Skip to main content

Radiation Exposure

  • Chapter
Semiconductor Lithography

Part of the book series: Microdevices ((MDPF))

  • 838 Accesses

Abstract

The traditional form of exposure of resists involves pure uncharged ultraviolet photons. From actual microscopy and diffraction theory, the resolution is limited by the practical wavelength of observation. Thus, shorter-wavelength, higher-energy photoelectrons from electron beams, ion beams, and X rays have been used in microscopes to observe and analyze objects the size of atoms. These analytical tools formed the basis of high-energy radiation exposure systems to expose resists and build devices to a nanometer scale. In some cases, masks disappear and resolution with some forms of high energy becomes infinite, if one is willing to pay for the high capital and maintenance costs at low wafer exposure throughput. The primary application of these forms of exposure tools has been to fabricate, measure, and repair photomasks but gradually scanning exposure tools have been applied to direct silicon write and in the next decade, flood exposure will also enter into the production of memory circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Tafel, Physics, Allyn & Bacon, 1981, p. 434.

    Google Scholar 

  2. U. S. Patent 3,581,385 (1971), TI.

    Google Scholar 

  3. U. S. Patent 3,575,588 (1971), IBM.

    Google Scholar 

  4. E. Samaroo, J. Raamot, P. Parry, and G. Robertson, Bell Syst. Tech. J. 49, 2077 (1970).

    Google Scholar 

  5. U. S. Patent, 3,900,737 (1975), Bell.

    Google Scholar 

  6. J. Ballantyne, J. Vac. Sci. Technol. 12, 1257 (1975).

    Google Scholar 

  7. K. Tai, R. Vadimsky, C. Kemmer, J. Wagner, V. Lambertini, and A. Timko, J. Vac. Sci. Technol. 17, 1169 (1980).

    Google Scholar 

  8. E. Weber and R. Moore, Solid State Technol. May 1979, p. 61; E. Weber, SPIE Proc. 333, 95 (1982).

    Google Scholar 

  9. L. Fried, J. Havas, G. Paal, J. Logan, P. Totta, and J. Lechaton, IBM J. Res. Dev. 26, 364 (1982).

    Google Scholar 

  10. J. Trotel and B. Fay, in Electron Beam Technology in Microelectronic Fabrication, edited by G. Brewer, Academic Press, New York, 1980, p. 309.

    Google Scholar 

  11. A. Muray, M. Issacson, I. Aesida, and B. Whitehead, J. Vac. Sci. Technol. B1, 1019 (1983).

    Google Scholar 

  12. R. Havemann, R. Smith, S. Evans, L. Arledge, R. Love, and G. Varnell, J. Vac. Sci. Technol. 19, 903 (1981).

    Google Scholar 

  13. H. Pfeiffer, J. Vac. Sci. Technol. 12, 1170 (1975).

    Google Scholar 

  14. W. Stickel and G. Langner, J. Vac. Sci. Technol. B1, 1007 (1983).

    Google Scholar 

  15. J. Paraszczak, D. Kern, M. Hatzakis, J. Bucchignanao, E. Arthur, and M. Rosenfield, J. Vac. Sci. Technol. B1, 1372 (1983).

