Advertisement

Radiation Exposure

  • Wayne M. Moreau
Part of the Microdevices book series (MDPF)

Abstract

The traditional form of exposure of resists involves pure uncharged ultraviolet photons. From actual microscopy and diffraction theory, the resolution is limited by the practical wavelength of observation. Thus, shorter-wavelength, higher-energy photoelectrons from electron beams, ion beams, and X rays have been used in microscopes to observe and analyze objects the size of atoms. These analytical tools formed the basis of high-energy radiation exposure systems to expose resists and build devices to a nanometer scale. In some cases, masks disappear and resolution with some forms of high energy becomes infinite, if one is willing to pay for the high capital and maintenance costs at low wafer exposure throughput. The primary application of these forms of exposure tools has been to fabricate, measure, and repair photomasks but gradually scanning exposure tools have been applied to direct silicon write and in the next decade, flood exposure will also enter into the production of memory circuits.

Keywords

Proximity Effect Flood Exposure Edge Slope Overlay Error Stencil Mask 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Tafel, Physics, Allyn & Bacon, 1981, p. 434.Google Scholar
  2. 2.
    U. S. Patent 3,581,385 (1971), TI.Google Scholar
  3. 3.
    U. S. Patent 3,575,588 (1971), IBM.Google Scholar
  4. 4.
    E. Samaroo, J. Raamot, P. Parry, and G. Robertson, Bell Syst. Tech. J. 49, 2077 (1970).Google Scholar
  5. 5.
    U. S. Patent, 3,900,737 (1975), Bell.Google Scholar
  6. 6.
    J. Ballantyne, J. Vac. Sci. Technol. 12, 1257 (1975).Google Scholar
  7. 7.
    K. Tai, R. Vadimsky, C. Kemmer, J. Wagner, V. Lambertini, and A. Timko, J. Vac. Sci. Technol. 17, 1169 (1980).Google Scholar
  8. 8.
    E. Weber and R. Moore, Solid State Technol. May 1979, p. 61; E. Weber, SPIE Proc. 333, 95 (1982).Google Scholar
  9. 9.
    L. Fried, J. Havas, G. Paal, J. Logan, P. Totta, and J. Lechaton, IBM J. Res. Dev. 26, 364 (1982).Google Scholar
  10. 10.
    J. Trotel and B. Fay, in Electron Beam Technology in Microelectronic Fabrication, edited by G. Brewer, Academic Press, New York, 1980, p. 309.Google Scholar
  11. 11.
    A. Muray, M. Issacson, I. Aesida, and B. Whitehead, J. Vac. Sci. Technol. B1, 1019 (1983).Google Scholar
  12. 12.
    R. Havemann, R. Smith, S. Evans, L. Arledge, R. Love, and G. Varnell, J. Vac. Sci. Technol. 19, 903 (1981).Google Scholar
  13. 13.
    H. Pfeiffer, J. Vac. Sci. Technol. 12, 1170 (1975).Google Scholar
  14. 14.
    W. Stickel and G. Langner, J. Vac. Sci. Technol. B1, 1007 (1983).Google Scholar
  15. 15.
    J. Paraszczak, D. Kern, M. Hatzakis, J. Bucchignanao, E. Arthur, and M. Rosenfield, J. Vac. Sci. Technol. B1, 1372 (1983).Google Scholar
  16. 16.
    N. Eib and F. Jones, J. Vac. Sci. Technol. B1, 1327 (1983).Google Scholar
  17. 17.
    A. Broers, IEEE Trans. Electron Devices ED-28, 1268 (1981).Google Scholar
  18. 18.
    M. Nakase and Y. Matsumoto, Photogr. Sci. Eng. 23, 215 (1979).Google Scholar
  19. 19.
    J. Shaw, M. Hatzakis, J. Paraszczak, J. Liutkus, and E. Babich, Polym. Eng. Sci. 23, 1054 (1983).Google Scholar
  20. 20.
    D. Davis, S. Gillespie, S. Silverman, and W. Stickel, J. Vac. Sci. Technol. B1, 1003 (1983).Google Scholar
  21. 21.
    J. Phang and H. Ahmed, J. Vac. Sci. Technol. 16, 1754 (1979).Google Scholar
  22. 22.
    J. Wolfe, IEEE Trans. Electron Devices ED-27, 1475 (1980).Google Scholar
  23. 23.
    A. Broers and M. Pomerantz, Thin Solid Films 99, 323 (1983).Google Scholar
  24. 24.
    H. Ryssel, G. Prinke, H. Bernt, K. Harberger, and K. Hoffmann, Appl. Phys. A 27, 239 (1982).Google Scholar
  25. 25.
    J. Greeneich, in Ref. 10, p. 245.Google Scholar
  26. 26.
    D. Stephani, E. Kratschner, and H. Beneking, J. Vac. Sci. Technol. B1, 1011 (1983).Google Scholar
  27. 27.
    H. Ito and C. Willson, Polym. Eng. Sci. 23, 1012 (1983).Google Scholar
  28. 28.
    M. Gazard, C. Duchesne, J. Dubois, and A. Chapiro, Polym. Eng. Sci. 20, 1069 (1980).Google Scholar
  29. 29.
    S. Moriya, K. Komatsu, K. Harada, and T. Kitayama, B1, 990 (1983).Google Scholar
  30. 30.
    D. Herriott and G. Brewer, in Ref. 10, p. 1.Google Scholar
  31. 31.
    B. Piurczk and A. Williams, Solid State Technol. June 1982, p. 74.Google Scholar
  32. 32.
    A. Wilson, Proc. IEEE 71, 575 (1983).Google Scholar
  33. 33.
    N. Aizaki, J. Vac. Sci. Technol. 16, 1726 (1979).Google Scholar
  34. 34.
    J. Doherty, Solid State Technol. May 1979, p. 83.Google Scholar
  35. 35.
    L. Lin and H. Beauchamp, J. Vac. Sci. Technol. 10, 987 (1973).Google Scholar
  36. 36.
    B. Piwczk and K. McQuhal, J. Vac. Sci. Technol. 10, 1016 (1973).Google Scholar
  37. 37.
    U. S. Patent 3,876,883 (1975), IBM.Google Scholar
  38. 38.
    A. Wilson, A. Speth, T. Chang, and A. Kern, J. Vac. Sci. Technol. 12, 1235 (1975).Google Scholar
  39. 39.
    U. S. Patents 3,894,271 (1975) and 3,930,181 (1975), IBM.Google Scholar
  40. 40.
    R. Moore, G. Caccomo, H. Pfeiffer, E. Weber, and O. Woodard, J. Vac. Sci. Technol. 19, 950 (1981).Google Scholar
  41. 41.
    H. Pfeiffer, J. Vac. Sci. Technol. 15, 887 (1978).Google Scholar
  42. 42.
    Y. Sakokibara, T. Ogawa, K. Komatsu, S. Moriya, M. Kobayashi, and T. Kobayashi, IEEE Trans. Electron Devices ED-28, 1279 (1981).Google Scholar
  43. 43.
    G. Jones, V. Rao, H. Sun, and H. Ahmed, J. Vac. Sci. Technol. B1, 1298 (1983).Google Scholar
  44. 44.
    E. Goto, T. Soma, and M. Idesawa, J. Vac. Sci. Technol. 15, 883 (1978).Google Scholar
  45. 45.
    E. Weber and R. Moore, J. Vac. Sci. Technol. 16, 1780 (1978).Google Scholar
  46. 46.
    S. Moriya, J. Vac. Sci. Technol. B1, 990 (1983).Google Scholar
  47. 47.
    M. Fujinami, T. Matsuda, K. Takamoto, H. Yoda, T. Ihiga, N. Saitou, and T. Komoda, J. Vac. Sci. Technol. 19, 941 (1981).Google Scholar
  48. 48.
    C. Lemmond, E. Buschmann, T. Klotz, and G. White, IEEE Trans. Electron Devices ED-21, 598 (1974).Google Scholar
  49. 49.
    D. Smith and K. Harte, J. Vac. Sci. Technol. 19, 953 (1981).Google Scholar
  50. 50.
    I. Brodie, E. Westerberg, D. Cone, J. Murray, M. Williams, and L. Gasiorek, IEEE Trans. Elect. Dev. ED-28, 1422 (1981).Google Scholar
  51. 51.
    T. Sasaki, J. Vac. Sci. Technol. 19, 963 (1981).Google Scholar
  52. 52.
    H. Bohlen, J. Greshner, and P. Nehmiz, J. Vac. Sci. Technol. 16, 1834 (1979), 19, 972 (1981), IBM J. Res. Dev. 26, 568 (1982).Google Scholar
  53. 53.
    H. Koops, J. Vac. Sci. Technol. 12, 1141 (1975).Google Scholar
  54. 54.
    M. Heritage, J. Vac. Sci. Technol. 12, 1135 (1975).Google Scholar
  55. 55.
    M. Frosien, B. Liechke, and K. Anger, J. Vac. Sci. Technol. 16, 1827 (1979).Google Scholar
  56. 56.
    U. S. Patent 3,519,873 (1970), Westinghouse.Google Scholar
  57. 57.
    T. O’Keefe, IEEE Trans. Electron Devices ED-17, 465 (1970).Google Scholar
  58. 58.
    T. Bril and J. Snyders, J. Vac. Sci. Technol. 16, 1665 (1979).Google Scholar
  59. 59.
    R. Ward, J. Vac. Sci. Technol. 16, 1830 (1979), 15, 1917 (1978).Google Scholar
  60. 60.
