Advertisement

Prebake (Softbake)

  • Wayne M. Moreau
Part of the Microdevices book series (MDPF)

Abstract

Prebake, also known as softbake or preexpose bake, is the physical process of conversion of a liquid-cast resist into a solid film. The prebake step involves the physical removal of the casting solvent without the degradation of the resist components. By removing the casting solvent from the film, a solid state is formed which prevents mixing of the exposure products with the unexposed zone (reactants). In addition, during prebake, temporary adhesion of the resist is also established. In some specialized resists, prebake is also used to chemically convert resist polymers, such as PMMA anhydride and polymethacrylonitrile, into pre-cross-linked resists, (1,58,59,62) On the other hand, solventless resists, such as plasma-deposited PMMA(2) or evaporated resists of inorganic selenides,(3) require no prebake. Prebake is not to be confused with postexposure bake (predevelop bake), which is used to remove standing waves or amplify resist images.(4,8)

Keywords

Dissolution Rate Silicon Wafer Free Volume Butyl Acetate Convection Oven 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Moreau, Opt. Eng. 22, 878 (1983).Google Scholar
  2. 2.
    T. Yamazaki, Y. Suzuki, and H. Nakata, J. Vac. Sci. Technol. 17, 1348 (1980).CrossRefGoogle Scholar
  3. 3.
    P. Huggett, K. Frick, and H. Lehmann, Appl. Phys. Lett. 42, 592 (1983).CrossRefGoogle Scholar
  4. 4.
    E. Walker, IEEE Trans. Electron Devices ED-22, 464 (1975).CrossRefGoogle Scholar
  5. 5.
    A. Ouano, in Macromolecular Solutions, edited by R. Seymour and G. Stahl, Pergamon Press, Elmsford, N.Y., 1982, p. 208.Google Scholar
  6. 6.
    T. Batchelder and J. Piatt, Solid State Technol. Aug. 1983, p. 211.Google Scholar
  7. 7.
    D. Meyerhofer, IEEE Trans. Electron Devices ED-27, 921 (1980).CrossRefGoogle Scholar
  8. 8.
    M. Bowden, L. Thompson, S. Farenholtz, and E. Doerries, J. Electrochem. Soc. 128, 1304 (1981).CrossRefGoogle Scholar
  9. 9.
    S. Croll, J. Appl. Polym. Sci. 23, 847 (1979).CrossRefGoogle Scholar
  10. 10.
    R. Bond, S. Dzioba, and H. Naguib, J. Vac. Sci. Technol. 18, 335 (1981).CrossRefGoogle Scholar
  11. 11.
    S. Yamamoto, K. Kobayashi, and Y. Toyama, Fujitsu Sci. Tech. J. June 1978, p. 143.Google Scholar
  12. 12.
    L. White, J. Electrochem. Soc. 130, 1543 (1983).CrossRefGoogle Scholar
  13. 13.
    H. Fujita, in Diffusion in Polymers, edited by J. Crank and G. S. Parks, Academic Press, New York, 1968, p. 75.Google Scholar
  14. 14.
    N. Atoda, M. Komuro, and H. Kawakatsu, J. Appl Phys. 50, 3707 (1979).CrossRefGoogle Scholar
  15. 15.
    J. Vossen and E. Davidson, J. Electrochem. Soc. 119, 1708 (1972).CrossRefGoogle Scholar
  16. 16.
    R. Eaton and F. Willeboordse, J. Coat. Technol. 52, 63 (1980).Google Scholar
  17. 17.
    D. Robinson, A. Higginbotham, and P. Wankat, I & EC Process Des. Dev. 8, 502 (1969).CrossRefGoogle Scholar
  18. 18.
    D. Newman, C. Nienn, and J. Oliver, J. Paint Technol. 47, 70 (1975).Google Scholar
  19. 19.
    R. Barrer, in Diffusion in Polymers, edited by J. Crank and G. S. Park, Academic Press, New York, 1968, p. 166.Google Scholar
  20. 20.
    H. Frisch, Polym. Eng. Sci. 20, 2 (1980).CrossRefGoogle Scholar
  21. 21.
    T. Gilbert, J. Paint Technol. 43, 93 (1971).Google Scholar
  22. 22.
    F. Dill and J. Shaw, IBM J. Res. Dev. 21, 210 (1977).CrossRefGoogle Scholar
  23. 23.
    J. Bieron and R. Conley, J. Appl Polym. Sci. 1, 171 (1963).Google Scholar
  24. 24.
    U. S. Patent 3,898,350 (1975), IBM.Google Scholar
  25. 25.
    D. Meyerhofer, IEEE Trans. Electron Devices ED-27, 921 (1980).CrossRefGoogle Scholar
  26. 26.