    Google Scholar 

  16. N. Eib and F. Jones, J. Vac. Sci. Technol. B1, 1327 (1983).

    Google Scholar 

  17. A. Broers, IEEE Trans. Electron Devices ED-28, 1268 (1981).

    Google Scholar 

  18. M. Nakase and Y. Matsumoto, Photogr. Sci. Eng. 23, 215 (1979).

    Google Scholar 

  19. J. Shaw, M. Hatzakis, J. Paraszczak, J. Liutkus, and E. Babich, Polym. Eng. Sci. 23, 1054 (1983).

    Google Scholar 

  20. D. Davis, S. Gillespie, S. Silverman, and W. Stickel, J. Vac. Sci. Technol. B1, 1003 (1983).

    Google Scholar 

  21. J. Phang and H. Ahmed, J. Vac. Sci. Technol. 16, 1754 (1979).

    Google Scholar 

  22. J. Wolfe, IEEE Trans. Electron Devices ED-27, 1475 (1980).

    Google Scholar 

  23. A. Broers and M. Pomerantz, Thin Solid Films 99, 323 (1983).

    Google Scholar 

  24. H. Ryssel, G. Prinke, H. Bernt, K. Harberger, and K. Hoffmann, Appl. Phys. A 27, 239 (1982).

    Google Scholar 

  25. J. Greeneich, in Ref. 10, p. 245.

    Google Scholar 

  26. D. Stephani, E. Kratschner, and H. Beneking, J. Vac. Sci. Technol. B1, 1011 (1983).

    Google Scholar 

  27. H. Ito and C. Willson, Polym. Eng. Sci. 23, 1012 (1983).

    Google Scholar 

  28. M. Gazard, C. Duchesne, J. Dubois, and A. Chapiro, Polym. Eng. Sci. 20, 1069 (1980).

    Google Scholar 

  29. S. Moriya, K. Komatsu, K. Harada, and T. Kitayama, B1, 990 (1983).

    Google Scholar 

  30. D. Herriott and G. Brewer, in Ref. 10, p. 1.

    Google Scholar 

  31. B. Piurczk and A. Williams, Solid State Technol. June 1982, p. 74.

    Google Scholar 

  32. A. Wilson, Proc. IEEE 71, 575 (1983).

    Google Scholar 

  33. N. Aizaki, J. Vac. Sci. Technol. 16, 1726 (1979).

    Google Scholar 

  34. J. Doherty, Solid State Technol. May 1979, p. 83.

    Google Scholar 

  35. L. Lin and H. Beauchamp, J. Vac. Sci. Technol. 10, 987 (1973).

    Google Scholar 

  36. B. Piwczk and K. McQuhal, J. Vac. Sci. Technol. 10, 1016 (1973).

    Google Scholar 

  37. U. S. Patent 3,876,883 (1975), IBM.

    Google Scholar 

  38. A. Wilson, A. Speth, T. Chang, and A. Kern, J. Vac. Sci. Technol. 12, 1235 (1975).

    Google Scholar 

  39. U. S. Patents 3,894,271 (1975) and 3,930,181 (1975), IBM.

    Google Scholar 

  40. R. Moore, G. Caccomo, H. Pfeiffer, E. Weber, and O. Woodard, J. Vac. Sci. Technol. 19, 950 (1981).

    Google Scholar 

  41. H. Pfeiffer, J. Vac. Sci. Technol. 15, 887 (1978).

    Google Scholar 

  42. Y. Sakokibara, T. Ogawa, K. Komatsu, S. Moriya, M. Kobayashi, and T. Kobayashi, IEEE Trans. Electron Devices ED-28, 1279 (1981).

    Google Scholar 

  43. G. Jones, V. Rao, H. Sun, and H. Ahmed, J. Vac. Sci. Technol. B1, 1298 (1983).

    Google Scholar 

  44. E. Goto, T. Soma, and M. Idesawa, J. Vac. Sci. Technol. 15, 883 (1978).

    Google Scholar 

  45. E. Weber and R. Moore, J. Vac. Sci. Technol. 16, 1780 (1978).

    Google Scholar 

  46. S. Moriya, J. Vac. Sci. Technol. B1, 990 (1983).

    Google Scholar 

  47. M. Fujinami, T. Matsuda, K. Takamoto, H. Yoda, T. Ihiga, N. Saitou, and T. Komoda, J. Vac. Sci. Technol. 19, 941 (1981).

    Google Scholar 

  48. C. Lemmond, E. Buschmann, T. Klotz, and G. White, IEEE Trans. Electron Devices ED-21, 598 (1974).

    Google Scholar 

  49. D. Smith and K. Harte, J. Vac. Sci. Technol. 19, 953 (1981).

    Google Scholar 

  50. I. Brodie, E. Westerberg, D. Cone, J. Murray, M. Williams, and L. Gasiorek, IEEE Trans. Elect. Dev. ED-28, 1422 (1981).

    Google Scholar 

  51. T. Sasaki, J. Vac. Sci. Technol. 19, 963 (1981).

    Google Scholar 

  52. H. Bohlen, J. Greshner, and P. Nehmiz, J. Vac. Sci. Technol. 16, 1834 (1979), 19, 972 (1981), IBM J. Res. Dev. 26, 568 (1982).

