicity without cholinesterase inhibition. Science 182: 1135–1136 (1973).CrossRefGoogle Scholar
  19. Bennett, J.P. and Snyder, S.H. Stereospecific binding of D-Lysergic acid diethylamide (LSD) to brain membranes: relationship to serotonin receptors. Brain Res. 94: 523–544 (1975).PubMedCrossRefGoogle Scholar
  20. Bombinski, T.S. and Dubois, K.P. Toxicity and mechanism of action of di-syston. AMA Arch. Ind. Health 17: 192–199 (1958).PubMedGoogle Scholar
  21. Bondy, S.C. Rapid Screening of Neurotoxic agents by in vivo and in vitro means. In “Effects of Foods and Drugs on the Development and Function of the Nervous System: Methods for Predicting Toxicity”, Proceeding of the Fifth FDA Science Symposium, 1979, pp. 133–143.Google Scholar
  22. Bondy, S.C. Neurotransmitter Binding Interaction as a Screen for Neurotoxicity. In: “Mechanisms of action of neurotoxic substances”, (K.N. Prasad and A. Vernadakis, Eds.), Raven Press, NY, 1982, pp. 25–50.Google Scholar
  23. Bondy, S.C. and Agrawal, A.K. The Inhibition of Cerebral High Affinity Receptor Sites by Lead and Mercury Compounds. Arch. Toxicol. 46: 249–256 (1980).PubMedCrossRefGoogle Scholar
  24. Bondy, S.C., Tilson, H.A. and Agrawal, A.K. Neurotransmitter receptors in brain regions of acrylamide-treated rats. II: Effects of extended exposure to acrylamide. Pharmacol. Biochem. Behav. 14: 533–537 (1981).PubMedCrossRefGoogle Scholar
  25. Bouldin. T.W., Goines, N.D., Bagnell, C.R. and Krigman, M.R. Pathogenesis of trimethyltin neuronal toxicity: Ultrastructural and Cytochemical Observations. Am. J. Pathol. 104: 237–249 (1981).PubMedGoogle Scholar
  26. Bowery, N.G., Collins, J.F. and Hill, R.G. Bicyclic Phosphorus esters that are potent convulsants and GABA antagonists. Nature 261: 601–603 (1976).PubMedCrossRefGoogle Scholar
  27. Braestrup, C. and Squires, R.F. Specific Benzodiazepine receptors in rat brain characterized by high-affinity [3H] diazepam binding. Proc. Natl. Acad. Sci. USA 74: 3805–3809 (1977).PubMedCrossRefGoogle Scholar
  28. Brodeur, J. and Du Bois, K.P. Studies on the mechanism of acquired tolerance by rats to 0,0-diethyl S-2 (ethylthio) ethyl phosphorodithioate (DiSyston). Arch. Int. Pharmacodyn. 149: 560–570 (1964).PubMedGoogle Scholar
  29. Brown, A.W., Aldridge, W.N., Street, B.W. and Versehoyle, R.D. The behavioral and neuropathologie sequelae of intoxication by trimraethyltin compounds in the rat. Am. J. Pathol. 97: 59–82 (1979).PubMedGoogle Scholar
  30. Bruns, R.F., Daly, J.W. and Snyder S.H. Adenosine receptors in brain membranes: binding of N6 -cyclohexyl [3H] adenosine and 1,3-diethyl-8-[H] phenylxanthine. Proc. Natl. Acad. Sci. USA 9: 5547–5551 (1980).CrossRefGoogle Scholar
  31. Burgen, A.S.V., Hiley, C.R. and Young, J.M. The binding of [3H]-propylbenzylcholine mustard by longitudinal muscle strips from guinea-pig small intestine. Br. J. Pharmacol. 50: 145–151 (1974).PubMedGoogle Scholar
  32. Burnstock, G. (Ed.) Purinergic Receptors. Chapman & Hall, London, (1981).Google Scholar
  33. Bylund, D.B. and Snyder, S.H. Beta adrenergic receptor binding in membrane preparations from mammalian brain. Mol. Pharmacol. 12: 568–580 (1976).PubMedGoogle Scholar
  34. Catterall, W.A. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Ann. Rev. Pharmacol. Toxicol. 20: 15–43 (1980).CrossRefGoogle Scholar
  35. Celani, M.F., Fuxe, K., Agnati, L.F., Andersson, K., Hansson, T., Gustafsson, J.A., Battistini, N. and Eneroth, P. Effects of subacute treatment with toluene on-central monoamine receptors in the rat. Reduced affinity in [3H] 5-hydroxytryptamine binding sites and in [3H] spiperone binding sites linked to dopamine receptors. Toxicol. Lett. 17: 275–281 (1983).PubMedCrossRefGoogle Scholar
  36. Chamness, G.C. and McGuire, W.L. Scatchard Plots: Common Errors in Correction and Interpretation. Steroids. 26(4): 538–542 (1975).PubMedCrossRefGoogle Scholar
  37. Chang, L.W., Tiemeyer, T.M., Wenger, G.R., and McMillan, D.E. Neuropathology ot mouse hippocampus in acute trimethyltin intoxication. Neurobehav. Toxicol. Teratol. 4: 149–156 (1982).PubMedGoogle Scholar
  38. Changeaux, J.P., Kasai, M., Huchet, M. and Meunier, J.C. Neurobiologie moleculaire - Extraction a partir du tissu electrique de-gymnote d’une proteine dresentant plusieurs proprietes caracteristiques du recepteur physiologique del’ acetylcholine. C.R. Acad. Sci. Paris 270: 2864–2867 (1970).Google Scholar
  39. Chau-Pham, T.T., King, G. and Dewey, W.L. Sodium-induced alterations of opiate effects on the binding of [3H]-dihydromorphine to mouse brain homogenates. Life Sci. 23: 1293–1300 (1978).PubMedCrossRefGoogle Scholar
  40. Cheng, Y.C. and Prusoff, W.H. Relationship between the Inhibitor Constant (KI) and the concentration of Inhibitor which causes 50 percent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22: 3099–3105 (1973).PubMedCrossRefGoogle Scholar
