Advertisement

Optical Exposure

  • Wayne M. Moreau
Part of the Microdevices book series (MDPF)

Abstract

Optical 201C;lightography201D; combines the physical disciplines of optics, mechanics, and photographic chemistry. Stevens, in his classic book(1) on microphotography, lists some of the interactive requirements (Table 8-1-1). Any form of printing results in some degradation of edge sharpness (Fig. 8-1-1). Projection of a two-dimensional circuit pattern results in the degradation of the edge slope of the pattern (Fig. 8-1-2). It is the resist which must restore the modulated sinusoidal intensity of the beam into an acceptable rectangular mask for subsequent image transfer by etching or lift-off.

Keywords

Numerical Aperture Modulation Transfer Function IEEE Electron Device Optical Exposure Positive Photoresist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Stevens, Microphotography, Wiley, New York, 1967.Google Scholar
  2. 2.
    M. Lacombat, Solid State Technol. Aug. 1980, p. 115.Google Scholar
  3. 3.
    A. Tasch, SPIE Proc. 333, 68 (1982).Google Scholar
  4. 4.
    B. Allsop, Microelectron. Manuf. Test. July 1981, p. 28.Google Scholar
  5. 5.
    J. Roussel, Solid State Technol. May 1978, p. 64.Google Scholar
  6. 6.
    M. Hakey and J. Straub, J. Electron. Mater. 11, 813 (1982).Google Scholar
  7. 7.
    P. Blais, Solid State Technol. Aug. 1977, p. 76.Google Scholar
  8. 8.
    L. Johnson, Appl. Opt. 21, 1892 (1982).Google Scholar
  9. 9.
    M. King and M. Goldrick, Solid State Technol. Feb. 1977, p. 37.Google Scholar
  10. 10.
    M. King, in VLSI Electronics, Vol. 2, edited by N. Einspruch, Academic Press, New York, 1980, p. 57.Google Scholar
  11. 11.
    P. Concidine, J. Opt. Soc. Am. 56, 1001 (1966).Google Scholar
  12. 12.
    D. Doane, Solid State Technol. Aug. 1980, p. 101.Google Scholar
  13. 13.
    K. Tai, R. Vadimsky, C. Kemmer, J. Wagner, V. Lambertini, and A. Timko, J. Vac. Sci. Technol. 17, 1169 (1980).Google Scholar
  14. 14.
    W. Stickel and G. Langner, J. Vac. Sci. Technol. B1, 1007 (1983).Google Scholar
  15. 15.
    M. Nakase and Y. Matsumoto, Photogr. Sci. Eng. 23, 215 (1979).Google Scholar
  16. 16.
    R. Jones, Photogr. Sci. Eng. 11, 102 (1967).Google Scholar
  17. 17.
    M. King, IEEE Trans. Electron Devices ED-26, 711 (1979).Google Scholar
  18. 18.
    A. Offner, Photogr. Sci. Eng. 23, 374 (1979).Google Scholar
  19. 19.
    T. Shankoff, I. Bruning, and R. Johnston, Polym. Eng. Sci. 20, 1105 (1980).Google Scholar
  20. 20.
    T. Chang, D. Kyser, and C. Ting, Solid State Technol. May 1982, p. 60.Google Scholar
  21. 21.
    M. O’Toole, R. Liu, and M. Chang, IEEE Trans. Electron Devices ED-28, 1405 (1981).Google Scholar
  22. 22.
    W. Arden, H. Keller, and L. Mader, Solid State Technol. July 1983, p. 143.Google Scholar
  23. 23.
    F. Dill, A. Neureuther, J. Tuttle, and E. Walker, IEEE Trans. Electron Devices ED-22, 445 (1975).Google Scholar
  24. 24.
    R. Longhurst, Geometrical and Physical Optics, Wiley, New York, 1967, p. 208.Google Scholar
  25. 25.
    H. Smith, Proc. IEEE 62, 1361 (1974).Google Scholar
  26. 26.
    T. Chang, D. Kyser, and C. Ting, Solid State Technol. May 1982, p. 60.Google Scholar
  27. 27.
    U. S. Patent 3,511,653 (1970), American Cyanamid.Google Scholar
  28. 28.
    B. Griffing and P. West, Polym. Eng. Sci. 23, 947 (1983).Google Scholar
  29. 29.