    Google Scholar 

  53. H. Koops, J. Vac. Sci. Technol. 12, 1141 (1975).

    Google Scholar 

  54. M. Heritage, J. Vac. Sci. Technol. 12, 1135 (1975).

    Google Scholar 

  55. M. Frosien, B. Liechke, and K. Anger, J. Vac. Sci. Technol. 16, 1827 (1979).

    Google Scholar 

  56. U. S. Patent 3,519,873 (1970), Westinghouse.

    Google Scholar 

  57. T. O’Keefe, IEEE Trans. Electron Devices ED-17, 465 (1970).

    Google Scholar 

  58. T. Bril and J. Snyders, J. Vac. Sci. Technol. 16, 1665 (1979).

    Google Scholar 

  59. R. Ward, J. Vac. Sci. Technol. 16, 1830 (1979), 15, 1917 (1978).

    Google Scholar 

  60. K. Nicholas, R. Ford, H. Brockman, and I. Stemp, J. Vac. Sci. Technol. B1, 1020 (1983).

    Google Scholar 

  61. U. S. Patents 3,644,700 (1972) and 3,894,271 (1975), IBM.

    Google Scholar 

  62. M. Larken and R. Matta, Solid State Electron. 10, 491 (1967).

    Google Scholar 

  63. J. Eidson and R. Scudder, J. Vac. Sci. Technol. 19, 932, 936 (1981).

    Google Scholar 

  64. U. S. Patent 4,213,053 (1980), IBM.

    Google Scholar 

  65. U. S. Patent 4,376,249 (1983), IBM.

    Google Scholar 

  66. H. Pfeiffer and G. Langner, J. Vac. Sci. Technol. 19, 1058 (1981).

    Google Scholar 

  67. U. S. Patent 4,112,305 (1978), Rikagu.

    Google Scholar 

  68. U. S. Patent 4,117,349 (1978), Rikagu.

    Google Scholar 

  69. U. S. Patent 4,122,369 (1978), General Electric.

    Google Scholar 

  70. U. S. Patent 4,199,688 (1980), Hitachi.

    Google Scholar 

  71. U. S. Patent 4,199,689 (1980), Tokyo Shibaru.

    Google Scholar 

  72. H. Ohiwa, J. Vac. Sci. Technol. 15, 849 (1978).

    Google Scholar 

  73. Y. Machida, S. Yamamoto, H. Hakayama, S. Furuya, and T. Hisatsuga, Fujitsu Sci. Tech. J. 19, 21 (1983).

    Google Scholar 

  74. W. Livesay, Microelectron. Manuf. Test. March 1984, p. 58.

    Google Scholar 

  75. G. Dolan and T. Fulton, IEEE Electron Device Lett. EDL-4, 192 (1983).

    Google Scholar 

  76. T. Berker and D. Casey, IEEE Trans. Electron Devices ED-29, 524 (1982).

    Google Scholar 

  77. W. Grobman and T. Studwell, J. Vac. Sci. Technol. 16, 1803 (1979).

    Google Scholar 

  78. G. Owen and P. Rissman, J. Appl. Phys. 54, 3573 (1983).

    Google Scholar 

  79. J. Pasiecznek and J. Frey, J. Vac. Sci. Technol. 10, 1012 (1973).

    Google Scholar 

  80. M. Sumi, F. Chiba, and M. Niomiya, J. Vac. Sci. Technol. 16, 1809 (1979).

    Google Scholar 

  81. A. Dexiang, W. Jian-kun, and Q. Pei-yong, J. Vac. Sci. Technol. 19, 975 (1981).

    Google Scholar 

  82. G. Varnell, P. Shah, and R. Havemann, Proc. IEEE 71, 612 (1983).

    Google Scholar 

  83. M. Miyazaki, N. Saitou, and C. Munakata, J. Phys. E 14, 194 (1981).

    Google Scholar 

  84. G. Langner, Proc. Microcircuit Eng. 1979, p. 261.

    Google Scholar 

  85. N. Saitou, C. Munakata, and A. Maekawa, Jpn. J. Appl. Phys. 10, 351 (1971).

    Google Scholar 

  86. F. Carter, Molecular Electronic Devices, Dekker, New York, 1982, p. 1; J. Vac. Sci. Technol. B1, 959 (1983).

    Google Scholar 

  87. A. Avidenko and M. Malev, Vacuum 27, 583 (1978).

    Google Scholar 

  88. H. Ralph, G. Duggan, and R. Elliott, Electrochem. Soc. Ext. Abstr. 82-1, 514 (1982).

    Google Scholar 

  89. T. Lin, IBM J. Res. Dev. Sept. 1967, p. 527.

    Google Scholar 

  90. D. Davis, R. Moore, M. Williams, and O. Woodard, IBM J. Res. Dev. 21, 498 (1977).

    Google Scholar 

  91. D. Davis, IBM J. Res. Dev. 24, 545 (1980).

    Google Scholar 