  41. Chinn, C., Lund, A.E. and Yim, G.K.W. Central actions of lidocaine and a pesticide: chlordimeform. Neuropharmacol. 16: 867–872 (1977).CrossRefGoogle Scholar
  42. Ciofalo, F. Effect of some antiarrhythmics on [3H] clonidine binding to alpha2 -adrenergic receptors, Eur. J. Pharmacol. 65: 309–312 (1980).PubMedCrossRefGoogle Scholar
  43. Ciofalo, F. Effects of some membrane perturbers on alpha1 -adrenergic receptor binding. Neurosci. Lett. 21: 313–318 (1981).PubMedCrossRefGoogle Scholar
  44. Concas, A., Corda, M.G., Salis, M., Mulas, M.L., Milia, A., Corongiu, F.P. and Biggio, G. Biochemical Changes in the Rat Cerebellar Cortex Elicited by Chronic Treatment with Methyl Mercury. Toxicol. Lett. 18: 27–33 (1983).PubMedCrossRefGoogle Scholar
  45. Cooper, J.R., Bloom, R.E. and Roth, R.H. The Biochemical Basis of Neuropharmacology. Oxford University Press, NY, 1982.Google Scholar
  46. Corda, M.G., Concas, A., Rossetti, Z., Guarneri, P., Corongiu, F.P. and Biggio, G. Methyl mercury enhances [3H] diazepam binding in different areas of the rat brain. Brain Res. 229: 264–269 (1981).PubMedCrossRefGoogle Scholar
  47. Costa, L.G. and Murphy, S.D. Passive avoidance retention in mice tolerant to the organophosphorus insecticide disulfoton. Toxicol. Appl. Pharmacol. 65: 451–458 (1982).PubMedCrossRefGoogle Scholar
  48. Costa, L.G. and Fox, D.A. A selective decrease of cholinergic muscarinic receptors in the visual cortex of adult rats following developmental lead exposure. Brain Research 276: 259–266 (1983).PubMedCrossRefGoogle Scholar
  49. Costa, L.G. and Murphy, S.D. [3H] nicotine binding in rat brain: alteration after chronic acetylcholinesterase inhibition. J. Pharmacol. Exp. Ther. 226: 392–397 (1983).PubMedGoogle Scholar
  50. Costa, L.G., Schwab, B.W., Hand, H. and Murphy, S.D. Decreased muscarinic binding sites in small intestine from mice treated with neostigmine. Life Sci. 29: 1675–1682 (1981a).PubMedCrossRefGoogle Scholar
  51. Costa, L.G., Schwab, B.W., Hand, H. and Murphy, S.D. Reduced [3H]-quinuclidinyl benzilate binding to muscarinic receptors in disulfoton-tolerant mice. Toxicol. Appl. Pharmacol. 60: 441–450 (1981b).PubMedCrossRefGoogle Scholar
  52. Costa, L.G., Schwab, B.W., and Murphy, S.D. Differential alterations of cholinergic muscarinic receptors during chronic and acute tolerance to organophosphorus insecticides. Biochem. Pharmacol. 31: 3407–3413 (1982a).PubMedCrossRefGoogle Scholar
  53. Costa, L.G., Schwab, B.W. and Murphy, S.D. Tolerance to anticholinesterase compounds in mammals. Toxicology 25: 79–97 (1982b).PubMedCrossRefGoogle Scholar
  54. Costa, L.G., Doctor, S.V. and Murphy, S.D. Antinociceptive and hypothermic effects of trimethyltin. Life Sci. 31: 1093–1102 (1982c).PubMedCrossRefGoogle Scholar
  55. Costa, L.G., Shao, M., Basker, K and Murphy, S.D. Chronic administration of an organophosphorus insecticide to rats alters cholinergic muscarinic receptors in the pancreas. Chem. Biol. Interactions 48: 261–269 (1984).CrossRefGoogle Scholar
  56. Creese, I., Burt, D.R. and Snyder, S.H. The dopamine receptor: Differential binding of d-LSD and related agents to agonist and antagonist states. Life Sci. 17: 1715–1720 (1975).PubMedCrossRefGoogle Scholar
  57. Creese, I. and Sibley, D.R. Receptor adaptations to centrally acting drugs. Ann. Rev. Pharmacol. Toxicol. 21: 357–391 (1980).CrossRefGoogle Scholar
  58. Cremer, J.E., Cunningham, V.J., Ray, D.E. and Sarna, G.S. Regional changes in brain glucose utilization in rats given a pyrethroid insecticide. Brain Research 194: 278–282 (1980).PubMedCrossRefGoogle Scholar
  59. Cuomo, V., Ambrosi, L., Cagiano, R., Brunello, N. and Racagni, G. Behavioral and neurochemical changes in offspring of rats exposed to methyl mercury during gestation. Soc. Neurosci. Abstr. 9: 1246 (1983).Google Scholar
  60. Daly, J.W., Hoffer, B.J. and Dismukes, K. (Eds). Mechanisms of regulation of neuronal sensitivity. Neurosc. Res. Prog.Bull. 18: 323–456 (1980).Google Scholar
  61. Damstra, T. and Bondy, S.C. Neurochemical approaches to the detection of neurotoxicity. In: “Nervous System Toxicology” (C.L. Mitchell, Ed.), Raven Press, NY, 1982, pp. 349–373.Google Scholar
  62. Danielsson, E., Unden, A. and Bartfai, T. Orthovanadate induces loss of muscarinic cholinergic binding sites. Biochem. Biophys. Res. Comm. 110: 567–572 (1983).PubMedCrossRefGoogle Scholar
  63. DeHaven, D.L., Walsh, T.J. and Mailman, R.B. The effects of trimethyltin on dopaminergic and serotoninergic function of the central nervous system. Soc. Neurosci. Abstr. 8: 562 (1982).Google Scholar
  64. DeHaven, D.L., Krigman, M.R., Gaynor, J.J. and Mailman, R.B. The effects of lead administration during development on lithiuminduced polydipsia and dopaminergic function. Brain Res. 297: 297–304 (1984).PubMedCrossRefGoogle Scholar