    R. Sheets, Microelectron. Manuf. Test. Oct. 1982, p. 19.Google Scholar
  30. 30.
    B. Lin, J. Vac. Sci. Technol. 12, 1317 (1975).Google Scholar
  31. 31.
    W. Moreau and P. Schmidt, 138th Electrochem. Soc. Ext. Abstr. 1970, p. 459.Google Scholar
  32. 32.
    B. Lin, in Fine Line Lithography, edited by R. Newman, North-Holland, Amsterdam, 1980, p. 141.Google Scholar
  33. 33.
    H. Craighead, J. White, R. Howard, L. Jackel, R. Behringer, J. Sweeney, and R. Epworth, J. Vac. Sci. Technol. B1, 1186 (1983); T. McGrath, Solid State Technol. 26, 165 (1983).Google Scholar
  34. 34.
    K. Jain, C. Willson, and B. Lin, IBM J. Res. Dev. 26, 151 (1982); IEEE Electron Device Lett. EDL-2, 52 (1982).Google Scholar
  35. 35.
    M. Levenson, K. Johnson, V. Hanchett, and K. Chiang, J. Opt. Soc. Am. 71, 737 (1981).Google Scholar
  36. 36.
    E. Walker, IEEE Trans. Electron Devices ED-22, 464 (1975).Google Scholar
  37. 37.
    K. Polasko, IEEE Electron Device Lett. EDL-5, 24 (1984).Google Scholar
  38. 38.
    D. Ehrlich and J. Tsao, J. Vac. Sci. Technol. B1, 969 (1983).Google Scholar
  39. 39.
    R. Srinivasan and V. Mayne-Banton, Appl. Phys. Lett. 41, 576 (1982).Google Scholar
  40. 40.
    H. Smith, F. Bachner, and N. Efremow, J. Electrochem. Soc. 118, 821 (1971); IEEE Trans. Electron Devices ED-22, 496 (1975).Google Scholar
  41. 41.
    A. Voschenkov and H. Herrman, Electron. Lett. 17, 61 (1980).Google Scholar
  42. 42.
    W. Hestman and P. Van Den Berg, Can. J. Phys. 53, 1310 (1975).Google Scholar
  43. 43.
    M. Levenson, N. Viswanathan, and R. Simpson, IEEE Trans. Electron Devices ED-29, 1828 (1982).Google Scholar
  44. 44.
    D. Meyerhofer and J. Mitchell, RCA Rev. 43, 608 (1982).Google Scholar
  45. 45.
    L. White, RCA Rev. 43, 391 (1982).Google Scholar
  46. 46.
    D. Flanders and T. Lysczarz, J. Vac. Sci. Technol. B1, 1196 (1983).Google Scholar
  47. 47.
    M. King and D. Berry, Appl Opt. 11, 2455 (1972); U. S. Patent 3,690,881 (1972).Google Scholar
  48. 48.
    D. Flanders and H. Smith, Appl. Phys. Lett. 31, 426 (1971).Google Scholar
  49. 49.
    H. Kinoshito, A. Une, and M. Iki, J. Vac. Sci. Technol. B1, 1276 (1983).Google Scholar
  50. 50.
    H. Kleinknecht, SPIE Proc. 174, 63 (1979).Google Scholar
  51. 51.
    M. Feldman, A. White, and D. White, SPIE Proc. 333, 125 (1982).Google Scholar
  52. 52.
    U.S. Patent 3,676,002 (1972), IBM.Google Scholar
  53. 53.
    D. Flowers and H. Hughes, J. Electrochem. Soc. 124, 1599 (1977).Google Scholar
  54. 54.
    U.S. Patent 3,511,653 (1970), American Cyanamid.Google Scholar
  55. 55.
    W. Baylies, Solid State Technol. Feb. 1981, p. 132.Google Scholar
  56. 56.
    R. Bracken and S. Rizi, in VLSI Electronics, Vol. 6, edited by N. Einspruch, Academic Press, New York, 1983, p. 295.Google Scholar
  57. 57.
    B. Lin, SPIE Proc. 174, 121 (1979).Google Scholar
  58. 58.
    L. Contente, Appl. Opt. 8, 75 (1969).Google Scholar
  59. 59.
    J. Bruning, J. Vac. Sci. Technol. 17, 1146 (1980).Google Scholar
  60. 60.