  92. U. S. Patent 4,056,730 (1977), IBM.

    Google Scholar 

  93. U. S. Patent 3,644,700 (1972), IBM.

    Google Scholar 

  94. E. Wolf, P. Coane, and F. Ozedimir, J. Vac. Sci. Technol. 12, 1266 (1975).

    Google Scholar 

  95. H. Friedrich, H. Zeitler, and H. Bierhenke, J. Electrochem. Soc. 124, 627 (1977).

    Google Scholar 

  96. D. Stephani, J. Vac. Sci. Technol. 16, 1739 (1979).

    Google Scholar 

  97. J. Lida and T. Everhart, J. Vac. Sci. Technol. 15, 917 (1978).

    Google Scholar 

  98. R. Henderson, D. Mayer, and J. Nash, J. Vac. Sci. Technol. 16, 260 (1979).

    Google Scholar 

  99. W. Stickel, J. Vac. Sci. Technol. 15, 901 (1978).

    Google Scholar 

  100. S. Okazaki, F. Mular, J. Takeda, K. Mochyu, H. Kume, and S. Asar, J. Vac. Sci. Technol. 19, 927 (1981).

    Google Scholar 

  101. L. White, J. Vac. Sci. Technol. B1, 1235 (1983).

    Google Scholar 

  102. C. Ting, R. Anderson, D. Saiki, and A. Kraft, J. Vac. Sci. Technol. 15, 948 (1978).

    Google Scholar 

  103. Y. Lin, A. Neureuther, and I. Aesida, J. Appl. Phys. 53, 899 (1982).

    Google Scholar 

  104. Y. Lin, A. Neureuther, and I. Aesida, J. Electrochem. Soc. 130, 939 (1983).

    Google Scholar 

  105. Y. Lin and A. Neureuther, Solid State Technol. Feb. 1984, p. 117.

    Google Scholar 

  106. S. Yamamoto, H. Nakayama, S. Furuya, T. Hisatsugu, and Y. Machida, Fujitsu Sci. Tech. J. 14, 143 (1978).

    Google Scholar 

  107. L. Rothman, J. Electrochem. Soc. 127, 2216 (1980).

    Google Scholar 

  108. D. Kyser and C. Ting, J. Vac. Sci. Technol. 16, 1759 (1979).

    Google Scholar 

  109. D. Kyser and R. Pyle, IBM J. Res. Dev. 24, 426 (1980).

    Google Scholar 

  110. N. Aizaki, J. Vac. Sci. Technol. 16, 1726 (1979).

    Google Scholar 

  111. B. Sohler, C. Snider, and R. Shuman, J. Electrochem. Soc. 131, 868 (1984).

    Google Scholar 

  112. C. Dix, J. Vac. Sci. Technol. 19, 911 (1981).

    Google Scholar 

  113. T. Chang, C. Codella, and R. Lange, IEEE Trans. Electron Devices ED-28, 1428 (1981).

    Google Scholar 

  114. R. Moore, G. Caccomo, H. Pfeiffer, E. Weber, and O. Woodard, Electronics Nov. 3, 1981, p. 142.

    Google Scholar 

  115. M. Idesawa, Y. Somo, and E. Goto, J. Vac. Sci. Technol. 19, 983 (1981).

    Google Scholar 

  116. N. Eib and F. Jones, J. Vac. Sci. Technol. B1, 1327 (1983).

    Google Scholar 

  117. K. Nicholas, R. Ford, H. Brockman, and I. Stemp, J. Vac. Sci. Technol. B1, 1021 (1983).

    Google Scholar 

  118. H. Sewell, J. Vac. Sci. Technol. 15, 927 (1978).

    Google Scholar 

  119. M. Parikh and D. Schreiber, IBM J. Res. Dev. 24, 531 (1980).

    Google Scholar 

  120. M. Nakase and M. Yoshimi, IEEE J. Solid State Circuits SC-15, 525 (1980).

    Google Scholar 

  121. M. Parikh, J. Vac. Sci. Technol. 15, 931 (1978).

    Google Scholar 

  122. J. Greeneich, J. Vac. Sci. Technol. 19, 1269 (1981).

    Google Scholar 

  123. G. Owen and P. Rissman, J. Appl. Phys. 54, 3573 (1983).

    Google Scholar 

  124. W. Grobman, A. Speth, and T. Chang, IBM J. Res. Dev. 24, 537 (1980).

    Google Scholar 

  125. D. Kyser and C. Ting, J. Vac. Sci. Technol. 16, 1759 (1979).

    Google Scholar 

  126. Y. Yoshimi, M. Yoshimi, K. Kawabuchi, T. Takigauna, M. Takahashi, and Y. Kato, Electron. Lett. 18, 880 (1982).

    Google Scholar 

  127. T. Neil and C. Bull, Electron. Lett. 16, 621 (1980).

    Google Scholar 

  128. A. Broers, J. Electrochem. Soc. 128, 166 (1981).

    Google Scholar 

  129. R. Howard, H. Craighead, L. Jaeckel, and P. Mankiewich, J. Vac. Sci. Technol. B1, 1101 (1983).