  65. DeHaven, D.L. and Mailman, R.B. The use of radioligand binding techniques in neurotoxicology. In: “Reviews in Biochemical Toxicology”, vol. 5 (E. Hodgson, J.R. Bend and R.M. Philpot, Eds.), Elsevier, NY, 1983, pp. 193–238.Google Scholar
  66. DeJong, L.P.A. and Wolring, G.Z. Reactivating potency of oximes and their effect on aging. In: “Protection against highly toxic substances”, 2nd Symposium, Prins Maurits Laboratory TNO, Rijswijk NL, 1981 pp. 319–326.Google Scholar
  67. Desaiah, D. Interaction of chlordecone with biological membranes. J. Toxicol. Environ. Health 8: 719–730 (1981).PubMedCrossRefGoogle Scholar
  68. Desaiah, D., Gilliland, T., Ho, I.K. and Mehendale, H.M. Inhibition of mouse brain synaptosomal ATP-ases and ouabain binding by chlordecone. Toxicol. Lett. 6: 275–285 (1980).PubMedCrossRefGoogle Scholar
  69. Doctor, S.V., Costa, L.G., Kendall,D.A. and Murphy, S.D. Trimethyltin inhibits uptake of neurotransmitters into mouse forebrain synaptosomes. Toxicology 25: 213–221 (1982).PubMedCrossRefGoogle Scholar
  70. Donaldson, J. and LaBella, F.S. The effects of manganese on the cholinergic recetor in vivo and in vitro may be mediated through modulation of free radicals. Neurotoxicol. 5(1): 105–112 (1984).Google Scholar
  71. Dyer, R.S., Walsh, T.J., Wonderlin, W.F. and Bercegeay, M. The trimethyltin syndrome in rats. Neurobehav. Toxicol. Teratol. 4: 127–133 (1982).PubMedGoogle Scholar
  72. Edley, S.M. Effects of prenatal haloperidol on receptors in the developing rat striatum: opposite changes in naloxone and spiperone binding. Soc. Neurosci. Abstr. 9:874 (1983).Google Scholar
  73. Ehlert, F.J., Kokka, N. and Fairhurst, A.S., Altered [3H] quinuclidinyl benzilate binding in the striatum of rats following chronic cholinesterase inhibition with diisopropylfluorophosphate. Mol. Pharmacol. 17: 24–30 (1980).PubMedGoogle Scholar
  74. Ehlert, F.J., Roeske, W.R., Itoga, E. and Yamamura, H.I. The binding of [3H] nitrendipine to receptors for calcium channel antagonists in the heart, cerebral cortex and ileum of rats. Life Sci. 30: 2191–2202 (1982).PubMedCrossRefGoogle Scholar
  75. Eisenthal, R. and Cornish-Bowden, A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem. J. 139: 715–710 (1974).PubMedGoogle Scholar
  76. Eldefrawi, A.T., Mansour, N.A. and Elderfrawi, M.E. Insecticides affecting acetylcholine receptor interactions. Pharmacol. Ther. 16: 45–65 (1982).PubMedCrossRefGoogle Scholar
  77. Eldefrawi, M.E., Manson, N.A. and Eldefrawi, A.T., Interactions of acetylcholine receptors with organic mercury. In: “Membrane Toxicity”, (Miller, M.W. and Shamoo, A.E., Eds.) Plenum Press, NY, 1977, pp. 449–463.Google Scholar
  78. End, D.W., Carchman, R.A. and Dewey, W.L. Neurochemical correlates of chlordecone neurotoxicity. J. Toxicol. Environ. Health 8: 707–718 (1981).PubMedCrossRefGoogle Scholar
  79. Enna, S.J. Radioreceptor assay techniques for neurotransmitters and drugs. In: “Neurotransmitter Receptor Binding”, (H.I. Yamamura, S.J. Enna and M.J. Kuhar, Eds.), Raven Press, NY, 1978, pp. 127–139.Google Scholar
  80. Enna, S.J. and Snyder, S.H. Properties of gamma-Aminobutyric acid (GABA) receptor binding in rat brain synaptic membrane fractions. Brain Res. 100: 81–97 (1975).PubMedCrossRefGoogle Scholar
  81. Enna, S.J. and Snyder, S.H. A simple, sensitive and specific radioreceptor assay for endogenous GABA in brain tissue. J. Neurochem. 26: 221–224 (1976).PubMedCrossRefGoogle Scholar
  82. Evans, P.D. Properties of modulatory octopamine receptors in the locust. In: “Neuropharmacology of insects”, Ciba Foundation Symposium 88, Pitman, London, 1982. pp. 48–69.Google Scholar
  83. Exton, J.H. Molecular Mechanisms involved in alpha-adrenergic responses. In: “More about receptors”, (J.W. Lamble, Ed.), Elsevier North Holland, 1982, pp. 66–75.Google Scholar
  84. Fox, D.A. Pharmacological and biochemical evaluation of triethyltin’s anticonvulsant effects. Neurobehav. Toxicol. Teratol. 4: 273–278 (1982).PubMedGoogle Scholar
  85. Fox, D.A. and Costa, L.G. Visual cortical and hippocampal loss of GABAergic receptors in lead exposed rats: electrophysiological and pharmacological correlates. Toxicologist 4(1): 114 (1984).Google Scholar
  86. Fox, D.A., Lewkowski, J.P. and Cooper, G.P. Persistent visual cortex excitability alterations produced by neonatal lead exposure. Neurobehav. Toxicol. 1: 101–106 (1979).Google Scholar
  87. Fox, D. A., Wright, A.A. and Costa, L.G. Visual acuity deficits following neonatal lead exposure: Cholinergic interactions. Neurobehav. Toxicol. Teratol. 4: 689–693 (1982).PubMedGoogle Scholar
  88. Friedhoff, A.J. and Miller, J.C. Clinical implications of receptor sensitivity modification. Ann. Rev. Neurosci. 6: 121–148 (1982).CrossRefGoogle Scholar
  89. Gallager, D.W. and Mallorga, P. Diphenylhydantoin: Pre- and Postnatal administration alters diazepam binding in developing rat cerebral cortex. Science 208: 64–66 (1980).PubMedCrossRefGoogle Scholar
  90. Gazit, H., Silman, I. and Dudai, Y. Administration of an organophosphate causes a decrease in muscarinic receptor levels in rat brain. Brain Res. 174: 351–356 (1979).PubMedCrossRefGoogle Scholar
  91. Gerhart, J.M. and Tilson, H.A. Manganese Chloride Exposure Alter High Affinity Receptor Binding and Drug-Induced Activity in Male Rats. Toxicologist 2(1): 87 (1982).Google Scholar
  92. Gepner, J.I., Hall, L.M. and Sattelle, D.B. Insect acetylcholine receptor as a site of insecticide action. Nature 276: 188–190 (1978).PubMedCrossRefGoogle Scholar
  93. Goodman, R.R. and Pasternak, G.W. Multiple opiate receptors. In: “Analgesics: Neurochemical, Behavioral and Clinical Perspectives”, (M. Kuhar and G.W. Pasternak, Eds.), Raven Press, NY, 1984, pp. 69–96.Google Scholar
  94. Govoni, S. Memo, M., Spano, P.F. and Trabucchi, M. Chronic lead treatment differentially effects dopamine synthesis in various rat brain areas. Toxicology 12: 343–349 (1979).PubMedCrossRefGoogle Scholar
  95. Greenberg, D.A., U’Prichard, D.C. and Snyder, S.H. Alpha-noradrenergic receptor binding in mammalian brain: differential labeling of agonist and antagonist states. Life Sci. 19: 69–76 (1976).PubMedCrossRefGoogle Scholar
  96. Hedlund, B., Gamarra, M. and Bartfai, T. Inhibition of striatal muscarinic receptor in vivo by cadmium. Brain Res. 168: 216–218 (1979).PubMedCrossRefGoogle Scholar
  97. Hill, A.W. The possible effects of the aggregation of the molecules of hemoglobin on its dissociation curves. J. Physiol. 40: IV (1910).Google Scholar
  98. Hill, D.R. and Bowery, N.G. 3H-Baclofen and 3H-GABA bind to bicuculline-insensitive GABABsites in rat brain. Nature, 290: 149–152 (1981).PubMedCrossRefGoogle Scholar
  99. Hirschowitz, B.I., Hammer, R., Giachetti, A., Keirns, J.J. and Levine, R.R., Eds. Subtypes of Muscarinic Receptors. Trends Pharmacol. Sci. suppl., Elsevier, 1984, pp. 103.Google Scholar
  100. Ho, I.K., Fujimori, K., Huang, T.P. and Chang-Tusi, H. Neurochemical evaluation of chlordecone toxicity in the mouse. J. Toxicol. Environ. Health 8: 701–706 (1981).PubMedCrossRefGoogle Scholar
  101. Hollingworth, R.M., Leister, J. and Ghali, G. Mode of action of formamidine pesticides: an evaluation of monoamine oxidase as the target. Chem. Biol. Interactions 24: 35–49 (1979).CrossRefGoogle Scholar
  102. Hollingworth, R.M. and Lund, A.E. Biological and Neurotoxic Effects of Amidine Pesticides. In: “Insecticide mode of action”, (R. O’Brien, Ed.) Academic Press, 1982, pp. 189–227.Google Scholar
  103. Hong, I.S., Tilson, H. A., Agrawal, A.K., Karoum, F. and Bondy, S.C. Postsynaptic location of acrylamide-induced modulation of striatal 3H-Spiroperidol binding. Neurotoxicol.3: 108–112 (1982).Google Scholar
  104. Hsu, W.H. and Kakuk, T.J. Effect of Amitraz and Chlordimeform on heart rate and pupil diameter in rats: mediated by alpha2 - adrenoreceptors. Toxicol. Appl. Pharmacol. 73: 411–415 (1984).PubMedCrossRefGoogle Scholar
  105. Iversen, L.L. Nonopioid neuropeptides in mammalian CNS. Ann. Rev. Pharmacol. Toxicol. 23: 1–27 (1983).CrossRefGoogle Scholar
  106. Johnson, T. and Knowles, C.O. Inhibition of Rat Platelet 5-Hydroxytryptamine Uptake by Chlordimeform. Toxicol. Lett. 9: 1–4 (1981).PubMedCrossRefGoogle Scholar
  107. Keightley, D.D. and Cressie, N.A.C. The Woolf plot is more reliable than the Scatchard plot in analysing data from hormone receptor assays. J. Steroid Biochem. 13: 1317–1323 (1980).PubMedCrossRefGoogle Scholar
  108. Ketelsleger, I.M., Pirens, G., Maghuin-Rogister, G., Hennen, G. and Freres, J.M. The choice of erroneous models of hormone receptor interactions: a consequence of illegitimate utilization of Scatchard graphs. Biochem. Pharmacol. 33: 707–710 (1984).CrossRefGoogle Scholar
  109. Klotz, I.M. Numbers of receptor sites from Scatchard graphs: facts and fantasies. Science 217: 1247–1249 (1982).PubMedCrossRefGoogle Scholar
  110. Klotz, I.M. Ligand-receptor interactions: what we can and cannot learn from binding measurements. Trends Pharmacol. Sci. 4: 253–255 (1983).CrossRefGoogle Scholar
  111. Klotz, U., Kangas, L. and Kanto, J. Clinical Pharmacology of Benzodiazepines. G. Fisher Verlag, Stuttgart, 1980.Google Scholar
  112. Kuhnen-Clausen, D., Hagedorn, I., Gross, G., Bayer, H. and Hucho, F. Interactions of bisquaternary pyridine salts (H-oximes) with cholinergic receptors. Arch. Toxicol. 54: 171–179 (1983).PubMedCrossRefGoogle Scholar
  113. Laduron, P.M. Criteria for receptor sites in binding studies. Biochem. Pharmacol. 33: 833–839 (1984).PubMedCrossRefGoogle Scholar
  114. Langley, J.N. On the reaction of cells and of nerve endings to certain poisons. Chiefly as regards the reaction of striated muscle to nicotine and to curari. J. Physiol. 33: 374–413 (1905).PubMedGoogle Scholar
  115. Lawrence, L.J. and Casida, J.E. Stereospecific action of pyrethroid insecticides on the gamma-aminobutyric acid receptor-ionophore complex. Science: 221: 1399–1401 (1983).PubMedCrossRefGoogle Scholar
  116. Lawrence, L.J. and Casida, J.E. Interactions of lindane, toxaphene and cyclodienes with brain-specific t-butylbicyclophosphorothionate receptor. Life Sci. 35:171–178 (1984).PubMedCrossRefGoogle Scholar
  117. Leclerc, G., Rovot, B., Velly, J. and Schwartz, J. Beta-adrenergic receptor subtypes. In: “Towards understanding receptors”, (J.W. Lamble, Ed.), Elsevier North Holland, 1981, pp. 78–83.Google Scholar
  118. Leff, S.E. and Creese, I. Dopamine receptors re-explained. Trends Pharmacol. Sci. 4: 463–467 (1983).CrossRefGoogle Scholar
  119. Lefkowitz, R., Roth, J. and Pastan, I. Radioreceptor assay of adrenocorticotropic hormone: new approach to assay of polypeptide hormones in plasma. Science 170: 633–635 (1970).PubMedCrossRefGoogle Scholar
  120. Lineweaver, H. and Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658–666 (1934).CrossRefGoogle Scholar
  121. Loullis, C.C., Dean, R.L., Benson, D.I., Lippa, A.S., Bartus R.T. and Coupet, J. Trimethyltin: behavioral, neurochemical and neuroanatomical effects. Soc. Neurosci. Abstr. 9: 420 (1983).Google Scholar
  122. Lucchi, L., Memo, M. Airaghi, M.L., Spano, P.F. and Trabucchi, M. Chronic lead treatment induces in rat a specific and differential effect on dopamine receptors in different brain areas. Brain Res. 213: 397–404 (1981).PubMedCrossRefGoogle Scholar
  123. Lucchi, L. Covelli, V., Petkov, Y.V., Spano, P. and Trabucchi, M. Effects of ethanol, given during pregnancy on the offspring dopaminergic system. Pharm. Biochem. Behav. 19: 567–570, (1983).CrossRefGoogle Scholar
  124. Mailman, R.B. and Morell, P. Neurotoxicants and membrane-associated functions. In: “Reviews in biochemical toxicology”, vol. 4 (E. Hodgson, J.R. Bend and R.M. Philpot, Eds.), Elsevier, New York, 1982, pp. 213–255.Google Scholar
  125. Mailman, R.B., Ferris, R.M., Tang, F.L.M., Vogel, R.A., Kilts, C.D., Lipton, M.A., Smith, D.A., Mueller, R.A. and Breese, G.R. Erythrosine (Red No. 3) and its nonspecific biochemical actions: what relation to behavioral changes? Science 207: 535–537 (1980).PubMedCrossRefGoogle Scholar
  126. Marangos, P.J., Boulenger, J.P. and Patel, J. Effects of chronic caffeine on brain adenosine receptor: regional and ontogenetic studies. Life Sci. 34: 899–907 (1984).PubMedCrossRefGoogle Scholar
  127. Marks, M.J., Artman, L.D., Patinkin, D.M. and Collins, A.C. Cholinergic adaptations to chronic oxotremorine infusion. J. Pharmacol. Exp. Ther. 218: 337–343 (1981).PubMedGoogle Scholar
  128. Martin, W.R. Pharmacology of opioids. Pharmacol. Rev. 35: 283–323 (1984).Google Scholar
  129. Mattsson, H., Brandt, K. and Heilbronn, E. Bicyclic phosphorusesters increase the cyclic GMP level in rat cerebellum. Nature 268: 52–53 (1977).PubMedCrossRefGoogle Scholar
  130. McPhillips, J.J. Altered sensitivity to drugs following repeated injections of a cholinesterase inhibitor to rats. Toxicol. Appl. Pharmacol. 14: 67–73 (1969).PubMedCrossRefGoogle Scholar
  131. McPhillips, J.J. and Dar, M.S. Resistance to the effect of carba-chol on the cardiovascular system and on the isolated ileum of rats after subacute administration of an organophosphorus cholinesterase inhibitor. J. Pharmacol. Exp. Ther. 156: 507–513 (1967).PubMedGoogle Scholar
  132. Memo, M., Lucchi, L., Spano, P.F. and Trabucchi, M. Effects of chronic lead treatment on GABAergic receptor function in rat brain. Toxicol Lett. 6: 427–432 (1980).PubMedCrossRefGoogle Scholar
  133. Morley, B.J., Farley, G.R. and Javel, E. Nicotinic acetylcholine receptors in mammalian brain. Trends Pharmacol. Sci. 4: 225–227 (1983a).CrossRefGoogle Scholar
  134. Morley, B.J., Dwyer, D.S., Strang-Brown, P.F., Bradley, R.J. and Kemp, G.E. Evidence that certain peripheral anti-acetylcholine receptor antibodies do not interact with brain BuTX binding sites. Brain Res. 262: 109–116 (1983b).PubMedCrossRefGoogle Scholar
  135. Moustafa, E., Snavely, M.D. and Insel, P.A. Selective inhibition by organic mercurials of binding to the beta population of rat renal cortical beta-adrenergic receptors. Biochem. Pharmacol. 33: 1148–1151 (1984).PubMedCrossRefGoogle Scholar
  136. Munson, P.J. Experimental artifacts and the analysis of ligand binding data: results of a computer simulation. J. Recept. Res. 3(1&2): 249–259 (1983).PubMedGoogle Scholar
  137. Munson, P.J. and Rodbard, D. LIGAND: a versatile computerized approach for characterization of ligand binding systems. Anal. Biochem. 107: 220–239 (1980).PubMedCrossRefGoogle Scholar
  138. Munson, P.J. and Rodbard, D. Number of receptor sites from Scatchard and Klotz graphs: a constructive critique. Science 220: 979–981 (1983).PubMedCrossRefGoogle Scholar
  139. Murdock, L.L. and Hollingworth, R.M. Octopamine-like actions of formamidines in the firefly light organ. In: “Insect Neurobiology and Insecticide Action (Neurotox ‘79)”, Soc. Chem. Ind., London, pp. 415–422.Google Scholar
  140. Murphy, S.D. Pesticides. In: Toxicology: The basic science of poisons, (J. Doull, C.D. Kiaassen and M.O. Amdur, Eds.), MacMillan, N.Y., 1980, pp. 357–408.Google Scholar
  141. Norby, J.G., Ottolenghi, P. and Jensen, J. Scatchard Plot: Common misinterpretation of binding experiments. Anal. Biochem. 102: 318–320 (1980).PubMedCrossRefGoogle Scholar
  142. Oldiges, H. and Krugel, M. Tierexperimentelle Untersuchungen mit potentiellen Antidoten zur Therapic einer Alkylphosphatvergiftung. In: “Protection against highly toxic substances”, 2nd Symposium, Prins Maurits Laboratory TNO, Riijswijk NL, (1981), PP. 319–326.Google Scholar
  143. Ozoe, Y. Mochida, K. and Eto, M. Reaction of toxic bicyclic phosphates with acetylcholinesterase and alpha-chimotrypsin. Agric. Biol. Chem. 46: 2527–2531 (1982).CrossRefGoogle Scholar
  144. Paton, W.D.M. and Rang, H.P. The uptake of atropine and related drugs by intestinal smooth muscle of the guinea-pig in relation to acetylcholine receptors. Proc. R. Soc. London Ser. B 163: 1–44 (1965).CrossRefGoogle Scholar
  145. Paul, S.M., Rehavi, M., Rice, K.C., Ittah, Y. and Skolnick, P. Does high affinity [3H] imipramine binding label serotonin reuptake sites in brain and platelet? Life Sci. 28: 2753–2760 (1981).PubMedCrossRefGoogle Scholar
  146. Peck, E.J., Jr. and Kelner, K.L. Receptor Measurement. In: “Handbook of Neurochemistry”, vol. II (A. Lajtha, Ed.) Plenum Press, NY, 1983, PP. 53–75.Google Scholar
  147. Pennock, B.E. A calculator for finding binding parameter from Scatchard plot. Anal. Brochem. 56: 306–309 (1973).CrossRefGoogle Scholar
  148. Peroutka, S.J. and Snyder, S.H Multiple serotonin recegtors: differential binding of [3H] 5 hydroxytryptamine, [3H] lysergic acid diethylamide and [3H] spiroperidol. Mol. Pharmacol. 16; 687–699 (1979).PubMedGoogle Scholar
  149. Perrine, S.E. and McPhillips, J.J. Specific subsensitivity of the rat atrium to cholinergic drugs. J. Pharmacol. Exp. Ther. 175: 496–502 (1970).PubMedGoogle Scholar
  150. Pert, C.B. and Snyder, S.H. Opiate receptor: demonstration in nervous tissue. Science 179: 1011–1014 (1973).PubMedCrossRefGoogle Scholar
  151. Peruzzi, G., Abbracchio, M.P., Cagiano, R. Coen, E., Cuomo, V., Galli, C.L., Lombardelli, G., Marinovich, M. and Cattabeni, F. Enduring behavioral and biochemical effects of perinatal treatment with caffeine and chlordiazepoxide. In: “Application of Behavioral Pharmacology in Toxicology” (G. Zbinden, V. Cuomo, G. Racagmi and B. Weiss, Eds.), Raven Press, NY, 1983, pp. 217–236.Google Scholar
  152. Petajan, J.H., Vorhees, K.J., Packam, S.C., Baldwin, R.C., Einhorn, I.N., Grunnet, M.L., Dinger, B.G. and Birky, M.N. Extreme toxicity from combustion products of a fire-retarded polyurethane foam. Science 187: 742–744 (1975).PubMedCrossRefGoogle Scholar
  153. Prasada Rao, K.S., Chetty, C.S., Trottman,C.H. and Desaiah, D. Inhibition of rat brain synaptosomal ATPases by Plictran. Toxicologist 4(1): 55 (1984).Google Scholar
  154. Raftery, M.A., Schmidt, J., Clark, D.G. and Wolcott, R.G. Demonstration of a specific alpha-bungarotoxin binding component in elecrophorus electricus electroplex membranes. Biochem. Biophys. Res. Commun. 45: 1622–1629 (1971).PubMedCrossRefGoogle Scholar
  155. Regan, J.W., Roeske, W.R., Ruth, W.H., Deshmukh, P. and Yamamura, H.I. Reduetions in retinal gamma-aminobutyric acid (GABA) content and in [3H]-flunitrazepam binding after postnatal monosodium glutamate injections in rats. J. Pharm. Exp. Ther. 218: 791–796 (1981).Google Scholar
  156. Rehavi, M., Skolnick, P., Brownstein, M.J. and Paul, S.M. High-affinity binding of [3H] desipramine to rat brain: a presynaptic marker for noradrenergic uptake site. J. Neurochem. 38: 889–895 (1982).PubMedCrossRefGoogle Scholar
  157. Rider, J.A., Ellinwood, L.E. and Coon, J.M. Production of tolerance in rats to Octamethyl Pyrophosphoramide. Proc. Soc. Exp. Biol. Med. 81: 455–459 (1952).PubMedGoogle Scholar
  158. Riker, W.F.,Excitatory and anti-curare properties of acetylcholine and related quaternary ammonium compounds at the neuromuscular junction. Pharmocol Rev. 5:1–86 (1953).Google Scholar
  159. Ringdahl, B. and Jenden, D.J. Pharmacological properties of oxotremorine and its analogs. Life Sci. 32: 2401–2413 (1983).PubMedCrossRefGoogle Scholar
  160. Rosengarten, H. and Friedhoff, A.J. Enduring changes in dopamine receptor cells of pups from drug administration to pregnant and nursing rats. Science 203: 1133–1135 (1979).PubMedCrossRefGoogle Scholar
  161. Rosenthal, H. A graphic method for the determination and presentation of binding parameters in a complex system. Anal. Chem. 20: 525–532 (1967).Google Scholar
  162. Russell, R.W., Overstreet, D.H., Cotman, C.W., Carson, V.G., Churchill, L., Dalglish, F.W. and Vasquez, B.J. Experimental tests of hypotheses about neurochemical mechanisms underlying behavioral tolerance to the anticholinesterase diisopropylfluorophosphate. J. Pharmacol. Exp. Ther. 192: 73–85 (1975).PubMedGoogle Scholar
  163. Russell. R.W., Overstreet, D.H. and Netherton, R.A., Sex-linked and other genetic factors in the development of tolerance to the anticholinesterase, DFP. Neuropharmacol. 22: 75–81 (1983).CrossRefGoogle Scholar
  164. Scatchard, G. The attractions of proteins for small molecules and ions. Ann. N.Y. Acad. Sci. 51: 660–672 (1949).CrossRefGoogle Scholar
  165. Schwab, B.W., Studies of disulfoton tolerance in rats. Ph.D. thesis, University of Texas Health Science Center at Houston, 1981.Google Scholar
  166. Schwab, B.W., Hand, H., Costa, L.G., Murphy, S.D. Reduced muscarinic receptor binding in tissues of rats tolerant to the insecticide disulfoton. Neurotoxicol. 2: 635–647 (1981).Google Scholar
  167. Schwab, B.W., Costa, L.G. and Murphy, S.D. Muscarinic receptor alterations as a mechanism of anticholinesterase tolerance. Toxicol. Appl. Pharmacol. 71: 14–23 (1983).PubMedCrossRefGoogle Scholar
  168. Schwartz, R.D. and Kellar, K.J. Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science 220: 214–216 (1983).PubMedCrossRefGoogle Scholar
  169. Schwartz, J.C., Llorens Cortes, C., Rose, C., Quach, T.T. and Pollard, H. Adaptive changes of neurotransmitter receptor mechanisms in the central nervous system. In: “Molecular and cellular interactions underlying higher brain functions”, Progress in Brain Research, vol. 58 (J.P. Changeaux, J. Glowin-ski, M. Imbert and F.E. Bloom,Eds.) Elsevier, 1983 pp. 117–129.Google Scholar
  170. Seeman, P. Brain dopamine receptors. Pharmacol. Rev. 32: 229–313 (1980).PubMedGoogle Scholar
  171. Seeman, P., Chau-Wong, M., Tedesco, J. and Wong, K. Brain receptors for antipsychotic-drugs and dopamine: Direct binding assays. Proc. Natl. Acad. Sci. USA 72: 4376–4380 (1975).PubMedCrossRefGoogle Scholar
  172. Sershen, H., Reith, M.E.A., Banay-Schwartz, M., and Lajtha, A. Effects of prenatal administration of nicotine on amino acid pools, protein metabolism, and nicotine binding in the brain. Neurochem. Res. 7: 1515–1522 (1982).PubMedCrossRefGoogle Scholar
  173. Seth, P.K., Agrawal, A.K. and Bondy, S.C. Biochemical changes in the brain consequent to dietary exposure of developing and mature rats to chlordecone (Kepone). Toxicol. Appl. Pharmacol. 59: 262–267 (1981a).PubMedCrossRefGoogle Scholar
  174. Seth, P., Hong, J.S., Kilts, C.D., and Bondy, S. Alteration of Cerebral neurotransmitter receptor function by exposure of rats to manganese. Toxicol. Lett. 9: 247–254 (1981b).PubMedCrossRefGoogle Scholar
  175. Seth, P.K., Alleva, F.R., Balazs, T. Alteration of high-affinity binding sites of neurotransmitter receptors in rats after neonatal exposure to streptomycin. Neurotoxicol. 3: 13–20 (1982).Google Scholar
  176. Shain, W. and Carpenter, D.O., Mechanisms of synaptic modulation, Int. Rev. Neurobiol. 22: 205–250 (1981).PubMedCrossRefGoogle Scholar
  177. Shamoo, A.D., MacLennan, D. and Eldefrawi, M.E. Differential effects of mercurial compounds on excitable tissue. Chem. Biol. Interact. 12: 41–52 (1976).PubMedCrossRefGoogle Scholar
  178. Siiteri, P.K. Receptor binding studies. Science 223: 191–193 (1984).PubMedCrossRefGoogle Scholar
  179. Silbergeld, E.K. Neurochemical and ionic mechanisms of Lead neurotoxicity. In: “Mechanism of actions of neurotoxic substances (Prasad, K.N. and Vernadakis, A., Eds.) Raven Press, New York 1982, pp. 1–23.Google Scholar
  180. Silbergeld, E.K Erythrosin B is a specific inhibitor of high affinity [3H]-ouabain binding and ion transport in rat brain. Neuropharmacol. 20: 87–90 (1981).CrossRefGoogle Scholar
  181. Silbergeld, E.K., Hruska, R.E., Miller, L.P. and Eng, N. Effects of Lead in vivo and in vitro on GABAergic Neurochemistry. J. Neurochem. 34: 1712–1718 (1980).PubMedCrossRefGoogle Scholar
  182. Siman, R.G. and Klein, W.L. Cholinergic activity regulates muscarinic receptors in central nervous system cultures. Proc. Natl. Acad. Sci. USA 76: 4141–4145 (1979).PubMedCrossRefGoogle Scholar
  183. Simon, E.J., Hiller, J.M. and Edelman I. Stereospecific binding of the potent narcotic analgesic [3H]-etorphine to rat brain homogenate. Proc. Natl. Sci. USA 70: 1947–1949 (1973).CrossRefGoogle Scholar
  184. Sivam, S.P., Norris, T. C., Lim, D.K., Hoskins, B. and Ho, I.K. Effect of acute and chronic cholinestrase inhibition with diisopropylfluorophosphate on muscarinic, dopamine, and GABA receptors of the rat striatum. J. Neurochem. 40: 1414–1422 (1983).PubMedCrossRefGoogle Scholar
  185. Smit, M.H., Ehlert, F.J., Yamamura, S., Roeske, W.R. and Yamamura, H.I. Differential regulation of muscarinic agonist binding sites following chronic cholinesterase inhibition. Eur. J. Pharmacol. 66: 379–380 (1980a).PubMedCrossRefGoogle Scholar
  186. Smit, M.H., Ehlert, F.J., Roeske, W.R. and Yamamura, H.I. Decreased agonist and antagonist binding to the muscarinic cholinergic receptor following chronic cholinesterase inhibition. Fed. Proc. 39: 388 (1980b).Google Scholar
  187. Snyder, S.H. Brain peptides as neurotransmitters. Science 209: 976–983 (1980).PubMedCrossRefGoogle Scholar
  188. Snyder, S.H. Drug and neurotransmitter receptors in the brain. Science 224: 22–31 (1984).PubMedCrossRefGoogle Scholar
  189. Staatz C.H., Bloom, A.S. and Lech, J.J. Effects of pyrethroids on [3H] Kainic acid binding to mouse forebrain membranes. Toxicol. Appl. Pharmacol. 64: 566–569 (1982).PubMedCrossRefGoogle Scholar
  190. Sumner P.R. and Hirsch, J.D. Trimethyltin induced changes in [3H]-QNB binding in various rodent brain areas. Soc. Neurosci. Abstr. 8: 310 (1982).Google Scholar
  191. Terenius, L. Characteristics of the “receptor” for narcotic analgesics in synaptic plasma membrane fraction from rat brain. Acta Pharmacol. Toxicol. 32: 377–384 (1973).Google Scholar
  192. Ticku, M.K. and Olsen, R.W. Cage convulsants inhibit picrotoxinin binding. Neuropharmacol. 18: 315–318 (1979).CrossRefGoogle Scholar
  193. Tilson, H. A. The neurotoxicity of acrylamide: an overview, Neurobehav. Toxicol. Teratol. 3: 445–461 (1981).PubMedGoogle Scholar
  194. Titeler, M. Understanding receptor-binding assays. In: “Research Methods in Neurochemistry”, vol. 5 (N. Marks and R. Rodnight, Eds.), Plenum Press, NY, 1981, pp. 29–73.Google Scholar
  195. Uphouse, L., McLean, S. and Russell, M. Stability of CNS binding sites uner various conditions. Neurotoxicol. 2: 533–540 (1981).Google Scholar
  196. Von Burg, R., Northington, F.K. and Shamoo, A. Methylmercury inhibition of rat brain muscarinic receptors. Toxicol. Appl. Pharmacol. 53: 285–292 (1980).CrossRefGoogle Scholar
  197. Waku, K. and Nakazawa, Y. Toxic effects of several mercury compounds on SH and non-SH enzymes. Toxicol. Lett. 4: 49–55 (1979).CrossRefGoogle Scholar
  198. Wenger, G.R., McMillan, D.E. and Chang, L.W. Behavioral toxicology of acute trimethyltin exposure in the mouse. Neurobehav. Toxicol. Teratol. 4:157–161 (1982).PubMedGoogle Scholar
  199. Williams, L.T. and Lefkowitz, R.J. Alpha-adrenergic receptor identification by [3H] dihydroergocryptine binding. Science 192: 791–793 (1976).PubMedCrossRefGoogle Scholar
  200. Williams, L.T. and Lefkowitz, R.J. Receptor binding studies in adrenergic pharmacology, Raven Press, NY, 1978.Google Scholar
  201. Winder, C. and Kitchen, I. Lead Neurotoxicity: A review of the biochemical, neurochemical and drug induced behavioral evidence. Progr. Neurobiol. 22: 59–87 (1984).CrossRefGoogle Scholar
  202. Wu, P.H., Phillis, J.W., Balls, K. and Rinaldi, B. Specific binding of 2-[3H] chloroadenosine to rat brain cortical membranes. Can. J. Physiol. Pharmacol. 58: 576–579 (1980)PubMedCrossRefGoogle Scholar
  203. Yamada, S., Isogai, M., Okudaira, H. and Hayaski, E. Regional adaption of muscarinic receptors and choline uptake in brain following repeated administration of diisopropylpfluorophosphate and atropine. Brain Res. 268: 315–320 (1983a).PubMedCrossRefGoogle Scholar
  204. Yamada, S., Isogai, M., Okudaira, H. and Hayuashi, E. Correlation between cholinesterase inhibition and reduction in muscarinic receptors and choline uptake by repeated diisopropylfluorophosphate administration: antagonism by physostigmine and atropine. J. Pharmacol. Exp. Ther. 226: 519–525 (1983b).PubMedGoogle Scholar
  205. Yamamura, H.I. and Snyder, S.H. Muscarinic cholinergic receptor binding in rat brain. Proc. Natl. Acad. Sci. USA 71: 1725–1729 (1974).PubMedCrossRefGoogle Scholar
  206. Yamamura, H.I., Enna, S.J. and Kuhar, M.J. Neurotransmitter receptor binding. Raven Press, N.Y., 1978.Google Scholar
  207. Yamawaki, S., Segawa, T. and Sarai, K. Effects of acute and chronic toluene inhalation on behavior and [3H]-serotonin binding in rat. Life Sci. 30: 1997–2002 (1982).PubMedCrossRefGoogle Scholar
  208. Yim, G.K.W., Holsapple, M., Pfister, W.R. and Hollingworth, R.M. Prostaglandin Synthesis inhibited by formamidine pesticides. Life Sci. 23: 2509–2516 (1978).PubMedCrossRefGoogle Scholar
  209. Young, A.B. and Snyder, S.H. Strychnine binding associated with glycine receptors of the central nervous system. Proc. Natl. Acad. Sci. USA 70: 2832–2836 (1973).CrossRefGoogle Scholar
  210. Young, E., Olney, J. and Akil, H. Selective alterations of opiate receptors subtypes in monosodium glutamate-treated rats. J. Neurochem. 40: 1558–1564 (1983).PubMedCrossRefGoogle Scholar
  211. Zivin, J. A. and Waud, D. R. How to analyze binding, enzyme and uptake data: The simplest case, a single phase. Life Sci. 30: 1407–1422 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Lucio G. Costa
    • 1
  • Marina Marinovich
    • 2
  • Corrado L. Galli
    • 2
  1. 1.Department of Environmental HealthUniversity of WashingtonSeattleWashingtonUSA
  2. 2.Laboratory of ToxicologyInstitute of Pharmacology and Pharmacognosy, University of MilanoMilanoItaly

Personalised recommendations