    J. Cuthlert, Solid State Technol. Aug. 1977, p. 59.Google Scholar
  61. 61.
    P. Burggraaf, Semicond. Int. April 1982, p. 57.Google Scholar
  62. 62.
    P. Burggraaf, Semicond. Int. Feb. 1984, p. 88.Google Scholar
  63. 63.
    M. Bowden and L. Thompson, in Introduction to Microlithography, edited by M. Bowden, L. Thompson, and C. Willson, American Chemical Society, 1983, p. 24.Google Scholar
  64. 64.
    H. Binder and M. Lacombat, IEEE Trans. Electron Devices ED-26, 698 (1979).Google Scholar
  65. 65.
    D. Doane, Solid State Technol. Aug. 1980, p. 101.Google Scholar
  66. 66.
    M. Nakase and T. Shinozaki, IEEE Trans. Electron Devices ED-28, 1416 (1981).Google Scholar
  67. 67.
    J. Bruning, J. Vac. Sci. Technol. 16, 1925 (1979).Google Scholar
  68. 68.
    S. Wittekoek, Solid State Technol. June 1980, p. 82.Google Scholar
  69. 69.
    U.S. Patent 4,131,363 (1978), IBM.Google Scholar
  70. 70.
    K. Hennings and H. Schuetze, SCP Solid State Technol. July 1966, p. 31.Google Scholar
  71. 71.
    C. Ausschnitt, SPIE Proc. 394, 64 (1983).Google Scholar
  72. 72.
    J. Wilcyznski, J. Vac. Sci. Technol. 16, 1929 (1979).Google Scholar
  73. 73.
    D. Angel, Semicond. Int. April 1983, p. 72.Google Scholar
  74. 74.
    P. Tigreat, J. Vac. Sci. Technol. 16, 1938 (1979).Google Scholar
  75. 75.
    A. Reiser and E. Pitts, J. Photogr. Sci. 29, 187 (1981).Google Scholar
  76. 76.
    T. Iwayangi, IEEE Trans. Electron Devices ED-28, 1306 (1981).Google Scholar
  77. 77.
    R. Leonard and W. Cordes, SPIE Proc. 394, 125 (1983).Google Scholar
  78. 78.
    T. Chang, C. Ting, and D. Kyser, IEEE Trans. Electron Devices 28, 1299 (1981).Google Scholar
  79. 79.
    A. McCullough, J. Electrochem. Soc. 128, 225 (1981).Google Scholar
  80. 80.
    A. McCullough and H. Sewell, SPIE Proc. 394, 107 (1983).Google Scholar
  81. 81.
    H. Stover, SPIE Proc. 334, 60 (1982).Google Scholar
  82. 82.
    P. Jain, A. Neureuther, and W. Oldham, IEEE Trans. Electron Devices ED-28, 1410 (1981).Google Scholar
  83. 83.
    S. Fujimori, J. Appl. Phys. 50, 615 (1979).Google Scholar
  84. 84.
    S. Middelhoek, IBM J. Res. Dev. 14, 117 (1970).Google Scholar
  85. 85.
    D. Widmann and H. Binder, IEEE Trans. Electron Devices ED-22, 467 (1975).Google Scholar
  86. 86.
    D. Ilten and K. Patel, Proceedings of SPSE Seminar on Applications of Photopolymers, p. 79; Image Technol. 2, 9 (1971).Google Scholar
  87. 87.
    K. Clark and E. Juleff, Microelectronics 6, 37 (1974).Google Scholar
  88. 88.
    H. Van Den Berg and J. Van Staden, J. Appl. Phys. 50, 1212 (1979).Google Scholar
  89. 89.
    U.S. Patent 3,622,319 (1971), Western Electric.Google Scholar
  90. 90.
    U.S. Patent 3,647,566 (1972), Corning.Google Scholar
  91. 91.
    S. Matsui and N. Endo, Microelectron. Eng. 1, 51 (1983).Google Scholar
  92. 92.
    A. Neureuther, IBM Tech. Disci Bull. 16, 334 (1973).Google Scholar
  93. 93.
    T. Brewer, R. Carlson, and J. Arnold, J. Appl. Photogr. Eng. 7, 184 (1981).Google Scholar
  94. 94.
    M. O’Toole, E. Liu, and M. Chang, IEEE Trans. Electron Devices ED-28, 1405 (1981).Google Scholar
  95. 95.