    Google Scholar 

  130. D. Stephani, E. Kratschner, and H. Beneking, J. Vac. Sci. Technol. B1, 1011 (1983).

    Google Scholar 

  131. T. Chang, J. Vac. Sci. Technol. 12, 1271 (1975).

    Google Scholar 

  132. P. Vettiger, T. Forster, and D. Kern, J. Vac. Sci. Technol. B1, 1383 (1983).

    Google Scholar 

  133. D. Kyser, J. Vac. Sci. Technol. B1, 1391, (1983).

    Google Scholar 

  134. C. Shaw, J. Vac. Sci. Technol. 19, 1286 (1981).

    Google Scholar 

  135. J. Greeneich, J. Electrochem. Soc. 122, 970 (1975).

    Google Scholar 

  136. H. Nokata, T. Kato, K. Murata, Y. Hirai, and K. Nagami, J. Vac. Sci. Technol. 19, 1248 (1981).

    Google Scholar 

  137. N. Nakayama, Y. Machida, S. Furuya, S. Yamamoto, and T. Hisatsugu, Electrochem. Soc. Ext. Abstr. 82-1, 509 (1982).

    Google Scholar 

  138. U. S. Patent 3,971,860 (1976), IBM.

    Google Scholar 

  139. I. Aesida and T. Everhart, J. Appl. Phys. 51, 5994 (1980).

    Google Scholar 

  140. U. S. Patent 4,316,093 (1982), IBM.

    Google Scholar 

  141. R. Howard and D. Prober, in VLSI Electronics, edited by N. Einspruch, Academic Press, New York, 1982, p. 146.

    Google Scholar 

  142. M. Rosenfield, A. Neureuther, and C. Ting, J. Vac. Sci. Technol. 19, 1242 (1981).

    Google Scholar 

  143. D. Chow, J. McDonald, D. King, W. Smith, K. Molnar, and A. Steckl, J. Vac. Sci. Technol. B1, 1383 (1983).

    Google Scholar 

  144. K. Harada, T. Tamamura, and O. Kogure, J. Electrochem. Soc. 129, 2576 (1982).

    Google Scholar 

  145. J. Greeneich, Semicond. Int. April 1981, p. 159.

    Google Scholar 

  146. D. Kern, Proc. 8th Electron Ion Beam Conf. 80-6, 327 (1980).

    Google Scholar 

  147. J. Greeneich, Proc. 8th Electron Ion Beam Conf. 80-6, 293 (1980).

    Google Scholar 

  148. IEEE Trans. Nucl. Sci. NS-30, No. 6 (1983).

    Google Scholar 

    Google Scholar 

  149. J. Tzou, J. Appl Phys. 55, 846 (1984).

    Google Scholar 

  150. J. Aitken, D. Young, and K. Pan, J. Appl. Phys. 49, 3386 (1978).

    Google Scholar 

  151. M. Peckerar, J. Vac. Sci. Technol. 16, 1658 (1979).

    Google Scholar 

  152. K. Galloway, J. Electrochem. Soc. 127, 1862 (1980).

    Google Scholar 

  153. K. Galloway, S. Majo, and P. Roctman, J. Electrochem. Soc. 126, 2245 (1979).

    Google Scholar 

  154. D. Brown, D. Ma, C. Dozier, and M. Peekerar, IEEE Trans. Nucl. Sci. NS-30, 4025 (1983).

    Google Scholar 

  155. K. Galloway, Semicond. Int. May 1979, p. 65.

    Google Scholar 

  156. D. Maydan, G. Coquin, H. Levenstein, A. Sinha, and D. Wang, J. Vac. Sci. Technol. 16, 1959 (1979).

    Google Scholar 

  157. J. McCoy, Circuits Manufacturing, Nov. 1977, p. 57.

    Google Scholar 

  158. H. Antonie, J. Vac. Sci. Technol. 15, 922 (1978).

    Google Scholar 

  159. S. Austin, H. Smith, and D. Flanders, J. Vac. Sci. Technol. 15, 984 (1978), 16, 1949 (1979).

    Google Scholar 

  160. D. Flanders and T. Lyszczarz, J. Vac. Sci. Technol. B1, 1196 (1983).

    Google Scholar 

  161. E. Hundt and P. Tescher, J. Vac. Sci. Technol. 15, 1004 (1978).

    Google Scholar 

  162. K. Heinrich, H. Betz, A. Heuberger, and S. Pongrantz, J. Vac. Sci. Technol. 19, 1254 (1981).

    Google Scholar 

  163. N. Atoda, H. Kawakatsu, H. Tanino, S. Ichirnura, and H. Koh, J. Vac. Sci. Technol. B1, 1267 (1983).

    Google Scholar 

  164. J. Lane, J. Maldanado, A. Cleland, R. Haelbich, J. Silverman, and J. Warlamount, J. Vac. Sci. Technol. B1, 1072 (1983).