    S. Croll, J. Appl. Polym. Sci. 23, 847 (1979).CrossRefGoogle Scholar
  27. 27.
    M. Long and C. Walker, Kodak Microelectronics Seminar Proceedings, G-102, 56 (1979).Google Scholar
  28. 28.
    C. Deckert, Kodak Microelectronics Seminar Proceedings, 1977, p. 44.Google Scholar
  29. 29.
    L. Gavens, B. Wu, D. Hess, A. Bell, and D. Soony, J. Vac. Sci. Technol. B1, 481 (1983).Google Scholar
  30. 30.
    N. Atoda, M. Komuro, and H. Kawakatsu, J. Appl Phys. 50, 3707 (1979).CrossRefGoogle Scholar
  31. 31.
    W. Prest and D. Luca, J. Appl. Phys. 50, 6067 (1979).CrossRefGoogle Scholar
  32. 32.
    W. Prest and D. Luca, J. Appl Phys. 51, 5170 (1980).CrossRefGoogle Scholar
  33. 33.
    J. Greeneich, J. Electrochem. Soc. 122, 970 (1975).CrossRefGoogle Scholar
  34. 34.
    A. Morinaka and Y. Asano, J. Appl. Polym. Sci. 27, 2139 (1982).CrossRefGoogle Scholar
  35. 35.
    J. Anderson, R. Baker, and J. Forbes, J. Colloid Interface Sci. 31, 372 (1964).CrossRefGoogle Scholar
  36. 36.
    A. Rossi and G. Charland, J. Paint Technol. 44, 65 (1972).Google Scholar
  37. 37.
    J. Shaw, M. Frisch, and F. Dill, IBM J. Res. Dev. 21, 219 (1977).CrossRefGoogle Scholar
  38. 38.
    J. Macbeth, Kodak Microelectronics Seminar, 1982, G-136, p. 87.Google Scholar
  39. 39.
    M. Hockey, SPIE Proc. 275, 192 (1981).Google Scholar
  40. 40.
    J. Kolyer, F. Custode, and R. Ruddell, Kodak Microelectronics Proceedings, 1979, G-102, p. 150.Google Scholar
  41. 41.
    K. Kadota, Y. Taki, and S. Shimizu, SPIE Proc. 275, 173 (1981).Google Scholar
  42. 42.
    H. Keller, Solid State Technol. June 1978, p. 45.Google Scholar
  43. 43.
    R. Newman and J. Prousnitz, J. Paint Technol. 45, 33 (1973).Google Scholar
  44. 44.
    J. Walsham and G. Edwards, J. Paint Technol. 43, 64 (1971).Google Scholar
  45. 45.
    J. Leers, Solid State Technol. March 1981, p. 90.Google Scholar
  46. 46.
    K. Wickersheum, Electron. Packag. Prod. Sept. 1981.Google Scholar
  47. 47.
    E. Egerton, A. Nef, W. Milkinsun, and D. Barr, Solid State Technol. Aug. 1982, p. 84.Google Scholar
  48. 48.
    A. Martynenko, B. Strizhov, and V. Nikolosku, Russ. J. Phys. Chem. 49, 1310 (1975).Google Scholar
  49. 49.
    J. Pacansky and J. Lyerla, IBM J. Res. Dev. 23, 42 (1979), J. Electrochem. Soc. 124, 862 (1977).CrossRefGoogle Scholar
  50. 50.
    E. Hryhorenko, Kodak Microelectronics Proceedings, G-102, p. 18.Google Scholar
  51. 51.
    M. Cagan, Electrochem. Soc. Ext. Abstr. 82-1, 323 (1982).Google Scholar
  52. 52.
    T. Gupta, Eur. Polym. J. 17, 1127 (1981).CrossRefGoogle Scholar
  53. 53.
    M. Goldrick and L. Rankel Plauger, Photogr. Sci. Eng. 17, 386 (1973).Google Scholar
  54. 54.
    I. Calder, R. Sue, and H. Naguib, J. Electrochem. Soc. 130, 1390 (1983).CrossRefGoogle Scholar
  55. 55.
    U. S. Patent 3,771,948 (1973), Nissho.Google Scholar
  56. 56.
    U. S. Patent 4,243,744 (1981), Exxon.Google Scholar
  57. 57.
    Anon, Circuits Manuf. Nov. 1974, p. 62.Google Scholar
  58. 58.
    A. Endo, Jpn. J. Appl Phys. 23, 795 (1984).CrossRefGoogle Scholar
  59. 59.
    U. S. Patent 4,508,812 (1985), Hughes.Google Scholar
  60. 60.
    V. Marriot, Y. Lin, and G. Fuller, SPIE Proc. 469, 65 (1984).Google Scholar
  61. 61.
    European Patent Application 114,126, Chem. Abstr. 102, 123116 (1985).Google Scholar
  62. 62.
    M. Suzuki, Y. Ohnishi, and A. Furuta, J. Electrochem. Soc. 132, 1390 (1985).CrossRefGoogle Scholar
  63. 63.
    T. Pampalone and P. Zanzucchi, J. Electrochem. Soc. 133, 1917 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Wayne M. Moreau
    • 1
  1. 1.General Technology DivisionInternational Business Machines CorporationNew YorkUSA

Personalised recommendations