    U.S. Patent 4,414,314 (1983), IBM.Google Scholar
  96. 96.
    C. Ting and K. Liauw, J. Vac. Sci. Technol. B1, 1225 (1983).Google Scholar
  97. 97.
    G. Thomas, SPIE Proc. 174, 15 (1979).Google Scholar
  98. 98.
    P. Biais, Solid State Technol. Aug. 1977, p. 70.Google Scholar
  99. 99.
    D. Widdmann, Appl. Opt. 14, 931 (1975).Google Scholar
  100. 100.
    K. Clark and K. Okutsu, Solid State Technol. April 1976, p. 82.Google Scholar
  101. 101.
    I. Korba, Appl. Opt. 9, 969 (1970).Google Scholar
  102. 102.
    R. Lang and B. Smilowitz, IEEE Trans. Sonics Ultrason. SU-27, 134 (1980).Google Scholar
  103. 103.
    T. Liu and B. Lin, IEEE Trans. Electron Devices ED-30, 1259 (1983).Google Scholar
  104. 104.
    P. Robertson, A. Neureuther, C. Ting, and A. Nasi, SPIE Proc. 334, 37 (1982).Google Scholar
  105. 105.
    H. Van Den Berg and J. Ruigrok, Appl. Phys. 16, 279 (1978).Google Scholar
  106. 106.
    H. Van Den Berg and V. Zieren, J. Opt. Soc. Am. 70, 110 (1980).Google Scholar
  107. 107.
    U.S. Patent 4,239,970 (1981), RCA.Google Scholar
  108. 108.
    S. Iwamatsu and K. Asanami, Solid State Technol. May 1980, p. 83.Google Scholar
  109. 109.
    D. Elliott and M. Hockey, Solid State Technol. June 1979, p. 53.Google Scholar
  110. 110.
    D. Fehrs, Proc. Kodak Microelectron. Semin. 1979, p. 135.Google Scholar
  111. 111.
    H. Moritz, IEEE Trans. Electron Devices ED-26, 705 (1979).Google Scholar
  112. 112.
    L. Yau, IEEE Trans. Electron Devices ED-26, 1299 (1979).Google Scholar
  113. 113.
    S. Morgan, Z. Sobezak, G. Lynch, and L. Reed, Semicond. Int. Oct. 1981, p. 109.Google Scholar
  114. 114.
    U.S. Patent 4,379,831 (1979), Censor.Google Scholar
  115. 115.
    B. Heflinger, SPIE Proc. 334, 70 (1982).Google Scholar
  116. 116.
    S. Uolya, W. Wakiyama, A. Ale, and N. Nakato, SPIE Proc. 394, 80 )1983).Google Scholar
  117. 117.
    H. Stover, N. David, and T. Lewis, Solid State Technol. Oct. 1982, p. 126.Google Scholar
  118. 118.
    K. Nichols, I. Stemp, and N. Brockman, J. Electrochem. Soc. 128, 609 (1981).Google Scholar
  119. 119.
    A. Wat and K. Chem, SPIE Proc. 394, 58 (1983).Google Scholar
  120. 120.
    C. Ausschnitt, T. Bruner, and R. Cronin, SPIE Proc. 394, 64 (1983).Google Scholar
  121. 121.
    C. Van Peski, Solid State Technol. May 1982, p. 25.Google Scholar
  122. 122.
    T. Bettes, Semicond. Int. Feb. 1981, p. 77.Google Scholar
  123. 123.
    H. David and H. Stover, Solid State Technol. June 1982, p. 131.Google Scholar
  124. 124.
    H. Rottmann, IBM J. Res. Dev. 26, 553 (1982).Google Scholar
  125. 125.
    H. Rottmann, IBM J. Res. Dev. 24, 461 (1980).Google Scholar
  126. 126.
    A. Voschenkov and P. Hanson, IEEE Electron Device Lett. EDL-3, 208 (1982).Google Scholar
  127. 127.
    H. Kiemle, Int. Elektron. Rundsch. 7, 176 (1970).Google Scholar
  128. 128.
    M. Beesley, Electron. Lett. 4, 49 (1968).Google Scholar
  129. 129.
    M. Levenson, K. Johnson, and V. Hanchett, J. Opt. Soc. Am. 71, 737 (1981).Google Scholar
  130. 130.
    N. Efremow, J. Vac. Sci. Technol. 19, 1234 (1981).Google Scholar
  131. 131.
    W. Rudge, W. Harding, and W. Mutter, IBM J. Res. Dev. April 1963, p. 146.Google Scholar
  132. 132.
    P. Newman and V. Rible, Appl. Opt. 5, 1225 (1966).Google Scholar
  133. 133.
    J. Moran, Appl. Opt. 10, 412 (1971).Google Scholar
  134. 134.
    Y. Hashimoto, Jpn. Semicond. Technol. News 2(5), 18 (1983).Google Scholar
  135. 135.
    T. O’Neill, Semicond. Int. Aug. 1981, p. 81.Google Scholar
  136. 136.
    U.S. Patents 4,004,925, 4,225,659, 3,567,447, and 3,639,125.Google Scholar
  137. 137.
    B. MacIver, J. Electrochem. Soc. 129, 827 (1982).Google Scholar
  138. 138.
    U.S. Patent 4,149,888, GAF.Google Scholar
  139. 139.
    U.S. Patent 4,027,052 (1977), Bell.Google Scholar
  140. 140.
    U.S. Patent 3,830,686.Google Scholar
  141. 141.
    U.S. Patent 3,647,566 (1972), Corning.Google Scholar
  142. 142.
    U.S. Patent 3,650,796.Google Scholar
  143. 143.
    U.S. Patent 3,895,147.Google Scholar
  144. 144.
    D. Elliott, Integrated Circuit Fabrication Technology, McGraw-Hill, New York, 1982, pp. 339–362.Google Scholar
  145. 145.
    T. Matsuzawa, H. Yanazawa, N. Hashimoto, and H. Mishimagi, J. Electrochem. Soc. 128, 184 (1981).Google Scholar
  146. 146.
    J. Trotel and B. Fay, in Electron Beam Technology in Microelectronic Fabrication, edited by G. Brewer, Academic Press, New York, 1980, p. 309.Google Scholar
  147. 147.
    W. Fincham and M. Freeman, Optics, Butterworths, London, 1980, p. 306.Google Scholar
  148. 148.
    A. Van Heel and C. Velzel, What is Light, World University Library, London, 1968, p. 35.Google Scholar
  149. 149.
    K. Harris, P. Sandlund, and R. Singleton, SPIE Proc. 394, 239 (1983).Google Scholar
  150. 150.
    I. Brodie and J. Muray, Physics of Microfabrication, Plenum Press, New York, 1982, p. 273.Google Scholar
  151. 151.
    G. Geikas and B. Abies, Kodak Photoresist Semin. 1968, p. 22.Google Scholar
  152. 152.
    M. Nakase, Photogr. Sci. Eng. 27, 254 (1983).Google Scholar
  153. 153.
    M. Latta, R. Moore, S. Rice, and K. Jain, J. Appl Phys. 56, 585 (1984).Google Scholar
  154. 154.
    H. Jelinek and R. Srinivasan, J. Phys. Chem. 88, 304B (1984).Google Scholar
  155. 155.
    U.S. Patents 4,414,059 (1984) and 4,417,948 (1984), IBM.Google Scholar
  156. 156.
    Japanese Patent 58,28,739, Chem. Abstr. 100, 183203 (1983).Google Scholar
  157. 157.
    H. Stover, SPIE Proc. 470, 22 (1984).Google Scholar
  158. 158.
    H. Ohtsuka, H. Funatsu, G. Kushibiki, and T. Kokideka, SPIE Proc. 470, 62 (1984).Google Scholar
  159. 159.
    W. Trutna and M. Chen, SPIE Proc. 470, 62 (1984).Google Scholar
  160. 160.
    H. Mayer and E. Loebach, SPIE Proc. 470, 147 (1984).Google Scholar
  161. 161.
    F. Buiguez, SPIE Proc. 470, 34 (1984).Google Scholar
  162. 162.
    D. Hofer, R. Miller, C. Willson, and A. Neureuther, SPIE Proc. 469, 108 (1984).Google Scholar
  163. 163.
    B. Griffing and W. Lorenson, SPIE Proc. 469, 102 (1984).Google Scholar
  164. 164.
    B. Griffing and R. West, SPIE Proc. 469, 94 (1984).Google Scholar
  165. 165.
    R. Allen, M. Cagan, and M. Foster, SPIE Proc. 470, 111 (1984).Google Scholar
  166. 166.
    J. Peterson and R. Kowalski, SPIE Proc. 469, 46 (1984).Google Scholar
  167. 167.
    L. Hsia, J. Electrochem. Soc. 131, 2133 (1984).Google Scholar
  168. 168.
    D. MacDonald, M. Nager, C. VanPeki, and T. Whitney, SPIE Proc. 470, 212 (1984).Google Scholar
  169. 169.
    M. Prouty and A. Neureuther, SPIE Proc. 470, 228 (1984).Google Scholar
  170. 170.
    A. Lewis, Ultramicroscopy 13, 227 (1984).Google Scholar
  171. 171.
    D. Markle, Solid State Technol. Sept. 1984, p. 159.Google Scholar
  172. 172.
    T. Ornata, Solid State Technol. Sept. 1984, p. 173.Google Scholar
  173. 173.
    U.S. Patent 4,474,864 (1984), IBM.Google Scholar
  174. 174.
    T. Matsuzawa, T. Iwayanagi, H. Obayashi, and H. Tomioka, Microelectron. Eng. 1, 1185 (1983).Google Scholar
  175. 175.
    U.S. Patent 4,386,849 (1983), IBM.Google Scholar
  176. 176.
    M. Kim and P. Piacente, Thin Solid Films 119, 75 (1984).Google Scholar
  177. 177.
    U.S. Patent 3,571, 248 (1973), Bell.Google Scholar
  178. 178.
    V. Miller and H. Stover, Solid State Technol. Jan. 1985, p. 127.Google Scholar
  179. 179.
    U.S. Patent 4,474,864 (1984).Google Scholar
  180. 180.
    European Patent Application EP 110,165 (1984), Chem. Abstr. 102, 15162 (1985), GE.Google Scholar
  181. 181.
    Japanese Patent 58,198,040, Chem. Abstr. 101, 181319 (1984).Google Scholar
  182. 182.
    N. Gold, SPIE Proc. 334, 34 (1982).Google Scholar
  183. 183.
    D. Novotony, Photogr. Sci. Eng. 21, 351 (1977).Google Scholar
  184. 184.
    Japanese Patent 59,103,343, Chem. Abstr. 101, 201560 (1984).Google Scholar
  185. 185.
    L. Halle, J. Vac. Sci. Technol. B3, 323 (1985).Google Scholar
  186. 186.
    T. Matsuzawa, H. Sunami, and N. Hashimoto, Microelectron. Reliab. 16, 173 (1977).Google Scholar
  187. 187.
    C. Kim and W. Ham, RCA Rev. 39, 565 (1978).Google Scholar
  188. 188.
    M. Rosenfield, D. Goodman, A. Neureuther, and C. Willson, J. Vac. Sci. Technol. B3, 377 (1985).Google Scholar
  189. 189.
    D. Hofer, R. Miller, A. Neureuther, and C. Willson, SPIE Proc. 469, 108 (1984).Google Scholar
  190. 190.
    B. Griffing and R. Lorenson, SPIE Proc. 469, 102 (1984).Google Scholar
  191. 191.
    B. Griffing, P. West, and E. Balch, SPIE Proc. 469, 94 (1984).Google Scholar
  192. 192.
    A. Yoshikawa, S. Hirota, O. Ochi, A. Takeda, and Y. Mizushima, Jpn. J. Appl. Phys. 20, 181 (1981).Google Scholar
  193. 193.
    W. Wakima and M. Nakajima, Semicond. Int. May 1985, p. 261.Google Scholar
  194. 194.
    U.S. Patent 4,498,775 (1985), RCA.Google Scholar
  195. 195.
    U.S. Patent 4,444,869 (1984), Fujitsu.Google Scholar
  196. 196.
    U.S. Patent 4,458,994 (1984), IBM.Google Scholar
  197. 197.
    U.S. Patent 4,503,329 (1985), Hitachi.Google Scholar
  198. 198.
    Japanese Patent 59,119,353, Chem. Abstr. 102, 36789 (1985).Google Scholar
  199. 199.
    U.S. Patent 4,482,591 (1985), J. T. Baker.Google Scholar
  200. 200.
    U.S. Patent 4,443,911 (1984), Tokyo Shibaura.Google Scholar
  201. 201.
    U.S. Patent 4,444,801 (1984), Hitachi.Google Scholar
  202. 202.
    U.S. Patent 4,399,205 (1983), IBM.Google Scholar
  203. 203.
    G. Maclay, J. Vac. Sci. Technol. B3, 926 (1985).Google Scholar
  204. 204.
    S. Gupta, A. Bagchi, and N. Kundu, Microelectron. J. 16, 22 (1985).Google Scholar
  205. 205.
    U.S. Patent 4,523,974 (1985), Perkin Elmer.Google Scholar
  206. 206.
    M. Opysko, M. Bernek, and P. Young, IEEE Electron Device Lett. EDL-6, 344 (1985).Google Scholar
  207. 207.
    M. O’Toole, IEEE Electron Device Lett. EDL-6, 282 (1985).Google Scholar
  208. 208.
    B. Griffing and P. West, Solid State Technol. May 1985, p. 152.Google Scholar
  209. 209.
    A. Neureuther, D. Hofer, and C. Willson, in Microcircuit Engineering, edited by H. Beneking and H. Beureuther, Academic Press, New York, 1985, p. 53.Google Scholar
  210. 210.
    A. Neureuther and W. Oldham, Solid State Technol. May 1985, p. 139.Google Scholar
  211. 211.
    K. Polaski and B. Griffing, SPIE Proc. 631, 180 (1986).Google Scholar
  212. 212.
    K. Ismail, Microelectron. Eng. 1, 295 (1983).Google Scholar
  213. 213.
    G. Thommes and V. Weber, J. Imag. Technol. 29, 113 (1985).Google Scholar
  214. 214.
    S. Babu and V. Srinivasan, IEEE Trans. Electron Devices ED-32, 1896 (1985).Google Scholar
  215. 215.
    F. Vollenbroek, H. Kroon, J. Bartsen, and J. Del, in Microcircuit Engineering, edited by H. Beneking and H. Beureuther, Academic Press, New York, 1985, p. 556.Google Scholar
  216. 216.
    U.S. Patent 4,510,222 (1985), Hitachi.Google Scholar
  217. 217.
    L. Cescato, G. Mendes, and J. Freijlich, Appl Opt. 24, 1142 (1985).Google Scholar
  218. 218.
    M. Watts, D. D. Debruin, and W. Arnold, Polym. Eng. Sci. 26, 1165 (1986).Google Scholar
  219. 219.
    C Mack, SPIE Proc. 538, 207 (1985).Google Scholar
  220. 220.
    Japanese Patent 60,38,821, Chem. Abstr. 103, 113352 (1985).Google Scholar
  221. 221.
    German Patent 3,428,565 (1985), GE.Google Scholar
  222. 222.
    T. Brunner and R. Allen, IEEE Electron Device Lett. EDL-6, 329 (1985).Google Scholar
  223. 223.
    J. Bohland, H. Sanford, and S. Fine, SPIE Proc. 539, 267 (1985).Google Scholar
  224. 224.
    A. Brown and W. Arnold, SPIE Proc. 539, 259 (1985).Google Scholar
  225. 225.
    U.S. Patent 4,499,162 (1985), AT&T.Google Scholar
  226. 226.
    U.S. Patent 4,500,602 (1985).Google Scholar
  227. 227.
    K. Edmark and C. Auschnett, SPIE Proc. 538, 91 (1985).Google Scholar
  228. 228.
    S. Murakani, T. Matsura, M. Ogawa, and M. Uehara, SPIE Proc. 538, 9 (1985).Google Scholar
  229. 229.
    D. Chien, L. Chien, and M. Chen, SPIE Proc. 538, 197 (1985).Google Scholar
  230. 230.
    F. Vollenbroek, W. Nyssen, H. Kroon, and B. Yelmaz, SPE RETEC Photopolymers. Ellenville, N.Y., 1985, p. 309.Google Scholar
  231. 231.
    M. Bolsen, G. Buhr, H. Merrem, and K. Van Werden, Solid State Technol Feb. 1986, p. 83.Google Scholar
  232. 232.
    L. White, RCA Rev. 47, 345 (1986).Google Scholar
  233. 233.
    T. Pampalone and F. Kunyan, J. Electrochem. Soc. 133, 192 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Wayne M. Moreau
    • 1
  1. 1.General Technology DivisionInternational Business Machines CorporationNew YorkUSA

Personalised recommendations