    Google Scholar 

  165. R. Haelbich, J. Silverman, W. Brobman, J. Maldanado, and J. Warlamount, J. Vac. Sci. Technol. B1, 1262 (1983).

    Google Scholar 

  166. W. Grobman, J. Vac. Sci. Technol. B1, 1257 (1983).

    Google Scholar 

  167. M. Beiber, H. Scheunemann, H. Betz, and A. Heuberger, J. Vac. Sci. Technol. B1, 1271 (1983).

    Google Scholar 

  168. D. Johnson, Semicond. Int. March 1984, p. 83.

    Google Scholar 

  169. T. Shiokawa, J. Vac. Sci. Technol. B1, 1117 (1983).

    Google Scholar 

  170. W. Brown, T. Venkatensan, and A. Wagner, Solid State Technol. Aug. 1981, p. 60.

    Google Scholar 

  171. L. Karapiperis and C. Lee, Appl. Phys. Lett. 35, 395 (1979).

    Google Scholar 

  172. C. Fencil and G. Hughes, SPIE Proc. 333, 100 (1982).

    Google Scholar 

  173. B. Siegel, G. Hanson, M. Szilazi, D. Thomas, R. Blackwell, and H. Park, SPIE Proc. 333, 152 (1982).

    Google Scholar 

  174. Y. Yau, T. Groves, and R. Pease, J. Vac. Sci. Technol. B1, 1141 (1983).

    Google Scholar 

  175. C. Slayman, J. Bartelt, and C. McKenna, SPIE Proc. 333, 168 (1982), J. Vac. Sci. Technol. 19, 1166 (1981).

    Google Scholar 

  176. J. Randall, D. Flanders, N. Economu, J. Donnely, and E. Bromley, J. Vac. Sci. Technol. B1, 1152 (1983).

    Google Scholar 

  177. Y. Machida, H. Nakayama, S. Furuya, T. Hitsatsugo, and S. Yamamoto, Fujitsu Sci. Tech. J. 19, 21 (1983).

    Google Scholar 

  178. S. Ichirnura, M. Hirata, H. Tanino, N. Atoda, M. Ono, and K. Oh, J. Vac. Sci. Technol. B1, 1076 (1983).

    Google Scholar 

  179. A. Barraud, C. Rosillo, and A. Ruadel-Texrier, J. Vac. Sci. Technol. 16, 2003 (1979).

    Google Scholar 

  180. M. Shiyama, O. Nakajima, C. Hashimoto, and Y. Sakabara, J. Electrochem. Soc. 131, 1391 (1984).

    Google Scholar 

  181. M. Geis, J. Randall, T. Deutsch, N. Efremow, J. Donnely, and J. Woodhouse, J. Vac. Sci. Technol. B1, 1178 (1983).

    Google Scholar 

  182. R. Howard, H. Craighead, L. Jackel, and P. Mankewich, J. Vac. Sci. Technol. B1, 1101 (1983).

    Google Scholar 

  183. T. Takigawa, K. Kawabuchi, M. Yoshimi, and Y. Kato, Microelectron. Eng. 1, 121 (1983).

    Google Scholar 

  184. D. Joy, Microelectron. Eng. 1, 103 (1983).

    Google Scholar 

  185. U. S. Patent 4,456,677 (1984), U.S. government.

    Google Scholar 

  186. M. Kakuchi, M. Hikita, A. Sugita, K. Onose, and T. Tamamura, J. Electrochem. Soc. 133, 1755 (1986).

    Google Scholar 

  187. I. Aesida, M. Zhang, and E. Wolf, J. Electron. Mater. 13, 689 (1984).

    Google Scholar 

  188. C. Chen, SPIE Proc. 471, 1 (1984).

    Google Scholar 

  189. Y. Suzuki, H. Itoh, and T. Shigura, J. Vac. Sci. Technol. B3, 1009 (1985).

    Google Scholar 

  190. R. Jaeger and B. Heflinger, SPIE Proc. 471, 110 (1984).

    Google Scholar 

  191. J. Randall, D. Flanders, and J. Economu, SPIE Proc. 471, 110 (1984).

    Google Scholar 

  192. H. Pfeiffer, in Microcircuit Engineering, edited by H. Ahmed, J. Cleaver, and G. Jones, Academic Press, New York, 1984, p. 3.