    K. Nicholas, R. Ford, H. Brockman, and I. Stemp, J. Vac. Sci. Technol. B1, 1020 (1983).Google Scholar
  61. 61.
    U. S. Patents 3,644,700 (1972) and 3,894,271 (1975), IBM.Google Scholar
  62. 62.
    M. Larken and R. Matta, Solid State Electron. 10, 491 (1967).Google Scholar
  63. 63.
    J. Eidson and R. Scudder, J. Vac. Sci. Technol. 19, 932, 936 (1981).Google Scholar
  64. 64.
    U. S. Patent 4,213,053 (1980), IBM.Google Scholar
  65. 65.
    U. S. Patent 4,376,249 (1983), IBM.Google Scholar
  66. 66.
    H. Pfeiffer and G. Langner, J. Vac. Sci. Technol. 19, 1058 (1981).Google Scholar
  67. 67.
    U. S. Patent 4,112,305 (1978), Rikagu.Google Scholar
  68. 68.
    U. S. Patent 4,117,349 (1978), Rikagu.Google Scholar
  69. 69.
    U. S. Patent 4,122,369 (1978), General Electric.Google Scholar
  70. 70.
    U. S. Patent 4,199,688 (1980), Hitachi.Google Scholar
  71. 71.
    U. S. Patent 4,199,689 (1980), Tokyo Shibaru.Google Scholar
  72. 72.
    H. Ohiwa, J. Vac. Sci. Technol. 15, 849 (1978).Google Scholar
  73. 73.
    Y. Machida, S. Yamamoto, H. Hakayama, S. Furuya, and T. Hisatsuga, Fujitsu Sci. Tech. J. 19, 21 (1983).Google Scholar
  74. 74.
    W. Livesay, Microelectron. Manuf. Test. March 1984, p. 58.Google Scholar
  75. 75.
    G. Dolan and T. Fulton, IEEE Electron Device Lett. EDL-4, 192 (1983).Google Scholar
  76. 76.
    T. Berker and D. Casey, IEEE Trans. Electron Devices ED-29, 524 (1982).Google Scholar
  77. 77.
    W. Grobman and T. Studwell, J. Vac. Sci. Technol. 16, 1803 (1979).Google Scholar
  78. 78.
    G. Owen and P. Rissman, J. Appl. Phys. 54, 3573 (1983).Google Scholar
  79. 79.
    J. Pasiecznek and J. Frey, J. Vac. Sci. Technol. 10, 1012 (1973).Google Scholar
  80. 80.
    M. Sumi, F. Chiba, and M. Niomiya, J. Vac. Sci. Technol. 16, 1809 (1979).Google Scholar
  81. 81.
    A. Dexiang, W. Jian-kun, and Q. Pei-yong, J. Vac. Sci. Technol. 19, 975 (1981).Google Scholar
  82. 82.
    G. Varnell, P. Shah, and R. Havemann, Proc. IEEE 71, 612 (1983).Google Scholar
  83. 83.
    M. Miyazaki, N. Saitou, and C. Munakata, J. Phys. E 14, 194 (1981).Google Scholar
  84. 84.
    G. Langner, Proc. Microcircuit Eng. 1979, p. 261.Google Scholar
  85. 85.
    N. Saitou, C. Munakata, and A. Maekawa, Jpn. J. Appl. Phys. 10, 351 (1971).Google Scholar
  86. 86.
    F. Carter, Molecular Electronic Devices, Dekker, New York, 1982, p. 1; J. Vac. Sci. Technol. B1, 959 (1983).Google Scholar
  87. 87.
    A. Avidenko and M. Malev, Vacuum 27, 583 (1978).Google Scholar
  88. 88.
    H. Ralph, G. Duggan, and R. Elliott, Electrochem. Soc. Ext. Abstr. 82-1, 514 (1982).Google Scholar
  89. 89.
    T. Lin, IBM J. Res. Dev. Sept. 1967, p. 527.Google Scholar
  90. 90.
    D. Davis, R. Moore, M. Williams, and O. Woodard, IBM J. Res. Dev. 21, 498 (1977).Google Scholar
  91. 91.
    D. Davis, IBM J. Res. Dev. 24, 545 (1980).Google Scholar
  92. 92.
    U. S. Patent 4,056,730 (1977), IBM.Google Scholar
  93. 93.
    U. S. Patent 3,644,700 (1972), IBM.Google Scholar
  94. 94.
    E. Wolf, P. Coane, and F. Ozedimir, J. Vac. Sci. Technol. 12, 1266 (1975).Google Scholar
  95. 95.
    H. Friedrich, H. Zeitler, and H. Bierhenke, J. Electrochem. Soc. 124, 627 (1977).Google Scholar
  96. 96.
    D. Stephani, J. Vac. Sci. Technol. 16, 1739 (1979).Google Scholar
  97. 97.
    J. Lida and T. Everhart, J. Vac. Sci. Technol. 15, 917 (1978).Google Scholar
  98. 98.
    R. Henderson, D. Mayer, and J. Nash, J. Vac. Sci. Technol. 16, 260 (1979).Google Scholar
  99. 99.
    W. Stickel, J. Vac. Sci. Technol. 15, 901 (1978).Google Scholar
  100. 100.
    S. Okazaki, F. Mular, J. Takeda, K. Mochyu, H. Kume, and S. Asar, J. Vac. Sci. Technol. 19, 927 (1981).Google Scholar
  101. 101.
    L. White, J. Vac. Sci. Technol. B1, 1235 (1983).Google Scholar
  102. 102.
    C. Ting, R. Anderson, D. Saiki, and A. Kraft, J. Vac. Sci. Technol. 15, 948 (1978).Google Scholar
  103. 103.
    Y. Lin, A. Neureuther, and I. Aesida, J. Appl. Phys. 53, 899 (1982).Google Scholar
  104. 104.
    Y. Lin, A. Neureuther, and I. Aesida, J. Electrochem. Soc. 130, 939 (1983).Google Scholar
  105. 105.
    Y. Lin and A. Neureuther, Solid State Technol. Feb. 1984, p. 117.Google Scholar
  106. 106.
    S. Yamamoto, H. Nakayama, S. Furuya, T. Hisatsugu, and Y. Machida, Fujitsu Sci. Tech. J. 14, 143 (1978).Google Scholar
  107. 107.
    L. Rothman, J. Electrochem. Soc. 127, 2216 (1980).Google Scholar
  108. 108.
    D. Kyser and C. Ting, J. Vac. Sci. Technol. 16, 1759 (1979).Google Scholar
  109. 109.
    D. Kyser and R. Pyle, IBM J. Res. Dev. 24, 426 (1980).Google Scholar
  110. 110.
    N. Aizaki, J. Vac. Sci. Technol. 16, 1726 (1979).Google Scholar
  111. 111.
    B. Sohler, C. Snider, and R. Shuman, J. Electrochem. Soc. 131, 868 (1984).Google Scholar
  112. 112.
    C. Dix, J. Vac. Sci. Technol. 19, 911 (1981).Google Scholar
  113. 113.
    T. Chang, C. Codella, and R. Lange, IEEE Trans. Electron Devices ED-28, 1428 (1981).Google Scholar
  114. 114.
    R. Moore, G. Caccomo, H. Pfeiffer, E. Weber, and O. Woodard, Electronics Nov. 3, 1981, p. 142.Google Scholar
  115. 115.
    M. Idesawa, Y. Somo, and E. Goto, J. Vac. Sci. Technol. 19, 983 (1981).Google Scholar
  116. 116.
    N. Eib and F. Jones, J. Vac. Sci. Technol. B1, 1327 (1983).Google Scholar
  117. 117.
    K. Nicholas, R. Ford, H. Brockman, and I. Stemp, J. Vac. Sci. Technol. B1, 1021 (1983).Google Scholar
  118. 118.
    H. Sewell, J. Vac. Sci. Technol. 15, 927 (1978).Google Scholar
  119. 119.
    M. Parikh and D. Schreiber, IBM J. Res. Dev. 24, 531 (1980).Google Scholar
  120. 120.
    M. Nakase and M. Yoshimi, IEEE J. Solid State Circuits SC-15, 525 (1980).Google Scholar
  121. 121.
    M. Parikh, J. Vac. Sci. Technol. 15, 931 (1978).Google Scholar
  122. 122.
    J. Greeneich, J. Vac. Sci. Technol. 19, 1269 (1981).Google Scholar
  123. 123.
    G. Owen and P. Rissman, J. Appl. Phys. 54, 3573 (1983).Google Scholar
  124. 124.
    W. Grobman, A. Speth, and T. Chang, IBM J. Res. Dev. 24, 537 (1980).Google Scholar
  125. 125.
    D. Kyser and C. Ting, J. Vac. Sci. Technol. 16, 1759 (1979).Google Scholar
  126. 126.
    Y. Yoshimi, M. Yoshimi, K. Kawabuchi, T. Takigauna, M. Takahashi, and Y. Kato, Electron. Lett. 18, 880 (1982).Google Scholar
  127. 127.
    T. Neil and C. Bull, Electron. Lett. 16, 621 (1980).Google Scholar
  128. 128.
    A. Broers, J. Electrochem. Soc. 128, 166 (1981).Google Scholar
  129. 129.
    R. Howard, H. Craighead, L. Jaeckel, and P. Mankiewich, J. Vac. Sci. Technol. B1, 1101 (1983).Google Scholar
  130. 130.
    D. Stephani, E. Kratschner, and H. Beneking, J. Vac. Sci. Technol. B1, 1011 (1983).Google Scholar
  131. 131.
    T. Chang, J. Vac. Sci. Technol. 12, 1271 (1975).Google Scholar
  132. 132.
    P. Vettiger, T. Forster, and D. Kern, J. Vac. Sci. Technol. B1, 1383 (1983).Google Scholar
  133. 133.
    D. Kyser, J. Vac. Sci. Technol. B1, 1391, (1983).Google Scholar
  134. 134.
    C. Shaw, J. Vac. Sci. Technol. 19, 1286 (1981).Google Scholar
  135. 135.
    J. Greeneich, J. Electrochem. Soc. 122, 970 (1975).Google Scholar
  136. 136.
    H. Nokata, T. Kato, K. Murata, Y. Hirai, and K. Nagami, J. Vac. Sci. Technol. 19, 1248 (1981).Google Scholar
  137. 137.
    N. Nakayama, Y. Machida, S. Furuya, S. Yamamoto, and T. Hisatsugu, Electrochem. Soc. Ext. Abstr. 82-1, 509 (1982).Google Scholar
  138. 138.
    U. S. Patent 3,971,860 (1976), IBM.Google Scholar
  139. 139.
    I. Aesida and T. Everhart, J. Appl. Phys. 51, 5994 (1980).Google Scholar
  140. 140.
    U. S. Patent 4,316,093 (1982), IBM.Google Scholar
  141. 141.
    R. Howard and D. Prober, in VLSI Electronics, edited by N. Einspruch, Academic Press, New York, 1982, p. 146.Google Scholar
  142. 142.
    M. Rosenfield, A. Neureuther, and C. Ting, J. Vac. Sci. Technol. 19, 1242 (1981).Google Scholar
  143. 143.
    D. Chow, J. McDonald, D. King, W. Smith, K. Molnar, and A. Steckl, J. Vac. Sci. Technol. B1, 1383 (1983).Google Scholar
  144. 144.
    K. Harada, T. Tamamura, and O. Kogure, J. Electrochem. Soc. 129, 2576 (1982).Google Scholar
  145. 145.
    J. Greeneich, Semicond. Int. April 1981, p. 159.Google Scholar
  146. 146.
    D. Kern, Proc. 8th Electron Ion Beam Conf. 80-6, 327 (1980).Google Scholar
  147. 147.
    J. Greeneich, Proc. 8th Electron Ion Beam Conf. 80-6, 293 (1980).Google Scholar
  148. 148.
    IEEE Trans. Nucl. Sci. NS-30, No. 6 (1983).Google Scholar
  149. 149.
    J. Tzou, J. Appl Phys. 55, 846 (1984).Google Scholar
  150. 150.
    J. Aitken, D. Young, and K. Pan, J. Appl. Phys. 49, 3386 (1978).Google Scholar
  151. 151.
    M. Peckerar, J. Vac. Sci. Technol. 16, 1658 (1979).Google Scholar
  152. 152.
    K. Galloway, J. Electrochem. Soc. 127, 1862 (1980).Google Scholar
  153. 153.
    K. Galloway, S. Majo, and P. Roctman, J. Electrochem. Soc. 126, 2245 (1979).Google Scholar
  154. 154.
    D. Brown, D. Ma, C. Dozier, and M. Peekerar, IEEE Trans. Nucl. Sci. NS-30, 4025 (1983).Google Scholar
  155. 155.
    K. Galloway, Semicond. Int. May 1979, p. 65.Google Scholar
  156. 156.
    D. Maydan, G. Coquin, H. Levenstein, A. Sinha, and D. Wang, J. Vac. Sci. Technol. 16, 1959 (1979).Google Scholar
  157. 157.
    J. McCoy, Circuits Manufacturing, Nov. 1977, p. 57.Google Scholar
  158. 158.
    H. Antonie, J. Vac. Sci. Technol. 15, 922 (1978).Google Scholar
  159. 159.
    S. Austin, H. Smith, and D. Flanders, J. Vac. Sci. Technol. 15, 984 (1978), 16, 1949 (1979).Google Scholar
  160. 160.
    D. Flanders and T. Lyszczarz, J. Vac. Sci. Technol. B1, 1196 (1983).Google Scholar
  161. 161.
    E. Hundt and P. Tescher, J. Vac. Sci. Technol. 15, 1004 (1978).Google Scholar
  162. 162.
    K. Heinrich, H. Betz, A. Heuberger, and S. Pongrantz, J. Vac. Sci. Technol. 19, 1254 (1981).Google Scholar
  163. 163.
    N. Atoda, H. Kawakatsu, H. Tanino, S. Ichirnura, and H. Koh, J. Vac. Sci. Technol. B1, 1267 (1983).Google Scholar
  164. 164.
    J. Lane, J. Maldanado, A. Cleland, R. Haelbich, J. Silverman, and J. Warlamount, J. Vac. Sci. Technol. B1, 1072 (1983).Google Scholar
  165. 165.
    R. Haelbich, J. Silverman, W. Brobman, J. Maldanado, and J. Warlamount, J. Vac. Sci. Technol. B1, 1262 (1983).Google Scholar
  166. 166.
    W. Grobman, J. Vac. Sci. Technol. B1, 1257 (1983).Google Scholar
  167. 167.
    M. Beiber, H. Scheunemann, H. Betz, and A. Heuberger, J. Vac. Sci. Technol. B1, 1271 (1983).Google Scholar
  168. 168.
    D. Johnson, Semicond. Int. March 1984, p. 83.Google Scholar
  169. 169.
    T. Shiokawa, J. Vac. Sci. Technol. B1, 1117 (1983).Google Scholar
  170. 170.
    W. Brown, T. Venkatensan, and A. Wagner, Solid State Technol. Aug. 1981, p. 60.Google Scholar
  171. 171.
    L. Karapiperis and C. Lee, Appl. Phys. Lett. 35, 395 (1979).Google Scholar
  172. 172.
    C. Fencil and G. Hughes, SPIE Proc. 333, 100 (1982).Google Scholar
  173. 173.
    B. Siegel, G. Hanson, M. Szilazi, D. Thomas, R. Blackwell, and H. Park, SPIE Proc. 333, 152 (1982).Google Scholar
  174. 174.
    Y. Yau, T. Groves, and R. Pease, J. Vac. Sci. Technol. B1, 1141 (1983).Google Scholar
  175. 175.
    C. Slayman, J. Bartelt, and C. McKenna, SPIE Proc. 333, 168 (1982), J. Vac. Sci. Technol. 19, 1166 (1981).Google Scholar
  176. 176.
    J. Randall, D. Flanders, N. Economu, J. Donnely, and E. Bromley, J. Vac. Sci. Technol. B1, 1152 (1983).Google Scholar
  177. 177.
    Y. Machida, H. Nakayama, S. Furuya, T. Hitsatsugo, and S. Yamamoto, Fujitsu Sci. Tech. J. 19, 21 (1983).Google Scholar
  178. 178.
    S. Ichirnura, M. Hirata, H. Tanino, N. Atoda, M. Ono, and K. Oh, J. Vac. Sci. Technol. B1, 1076 (1983).Google Scholar
  179. 179.
    A. Barraud, C. Rosillo, and A. Ruadel-Texrier, J. Vac. Sci. Technol. 16, 2003 (1979).Google Scholar
  180. 180.
    M. Shiyama, O. Nakajima, C. Hashimoto, and Y. Sakabara, J. Electrochem. Soc. 131, 1391 (1984).Google Scholar
  181. 181.
    M. Geis, J. Randall, T. Deutsch, N. Efremow, J. Donnely, and J. Woodhouse, J. Vac. Sci. Technol. B1, 1178 (1983).Google Scholar
  182. 182.
    R. Howard, H. Craighead, L. Jackel, and P. Mankewich, J. Vac. Sci. Technol. B1, 1101 (1983).Google Scholar
  183. 183.
    T. Takigawa, K. Kawabuchi, M. Yoshimi, and Y. Kato, Microelectron. Eng. 1, 121 (1983).Google Scholar
  184. 184.
    D. Joy, Microelectron. Eng. 1, 103 (1983).Google Scholar
  185. 185.
    U. S. Patent 4,456,677 (1984), U.S. government.Google Scholar
  186. 186.
    M. Kakuchi, M. Hikita, A. Sugita, K. Onose, and T. Tamamura, J. Electrochem. Soc. 133, 1755 (1986).Google Scholar
  187. 187.
    I. Aesida, M. Zhang, and E. Wolf, J. Electron. Mater. 13, 689 (1984).Google Scholar
  188. 188.
    C. Chen, SPIE Proc. 471, 1 (1984).Google Scholar
  189. 189.
    Y. Suzuki, H. Itoh, and T. Shigura, J. Vac. Sci. Technol. B3, 1009 (1985).Google Scholar
  190. 190.
    R. Jaeger and B. Heflinger, SPIE Proc. 471, 110 (1984).Google Scholar
  191. 191.
    J. Randall, D. Flanders, and J. Economu, SPIE Proc. 471, 110 (1984).Google Scholar
  192. 192.
    H. Pfeiffer, in Microcircuit Engineering, edited by H. Ahmed, J. Cleaver, and G. Jones, Academic Press, New York, 1984, p. 3.Google Scholar
  193. 193.
    H. Matsumura and T. Takeshi, Appl. Phys. Lett. 45, 3 (1984).Google Scholar
  194. 194.
    A. Neukermans, Solid State Technol. Sept. 1984, p. 185.Google Scholar
  195. 195.
    A. Shikiunas, Solid State Technol. Sept. 1984, p. 192.Google Scholar
  196. 196.
    H. Bohlen, P. Nehmiz, and J. Greshner, Solid State Technol. Sept. 1984, p. 210.Google Scholar
  197. 197.
    H. Pfeiffer, Solid State Technol. Sept. 1984, p. 223.Google Scholar
  198. 198.
    M. Suzuki, H. Namatsu, and A. Yoshikawa, J. Vac. Sci. Technol. B2, 665 (1984).Google Scholar
  199. 199.
    O. Wells, Scanning Electron Microscopy, McGraw-Hill, New York, 1974.Google Scholar
  200. 200.
    S. Miyauchi, K. Tanaka, and J. Russ, IEEE Trans. Electron Devices ED-17, 450 (1970).Google Scholar
  201. 201.
    B. Piwczyk and A. Williams, Solid State Technol. June 1982, p. 74.Google Scholar
  202. 202.
    K. Murata, J. Appl. Phys. 57, 575 (1985).Google Scholar
  203. 203.
    L. Jackel, R. Howard, and P. Mankiewich, Appl. Phys. Lett. 45, 698 (1984).Google Scholar
  204. 204.
    German Patent 3,342,319 (1984), Chem. Abstr. 101, 201548 (1985).Google Scholar
  205. 205.
    Japanese Patent 59,116,745 (1984), Chem. Abstr. 101, 15133 (1985).Google Scholar
  206. 206.
    W. Buckley, Proc. 7th Int. Symp. Electron Ion Beam Sci. Technol., Electrochemical Society, 1978, p. 462.Google Scholar
  207. 207.
    R. Ono, J. Sauvageau, A. Jain, D. Schwartz, K. Springer, and J. Lukens, J. Vac. Sci. Technol. B3, 282 (1985).Google Scholar
  208. 208.
    G. Atkinson and A. Neureuther, J. Vac. Sci. Technol. B3, 421 (1985).Google Scholar
  209. 209.
    D. Rensch, J. Chen, W. Clark, and M. Courtney, J. Vac. Sci. Technol. B3, 286 (1985).Google Scholar
  210. 210.
    T. Kato, H. Morimoto, K. Saitoh, and H. Nakata, J. Vac. Sci. Technol. B3, 50 (1985).Google Scholar
  211. 211.
    I. Aesida, E. Kratschner, E. Wolf, A. Muray, and M. Isaacson, J. Vac. Sci. Technol. B3, 45 (1985).Google Scholar
  212. 212.
    A. Chen, A. Neureuther, and J. Pavovich, J. Vac. Sci. Technol. B3, 148 (1985).Google Scholar
  213. 213.
    P. Rissman and G. Owen, J. Vac. Sci. Technol. B3, 159 (1985).Google Scholar
  214. 214.
    G. Owen, P. Rissman, and M. Long, J. Vac. Sci. Technol. B3, 153 (1985).Google Scholar
  215. 215.
    P. Mankewich, L. Jackel, and R. Howard, J. Vac. Sci. Technol. B3, 174 (1985).Google Scholar
  216. 216.
    K. Gamo, Y. Yamashita, F. Emoto, S. Namba, N. Samoto, and R. Shizumi, J. Vac. Sci. Technol. B3, 117 (1985).Google Scholar
  217. 217.
    L. Hsia and E. Weber, J. Vac. Sci. Technol. B3, 128 (1985).Google Scholar
  218. 218.
    H. Yamaguchi, A. Shimase, S. Haraichi, and T. Miyauchi, J. Vac. Sci. Technol. B3, 71 (1985).Google Scholar
  219. 219.
    K. Muller and H. Burghause, J. Vac. Sci. Technol. B3, 241 (1985).Google Scholar
  220. 220.
    L. Semenzaio, E. Eaton, A. Neukermans, and R. Jaeger, J. Vac. Sci. Technol. B3, 245 (1985).Google Scholar
  221. 221.
    C Dix, P. Flavin, P. Hendy, and M. Jones, J. Vac. Sci. Technol. B3, 131 (1985).Google Scholar
  222. 222.
    L. Hsia and E. Weber, J. Vac. Sci. Technol. B3, 128 (1985).Google Scholar
  223. 223.
    N. Saitou, H. Morishito, S. Nonogaki, H. Itoh, and A. Maikawa, Jpn. J. Appl. Phys. 10, 1486 (1971).Google Scholar
  224. 224.
    T. Matsuda, K. Miyoshi, R. Yamaguchi, S. Moriya, T. Hosoya, and K. Harado, IEEE Trans. Electron Devices ED-32, 168 (1985).Google Scholar
  225. 225.
    M. Rosenfield, D. Goodman, A. Neureuther, and M. Prouty, J. Vac. Sci. Technol. B3, 337 (1985).Google Scholar
  226. 226.
    A. Chen, A. Neureuther, and J. Pavovich, J. Vac. Sci. Technol. B3, 148 (1985).Google Scholar
  227. 227.
    Y. Machida, N. Nakayama, S. Furyu, and S. Yamamoto, IEEE Trans. Electron Devices ED-32, 831 (1985).Google Scholar
  228. 228.
    J. Paraszczak, D. Kern, M. Hatzakis, J. Bucchignano, E. Arthur, and M. Rosenfield, J. Vac. Sci. Technol. B1, 1372 (1983).Google Scholar
  229. 229.
    U. S. Patent 4,467,211 (1984), Control Data.Google Scholar
  230. 230.
    U. S. Patent 4,465,934 (1984), VEECO.Google Scholar
  231. 231.
    U. S. Patent 4,460,831 (1984), Thermoelectric.Google Scholar
  232. 232.
    A. Broers, Solia Siate Technol. June 1985, p. 119.Google Scholar
  233. 233.
    A. Broers, in Microcircuit Engineering, edited by H. Beneking and H. Beureuther, Academic Press, New York, 1985, p. 1.Google Scholar
  234. 234.
    T. Kokigawa, K. Kawabuchi, M. Yoshimi, and Y. Kato, Microelectron Eng. 1, 121 (1983).Google Scholar
  235. 235.
    P. Heard, J. Cleaver, and H. Ahmed, J. Vac. Sci. Technol. A3, 87 (1985).Google Scholar
  236. 236.
    B. Soller, C. Snider, and R. Shuman, J. Electrochem. Soc. 131, 868 (1984).Google Scholar
  237. 237.
    R. Devine and C. Froe, J. Appl. Phys. 57, 5162 (1985).Google Scholar
  238. 238.
    T. Kitayama, T. Tamamura, and K. Harada, Microelectron. Eng. 2, 97 (1985).Google Scholar
  239. 239.
    D. Yen, L. Linholm, and W. Glendenning, J. Electrochem. Soc. 132, 1726 (1985).Google Scholar
  240. 240.
    H. Beneking, Microelectron. Eng. 2, 65 (1985).Google Scholar
  241. 241.
    K. Gamo and S. Namba, Microelectron. Eng. 2, 74 (1985).Google Scholar
  242. 242.
    S. Mackie and S. Beaumont, Solid State Technol. Aug. 1985, p. 117.Google Scholar
  243. 243.
    K. Suzuki, K. Okada, J. Matsui, N. Endo, Y. Ieda, and M. Kukuina, IEEE Electron Devce Lett. EDL-6, 353 (1985).Google Scholar
  244. 244.
    H. Golen, N. Schell, and J. George, Solid State Technol. June 1985, p. 155.Google Scholar
  245. 245.
    N. Samato, R. Shimizu, and H. Hashimoto, Jpn. J. Appl. Phys. 24, 482 (1985).Google Scholar
  246. 246.
    U. S. Patent 4,513,203 (1985), IBM.Google Scholar
  247. 247.
    S. Hasegawa and Y. Ieda, IEEE Trans. Electron Devices ED-32, 95 (1985).Google Scholar
  248. 248.
    H. Craighead, J. Electron Microsc. Tech. 2, 147 (1985).Google Scholar
  249. 249.
    G. Atkinson and N. Cheung, Nucl. Instrum. Phys. Res. B7-8, 872 (1985).Google Scholar
  250. 250.
    U. S. Patent 4,503,334 (1985), U.S. Phillips.Google Scholar
  251. 251.
    H. Morimoto, Y. Sasaki, H. Onoda, and T. Kato, Appl. Phys. Lett. 46, 898 (1985).Google Scholar
  252. 252.
    G. Jones, P. Sargent, T. Norris, and H. Ahmed, J. Vac. Sci. Technol. B3, 124 (1985).Google Scholar
  253. 253.
    G. Owen, P. Rissman, and M. Long, J. Vac. Sci. Technol. B3, 153 (1985).Google Scholar
  254. 254.
    P. Petrie and J. Schoeffel, Proc. SPIE 537, 17 (1985).Google Scholar
  255. 255.
    K. Mochizu, T. Kimura, H. Obayashi, and H. Maezawa, Proc. SPIE 539, 56 (1985).Google Scholar
  256. 256.
    U. S. Patent 4,520,269 (1985), IBM.Google Scholar
  257. 257.
    U. S. Patent 4,504,558 (1985), IBM.Google Scholar
  258. 258.
    U. S. Patent 4,425,508 (1985), GCA.Google Scholar
  259. 259.
    K. Murata, K. Nakami, and S. Namba, IEEE Trans. Electron Devices ED-32, 1694 (1985).Google Scholar
  260. 260.
    P. Whipps, SPE RETEC Photopolymers Proceedings, Ellenville, N.Y., 1985, p. 147.Google Scholar
  261. 261.
    M. Kakuchi, M. Hikita, and T. Tamamura, Appl. Phys. Lett. 48, 835 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Wayne M. Moreau
    • 1
  1. 1.General Technology DivisionInternational Business Machines CorporationNew YorkUSA

Personalised recommendations