    Google Scholar 

  193. H. Matsumura and T. Takeshi, Appl. Phys. Lett. 45, 3 (1984).

    Google Scholar 

  194. A. Neukermans, Solid State Technol. Sept. 1984, p. 185.

    Google Scholar 

  195. A. Shikiunas, Solid State Technol. Sept. 1984, p. 192.

    Google Scholar 

  196. H. Bohlen, P. Nehmiz, and J. Greshner, Solid State Technol. Sept. 1984, p. 210.

    Google Scholar 

  197. H. Pfeiffer, Solid State Technol. Sept. 1984, p. 223.

    Google Scholar 

  198. M. Suzuki, H. Namatsu, and A. Yoshikawa, J. Vac. Sci. Technol. B2, 665 (1984).

    Google Scholar 

  199. O. Wells, Scanning Electron Microscopy, McGraw-Hill, New York, 1974.

    Google Scholar 

  200. S. Miyauchi, K. Tanaka, and J. Russ, IEEE Trans. Electron Devices ED-17, 450 (1970).

    Google Scholar 

  201. B. Piwczyk and A. Williams, Solid State Technol. June 1982, p. 74.

    Google Scholar 

  202. K. Murata, J. Appl. Phys. 57, 575 (1985).

    Google Scholar 

  203. L. Jackel, R. Howard, and P. Mankiewich, Appl. Phys. Lett. 45, 698 (1984).

    Google Scholar 

  204. German Patent 3,342,319 (1984), Chem. Abstr. 101, 201548 (1985).

    Google Scholar 

  205. Japanese Patent 59,116,745 (1984), Chem. Abstr. 101, 15133 (1985).

    Google Scholar 

  206. W. Buckley, Proc. 7th Int. Symp. Electron Ion Beam Sci. Technol., Electrochemical Society, 1978, p. 462.

    Google Scholar 

  207. R. Ono, J. Sauvageau, A. Jain, D. Schwartz, K. Springer, and J. Lukens, J. Vac. Sci. Technol. B3, 282 (1985).

    Google Scholar 

  208. G. Atkinson and A. Neureuther, J. Vac. Sci. Technol. B3, 421 (1985).

    Google Scholar 

  209. D. Rensch, J. Chen, W. Clark, and M. Courtney, J. Vac. Sci. Technol. B3, 286 (1985).

    Google Scholar 

  210. T. Kato, H. Morimoto, K. Saitoh, and H. Nakata, J. Vac. Sci. Technol. B3, 50 (1985).

    Google Scholar 

  211. I. Aesida, E. Kratschner, E. Wolf, A. Muray, and M. Isaacson, J. Vac. Sci. Technol. B3, 45 (1985).

    Google Scholar 

  212. A. Chen, A. Neureuther, and J. Pavovich, J. Vac. Sci. Technol. B3, 148 (1985).

    Google Scholar 

  213. P. Rissman and G. Owen, J. Vac. Sci. Technol. B3, 159 (1985).

    Google Scholar 

  214. G. Owen, P. Rissman, and M. Long, J. Vac. Sci. Technol. B3, 153 (1985).

    Google Scholar 

  215. P. Mankewich, L. Jackel, and R. Howard, J. Vac. Sci. Technol. B3, 174 (1985).

    Google Scholar 

  216. K. Gamo, Y. Yamashita, F. Emoto, S. Namba, N. Samoto, and R. Shizumi, J. Vac. Sci. Technol. B3, 117 (1985).

    Google Scholar 

  217. L. Hsia and E. Weber, J. Vac. Sci. Technol. B3, 128 (1985).

    Google Scholar 

  218. H. Yamaguchi, A. Shimase, S. Haraichi, and T. Miyauchi, J. Vac. Sci. Technol. B3, 71 (1985).

    Google Scholar 

  219. K. Muller and H. Burghause, J. Vac. Sci. Technol. B3, 241 (1985).

    Google Scholar 

  220. L. Semenzaio, E. Eaton, A. Neukermans, and R. Jaeger, J. Vac. Sci. Technol. B3, 245 (1985).

    Google Scholar 

  221. C Dix, P. Flavin, P. Hendy, and M. Jones, J. Vac. Sci. Technol. B3, 131 (1985).

    Google Scholar 

  222. L. Hsia and E. Weber, J. Vac. Sci. Technol. B3, 128 (1985).

    Google Scholar 

  223. N. Saitou, H. Morishito, S. Nonogaki, H. Itoh, and A. Maikawa, Jpn. J. Appl. Phys. 10, 1486 (1971).

    Google Scholar 

  224. T. Matsuda, K. Miyoshi, R. Yamaguchi, S. Moriya, T. Hosoya, and K. Harado, IEEE Trans. Electron Devices ED-32, 168 (1985).

    Google Scholar 

  225. M. Rosenfield, D. Goodman, A. Neureuther, and M. Prouty, J. Vac. Sci. Technol. B3, 337 (1985).

    Google Scholar 

  226. A. Chen, A. Neureuther, and J. Pavovich, J. Vac. Sci. Technol. B3, 148 (1985).

    Google Scholar 

  227. Y. Machida, N. Nakayama, S. Furyu, and S. Yamamoto, IEEE Trans. Electron Devices ED-32, 831 (1985).

    Google Scholar 

  228. J. Paraszczak, D. Kern, M. Hatzakis, J. Bucchignano, E. Arthur, and M. Rosenfield, J. Vac. Sci. Technol. B1, 1372 (1983).

    Google Scholar 

  229. U. S. Patent 4,467,211 (1984), Control Data.

    Google Scholar 

  230. U. S. Patent 4,465,934 (1984), VEECO.

    Google Scholar 

  231. U. S. Patent 4,460,831 (1984), Thermoelectric.

    Google Scholar 

  232. A. Broers, Solia Siate Technol. June 1985, p. 119.

    Google Scholar 

  233. A. Broers, in Microcircuit Engineering, edited by H. Beneking and H. Beureuther, Academic Press, New York, 1985, p. 1.

    Google Scholar 

  234. T. Kokigawa, K. Kawabuchi, M. Yoshimi, and Y. Kato, Microelectron Eng. 1, 121 (1983).

    Google Scholar 

  235. P. Heard, J. Cleaver, and H. Ahmed, J. Vac. Sci. Technol. A3, 87 (1985).

    Google Scholar 

  236. B. Soller, C. Snider, and R. Shuman, J. Electrochem. Soc. 131, 868 (1984).

    Google Scholar 

  237. R. Devine and C. Froe, J. Appl. Phys. 57, 5162 (1985).

    Google Scholar 

  238. T. Kitayama, T. Tamamura, and K. Harada, Microelectron. Eng. 2, 97 (1985).

    Google Scholar 

  239. D. Yen, L. Linholm, and W. Glendenning, J. Electrochem. Soc. 132, 1726 (1985).

    Google Scholar 

  240. H. Beneking, Microelectron. Eng. 2, 65 (1985).

    Google Scholar 

  241. K. Gamo and S. Namba, Microelectron. Eng. 2, 74 (1985).

    Google Scholar 

  242. S. Mackie and S. Beaumont, Solid State Technol. Aug. 1985, p. 117.

    Google Scholar 

  243. K. Suzuki, K. Okada, J. Matsui, N. Endo, Y. Ieda, and M. Kukuina, IEEE Electron Devce Lett. EDL-6, 353 (1985).

    Google Scholar 

  244. H. Golen, N. Schell, and J. George, Solid State Technol. June 1985, p. 155.

    Google Scholar 

  245. N. Samato, R. Shimizu, and H. Hashimoto, Jpn. J. Appl. Phys. 24, 482 (1985).

    Google Scholar 

  246. U. S. Patent 4,513,203 (1985), IBM.

    Google Scholar 

  247. S. Hasegawa and Y. Ieda, IEEE Trans. Electron Devices ED-32, 95 (1985).

    Google Scholar 

  248. H. Craighead, J. Electron Microsc. Tech. 2, 147 (1985).

    Google Scholar 

  249. G. Atkinson and N. Cheung, Nucl. Instrum. Phys. Res. B7-8, 872 (1985).

    Google Scholar 

  250. U. S. Patent 4,503,334 (1985), U.S. Phillips.

    Google Scholar 

  251. H. Morimoto, Y. Sasaki, H. Onoda, and T. Kato, Appl. Phys. Lett. 46, 898 (1985).

    Google Scholar 

  252. G. Jones, P. Sargent, T. Norris, and H. Ahmed, J. Vac. Sci. Technol. B3, 124 (1985).

    Google Scholar 

  253. G. Owen, P. Rissman, and M. Long, J. Vac. Sci. Technol. B3, 153 (1985).

    Google Scholar 

  254. P. Petrie and J. Schoeffel, Proc. SPIE 537, 17 (1985).

    Google Scholar 

  255. K. Mochizu, T. Kimura, H. Obayashi, and H. Maezawa, Proc. SPIE 539, 56 (1985).

    Google Scholar 

  256. U. S. Patent 4,520,269 (1985), IBM.

    Google Scholar 

  257. U. S. Patent 4,504,558 (1985), IBM.

    Google Scholar 

  258. U. S. Patent 4,425,508 (1985), GCA.

    Google Scholar 

  259. K. Murata, K. Nakami, and S. Namba, IEEE Trans. Electron Devices ED-32, 1694 (1985).

    Google Scholar 

  260. P. Whipps, SPE RETEC Photopolymers Proceedings, Ellenville, N.Y., 1985, p. 147.

    Google Scholar 

  261. M. Kakuchi, M. Hikita, and T. Tamamura, Appl. Phys. Lett. 48, 835 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Moreau, W.M. (1988). Radiation Exposure. In: Semiconductor Lithography. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0885-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0885-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8228-0

  • Online ISBN: 978-1-4613-0885-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics