Advertisement

Surface Preparation and Coating

  • Wayne M. Moreau
Part of the Microdevices book series (MDPF)

Abstract

The coating of a device surface with resist is similar to the common practice of applying paint films. First, the correct paint must be selected for the intended purpose of resisting heat, radiation, physical forces, or chemical action. Next, the surface is cleaned to remove contaminants and a primer is applied to improve the adhesion of the paint film. Then, a variety of coating techniques such as spray, roll, dip, and spin can be used to apply the paint film. After drying, the paint may be hardened by the action of heat, electron beams, or by chemical cross-linking reactions. While these steps comprise the coating of paint films, similar processes are used to coat resist films.

Keywords

Thin Solid Film Spin Coating Surface Preparation Wafer Surface Clean Room 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Angel, Semicond. Int. April 1983, p. 72.Google Scholar
  2. 2.
    M. Bowden, J. Electrochem. Soc. 128, 195C (1981).Google Scholar
  3. 3.
    A. Broers, IEEE Trans. Electron Devices ED-28, 1268 (1981).Google Scholar
  4. 4.
    T. Chang, C. Codella, and R. Lange, IEEE Trans. Electron Devices ED-28, 1428 (1981).Google Scholar
  5. 5.
    M. Kato and N. Nakane, Photogr. Sci. Eng. 23, 207 (1979).Google Scholar
  6. 6.
    D. Widmann and H. Binder, IEEE Trans. Electron Devices ED-22, 467 (1975).Google Scholar
  7. 7.
    S. Middlehoek, IBM J. Res. Dev. 14, 117 (1970).Google Scholar
  8. 8.
    B. Lin, Solid State Technol. May 1983, p. 105.Google Scholar
  9. 9.
    J. Moran and D. Maydan, J. Vac. Sci. Technol. 16, 1620 (1979).Google Scholar
  10. 10.
    L. White, J. Electrochem. Soc. 130, 1543 (1983); J. Vac. Sci. Technol. B1, 1235 (1983).Google Scholar
  11. 11.
    A. Miligram, J. Vac. Sci. Technol. B1, 490 (1983).Google Scholar
  12. 12.
    Kodak Photoresist Seminar Proa, 1973, p. 69.Google Scholar
  13. 13.
    T. O’Neill, Semicond. Int. Dec. 1980, p. 49.Google Scholar
  14. 14.
    D. Mattox, Thin Solid Films 53, 81 (1978).Google Scholar
  15. 15.
    M. Dahlstrom, Semicond. Int. April 1983, p. 110.Google Scholar
  16. 16.
    W. Jones, Solid State Technol. Jan. 1974, p. 56.Google Scholar
  17. 17.
    J. Lange, Semicond. Int. April 1983, p. 125.Google Scholar
  18. 18.
    J. Paivanas and J. Hassan, Solid State Technol. April 1980, p. 149.Google Scholar
  19. 19.
    D. Bauman, Solid State Technol. March 1973, p. 45.Google Scholar
  20. 20.
    K. Mittal, in Surface Contamination, edited by K. Mittal, Plenum Press, New York, 1979, p. 1.Google Scholar
  21. 21.
    M. Whitfield, in Surface Contamination, edited by K. Mittal, Plenum Press, New York, 1979, p. 73.Google Scholar
  22. 22.
    B. Derajguin, J. Adhes. 4, 65 (1977).Google Scholar
  23. 23.
    A. Zimon, Adhesion of Dust and Powders, Consultants Bureau, Plenum Press, New York, 1982.Google Scholar
  24. 24.
    J. Amick, Solid State Technol. Nov. 1976, p. 47.Google Scholar
  25. 25.
    M. Brubach, Solid State Technol. Feb. 1972, p. 46.Google Scholar
  26. 26.
    W. Kern, Solid State Technol. March 1974, p. 35; Solid State Technol. April 1974, p. 35; RCA Rev. 34, 655 (1973).Google Scholar
  27. 27.
    D. Burkman, Semicond. Int. July 1981, p. 103.Google Scholar
  28. 28.
    W. Kern and D. Puotinen, RCA Rev. June 1970, p. 187.Google Scholar
  29. 29.
    D. Brandeth and R. Johnson, in Surface Contamination, edited by K. Mittal, Plenum Press, New York, 1979, p. 83.Google Scholar
  30. 30.
    M. Balzaks and S. Walker, Semicond. Int. April 1982, p. 101.Google Scholar
  31. 31.
    P. Burggraaf, Semicond. Int. July 1982, p. 35.Google Scholar
  32. 32.
    A. Weiss, Semicond. Int. July 1982, p. 55.Google Scholar
  33. 33.
    R. deFilippi, in Filtration, edited by C. Orr, Dekker, New York, 1977, p. 476.Google Scholar
  34. 34.
    R. Akers and A. Ward, in Filtration, edited by C. Orr, Dekker, New York, 1977, p. 169.Google Scholar
  35. 35.
    R. Iscoff, Semicond. Int. April 1983, p. 88.Google Scholar
  36. 36.
    Millipore Co., Bedford, Mass., technical literature.Google Scholar
  37. 37.
    D. Tolliver, N. Davenport, and L. Abts, Solid State Technol., Sept. 1982, p. 116.Google Scholar
  38. 38.
    K. Hirobe and S. Iwamatsu, J. Electrochem. Soc. 126, 1426 (1979).Google Scholar
  39. 39.
    U.S. Patent 4,132,559 (1979), Motorola.Google Scholar
  40. 40.
    E. Julef, Microelectronics 8, 35 (1977).Google Scholar
  41. 41.
    E. Julef, Microelectronics 7, 17 (1976).Google Scholar
  42. 42.
    E. Julef, W. McCloud, E. Hulse, and W. Fawcett, Solid State Technol. Sept. 1982, p. 82.Google Scholar
  43. 43.
    L. Kaplan and B. Bergin, J. Electrochem. Soc. 121, 386 (1980).Google Scholar
  44. 44.
    F. Pintchovski, J. Price, R. Tobin, J. Peavey, and K. Kobold, J. Electrochem. Soc. 126, 1428 (1979).Google Scholar
  45. 45.
    D. Peters and C. Deckert, J. Electrochem. Soc. 126, 883 (1979).Google Scholar
  46. 46.
    G. Harrabee and T. Shafrher, Anal. Chem. 53, 163R (1981).Google Scholar
  47. 47.
    R. Honig, Thin Solid Films 31, 89 (1976).Google Scholar
  48. 48.
    R. Seltzer, Circuits Manuf. Nov. 1975, p. 54.Google Scholar
  49. 49.
    B. Whitsel, Microelectron. Manuf. Test. Dec. 1983, p. 13.Google Scholar
  50. 50.
    C. Stapper, IBM J. Res. Dev. 27, 549 (1983).Google Scholar
  51. 51.
    T. Meguro, H. Kurita, and T. Ito, J. Electrochem. Soc. 128, 1379 (1981).Google Scholar
  52. 52.
    S. Jenekhe, Polym. Eng. Sci. 23, 830 (1983); R. Piacente, J. Electrochem. Soc. 133, 979 (1986).Google Scholar
  53. 53.
    German Patent 2,447,225, IBM; Chem. Abstr. 85, 102423 (1975).Google Scholar
  54. 54.
    U.S. Patent 4,142,636 (1981), Mitsubishi.Google Scholar
  55. 55.
    U.S. Patent 4,332,881 (1982), Bell.Google Scholar
  56. 56.
    Eastman Kodak Technical Literature on Applications of Eastman 910 Adhesive.Google Scholar
  57. 57.
    J. Heibert, SPIE Proc. 333, 24 (1982).Google Scholar
  58. 58.
    U.S. Patent 4,587,196 (1986), Hunt.Google Scholar
  59. 59.
    Kodak Res. Disci. 149, 27 (1976); Chem. Abstr. 86, 362590 (1977).Google Scholar
  60. 60.
    U.S. Pat., 4,036,644 (1979), IBM.Google Scholar
  61. 61.
    Japanese Patent 75,127,619, Chem. Abstr. 85, 12367 (1975)Google Scholar
  62. 61.(a)
    S. Farenholtz, Am. Chem. Soc. Org. Coat. 35, 306 (1975)Google Scholar
  63. 61.(b)
    Japanese Patent 77,126,211, Chem. Abstr. 89, 120920 (1978)Google Scholar
  64. 61.(c)
    Japanese Patent 80, 129,341 (Hitachi), Chem. Abstr. 94, 148396 (1982)Google Scholar
  65. 61.(d)
    Japanese Patent 78, 135621 (Hitachi), Chem. Abstr. 90, 130686 (1979)Google Scholar
  66. 61.(e)
    U.S. Patent 4,176,003 (1979), NCRGoogle Scholar
  67. 61.(f)
    U.S. Patent 3,176,390 (1973), Bell.Google Scholar
  68. 62.
    U.S. Patents 3,634,082 and 4,148,654 (1982), Shipley Co.Google Scholar
  69. 63.
    H. Yanazawa, H. Utsugi, N. Hashimoto, and M. Ashikawa, Jpn. J. Appl. Phys. Suppl. 2, Part I, 753 (1974); Proc. 6th Int. Vac. Congr., 1974.Google Scholar
  70. 64.
    A. Knop, The Chemistry and Applications of Phenolic Resins, Springer-Verlag, Berlin, 1979.Google Scholar
  71. 65.
    D. Meyerhofer, J. Appl. Phys. 49, 3993 (1978).Google Scholar
  72. 66.
    B. Chin, Polym. Eng. Sci. 23, 399 (1983).Google Scholar
  73. 67.
    W. Daughton and F. Givens, J. Electrochem. Soc. 129, 177 (1982).Google Scholar
  74. 68.
    J. Lai, Polym. Eng. Sci. 19, 1117 (1979).Google Scholar
  75. 69.
    G. Damon, Proceedings of the Second Kodak Seminar on Microminiaturization, 1967.Google Scholar
  76. 70.
    G. Schwartz, Proceedings of Kodak Seminar on Microminiaturization, 1965.Google Scholar
  77. 71.
    R. Kelly, Proceedings of Kodak Seminar on Microminiaturization, 1965.Google Scholar
  78. 72.
    C. Taylor, NASA Circ. CR 597, U.S. Government Publ. 6-2003, 1966.Google Scholar
  79. 73.
    B. Washo, IBM J. Res. Dev. 21, 190 (1977).Google Scholar
  80. 74.
    R. Malangone and C. Needham, J. Electrochem. Soc. 129, 2881 (1982).Google Scholar
  81. 75.
    K. Law, Polymer 23, 162 (1982).Google Scholar
  82. 76.
    H. Denk, Kodak Interface Microelectronics Proceedings, 1976, p. 28.Google Scholar
  83. 77.
    F. Givens and W. Daughton, J. Electrochem. Soc. 126, 269 (1979).Google Scholar
  84. 78.
    A. Acrivos, M. Shah, and E. Petersen, J. Appl. Phys. 31, 963 (1960).MathSciNetzbMATHGoogle Scholar
  85. 79.
    R. Eaton and F. Willeboordse, J. Coat. Technol. 52, 63 (1980).Google Scholar
  86. 80.
    A. Emslie, F. Bonner, and L. Peck, J. Appl. Phys. 29, 858 (1958).MathSciNetzbMATHGoogle Scholar
  87. 81.
    T. Patton, Paint Flow and Pigment Dispersion, Wiley, New York, 1979, p. 585.Google Scholar
  88. 82.
    E. Hansen, Chem. Technol. Sept. 1972, p. 547.Google Scholar
  89. 83.
    L. Hoy, J. Paint Technol. 42, 76 (1970).Google Scholar
  90. 84.
    F. Billmeyer, Textbook of Polymer Science, Wiley, New York, 1971, p. 41.Google Scholar
  91. 85.
    M. Kurata, in Polymer Handbook, edited by J. Brandup and E. Immergut, Wiley, New York, 1975, Chapter 4–1.Google Scholar
  92. 86.
    D. Patterson, Polym. Eng. Sci. 22, 64 (1982).Google Scholar
  93. 87.
    L. Gavens, B. Wu, D. Hess, A. Bell, and D. Soong, J. Vac. Sci. Technol. B1, 481 (1983).Google Scholar
  94. 88.
    J. Greeneich, J. Electrochem. Soc. 122, 970 (1975).Google Scholar
  95. 89.
    M. Bowden, J. Polym. Sci. 26, 1424 (1981).MathSciNetGoogle Scholar
  96. 90.
    M. Bowden, L. Thompson, S. Farenholtz, and E. Doerries, J. Electrochem. Soc. 128, 1304 (1981).Google Scholar
  97. 91.
    S. Croll, J. Appl. Polym. Sci. 23, 847 (1979).Google Scholar
  98. 92.
    U.S. Patent 4,266,001 (1981), Hoechst.Google Scholar
  99. 93.
    U.S. Patent 4,174,222 (1981), Tokyo Ohko.Google Scholar
  100. 94.
    D. Meyerhofer, IEEE Trans. Electron Devices ED-27, 921 (1980).Google Scholar
  101. 95.
    W. Moreau and W. Moyer, IBM Tech. Disci. Bull. 23, 991 (1980).Google Scholar
  102. 96.
    Y. Cohen and S. Reich, J. Polym. Sci. 19, 599 (1981).Google Scholar
  103. 97.
    J. Magerlein and D. Webb, IBM J. Res. Dev. 24, 554 (1980).Google Scholar
  104. 98.
    D. Leers, Solid State Technol. March 1981, p. 90.Google Scholar
  105. 99.
    P. Frasch and K. Saremski, IBM J. Res. Dev. 26, 561 (1982).Google Scholar
  106. 100.
    U.S. Patent 4,086,870 (1978), IBM.Google Scholar
  107. 101.
    R. Smith, Ind. Eng. Chem. Prod. Res. Dev. 22, 67 (1983).Google Scholar
  108. 102.
    S. Stinson, Chem. Eng. News Aug. 8, 1983, p. 7.Google Scholar
  109. 103.
    German Patent 2,637,105, Chem. Abstr. 88, 129873h (1978).Google Scholar
  110. 104.
    U.S. Patent 3,695,911 (1967), Aleo.Google Scholar
  111. 105.
    U. S. Patent 4,290,384 (1981), Perkin Elmer.Google Scholar
  112. 106.
    U.S. Patent 4,281,057 (1981), IBM.Google Scholar
  113. 107.
    D. Cowley, C. Price, and C. Hardy, Polymer 21, 1356 (1980).Google Scholar
  114. 108.
    J. Little, T. Callicott, and E. Arakawa, Rev. Sci. Instrum. 51, 1581 (1980).Google Scholar
  115. 109.
    A. Avidienko and M. Malev, Vacuum 276, 583 (1977).Google Scholar
  116. 110.
    W. De Forest, Photoresist Materials and Processes, McGraw-Hill, New York, 1975.Google Scholar
  117. 111.
    U.S. Patent 4,069,076 (1976), DuPont.Google Scholar
  118. 112.
    S. Farenholtz and T. Kwei, Macromolecules 14, 1076 (1981), 15, 937 (1982).Google Scholar
  119. 113.
    I. Haller, J. Amer. Chem. Soc. 100, 8050 (1978).Google Scholar
  120. 114.
    W. Bascom, Macromolecules 5, 792 (1972).Google Scholar
  121. 115.
    U. S. Patent 3,535,157 (1967), Shipley.Google Scholar
  122. 116.
    D. Owens and R. Wendt, J. Appl. Polym. Sci. 13, 1741 (1969).Google Scholar
  123. 117.
    A. Cemal, T. Fort, and J. Lando, J. Polym. Sci. Part A 10, 2061 (1972).Google Scholar
  124. 118.
    G. Wegner, Angew. Chem. Int. Ed. Engl. 20, 361 (1981).Google Scholar
  125. 119.
    A. Barraud and M. Vandeveyer, Thin Solid Films 99, 221 (1983); I. Peterson, Thin Solid Films 109, 371 (1983).Google Scholar
  126. 120.
    A. Broers and M. Pmerantz, Thin Solid Films 99, 323 (1983).Google Scholar
  127. 121.
    K. Fukuda, Y. Shibasaki, and H. Nakahara, Thin Solid Films 99, 87 (1983).Google Scholar
  128. 122.
    G. Fariss, J. Lando, and S. Rickert, Thin Solid Films 99, 305 (1983).Google Scholar
  129. 123.
    A. Barraud, Thin Solid Films 99, 317 (1983).Google Scholar
  130. 124.
    A. Barraud, C. Rosilio, and A. Raudel-Texier, Thin Solid Films 68, 91, 99 (1980), Solid State Technol. Aug. 1979, p. 124.Google Scholar
  131. 125.
    A. Barraud, Thin Solid Films 85, 77 (1981).Google Scholar
  132. 126.
    G. Roberts, P. Vincett, and W. Barlow, Phys. Technol. 12, 69 (1981).Google Scholar
  133. 127.
    A. Barraud and A. Rosilio, Thin Solid Films 31, 243 (1976).Google Scholar
  134. 128.
    K. Mittal and D. O’Kane, J. Adhes. 8, 93 (1976).Google Scholar
  135. 129.
    A. Korchov, T. Martynova, and V. Danilovich, Thin Solid Films 101, 369 (1983).Google Scholar
  136. 130.
    USSR Patent 983,835, Chem. Abstr. 98, 98824t (1981).Google Scholar
  137. 131.
    U.S. Patent 4,371,608 (1981), Ionomet.Google Scholar
  138. 132.
    U.S. Patent 3,751,285 (1973), Kalle.Google Scholar
  139. 133.
    G. Chem and I. Lauks, J. Appl. Phys. 53, 6979 (1982).Google Scholar
  140. 134.
    G. Ray, S. Peny, D. Burriesi, M. O’Toole, and E. Liu, J. Electrochem. Soc. 129, 2152 (1982).Google Scholar
  141. 135.
    M. Chang and J. Chem, Appl. Phys. Lett. 33, 892 (1978).Google Scholar
  142. 136.
    S. Yoshikawa, O. Ochi, and Y. Mizushima, Appl. Phys. Lett. 36, 107 (1980).Google Scholar
  143. 137.
    P. Huggett, K. Frick, and H. Lehmann, Appl. Phys. Lett. 42, 592 (1983).Google Scholar
  144. 138.
    A. Bell and J. Hollahan, Techniques and Applications of Plasma Processing, Wiley, New York, 1974.Google Scholar
  145. 139.
    M. Shen and A. Bell, Am. Chem. Soc. Symp. Ser. 108, 197 (1979).Google Scholar
  146. 140.
    Y. Segui, A. Bui, and M. Maisonnuere, Thin Solid Films 33, 35 (1976), J. Appl. Phys. 51, 5055 (1980), 50, 6567 (1979).Google Scholar
  147. 141.
    L. Martinui and H. Brederman, Vacuum 33, 253 (1983), 31, 285 (1981).Google Scholar
  148. 142.
    S. Monta, J. Tamano, S. Hattori, and M. Ieda, J. Appl. Phys. 51, 3938 (1980).Google Scholar
  149. 143.
    J. Tamano, K. Yoneda, S. Monta, and S. Hattori, Plasma Chem. Plasma Process. 1, 261 (1981).Google Scholar
  150. 144.
    A. Morinka and Y. Asano, J. Appl. Polyrn. Sci. 27, 2139 (1982).Google Scholar
  151. 145.
    J. Calvert and J. Pitts, Photochemistry, Wiley, New York, 1966, p. 653.Google Scholar
  152. 146.
    H. Hiroaka, Appl. Phys. Lett. 31, 503 (1977).Google Scholar
  153. 147.
    J. Tsao and D. Ehrlich, AppL Phys. Lett. 42, 997 (1983).Google Scholar
  154. 148.
    W. Pliskin and S. Zanin, in Handbook of Thin Film Technology, edited by L. Maissel and R. Glang, McGraw-Hill, New York, 1970.Google Scholar
  155. 149.
    R. Powell and M. Morad, J. Appl. Phys. 49, 2499 (1978).Google Scholar
  156. 150.
    F. Loprest and E. Fitzgerald, Photogr. Sci. Eng. 15, 261 (1971).Google Scholar
  157. 151.
    J. Shaw and M. Hatzakis, IEEE Trans. Electron Devices ED-25, 425 (1978).Google Scholar
  158. 152.
    O. Heavens, Optical Properties of Thin Solid Films, Butterworths, London, 1955.Google Scholar
  159. 153.
    A. Warnecke and P. Lopresti, IBM J. Res. Dev. 13, 256 (1973).Google Scholar
  160. 154.
    A. Adams, D. Schineke, and C. Capio, J. Electrochem. Soc. 126, 539 (1979).Google Scholar
  161. 155.
    F. Dill and K. Konnerth, IEEE Trans. Electron Devices ED-22, 452 (1975).Google Scholar
  162. 156.
    D. Wood and J. Fleming, Rev. Sci. Instrum. 53, 43 (1982).Google Scholar
  163. 157.
    M. Kato and H. Nakane, Photogr. Sci. Eng. 23, 209 (1979).Google Scholar
  164. 158.
    L. Harriman, Solid State Technol. June 1983, p. 155.Google Scholar
  165. 159.
    J. Sandercock, J. Phys. E 16, 866 (1983); U.S. Patent 4,355,905 (1982).Google Scholar
  166. 160.
    R. Scheps, J. Electrochem. Soc. 130, 655 (1983).Google Scholar
  167. 161.
    M. Sternheim, W. Van Gelder, and A. Hartman, J. Electrochem. Soc. 130, 655 (1983).Google Scholar
  168. 162.
    P. Herman and R. Shutz, J. Electrochem. Soc. 131, 881 (1984).Google Scholar
  169. 163.
    P. Flowers and H. Hughes, Semicond, Int. Jan. 1981, p. 79.Google Scholar
  170. 164.
    P. Burggraf, Semicond. Int. Sept. 1981, p. 39.Google Scholar
  171. 165.
    J. Pudvin, in Environmental Control in Electronic Manufacturing, edited by P. Morrison, Van Nostrand, Princeton, N.J., 1973, Chapter 6.Google Scholar
  172. 166.
    T. Lawson, SCP Solid State Technol. July 1966, p. 22.Google Scholar
  173. 167.
    H. Hemmert, Solid State Electron. 24, 511 (1981).Google Scholar
  174. 168.
    C. Mallory, Solid State Technol. Nov. 1983, p. 121; A. Marsh, SPIE Proc. 470, 55 (1984).Google Scholar
  175. 169.
    M. Buehler, Solid State Technol. Nov. 1983, p. 131.Google Scholar
  176. 170.
    D. Angel and P. Johnson, Semicond. Int. March 1980, p. 60.Google Scholar
  177. 171.
    K. Levy and P. Sandland, Proceedings of Kodak Seminar on Microelectronics, 1977.Google Scholar
  178. 172.
    Electron. Packag. Prod. Dec. 1974, p. 62.Google Scholar
  179. 173.
    R. Wasson, Proceedings of Kodak Seminar on Microelectronics, 1973, p. 66.Google Scholar
  180. 174.
    Y. Mimemura, Rev. Electron. Commun. 20, 641 (1972).Google Scholar
  181. 175.
    T. Matsuzawa, J. Electrochem. Soc. 128, 185 (1981).Google Scholar
  182. 176.
    D. Flowers and R. Hughes, J. Electrochem. Soc. 124, 1599 (1977).Google Scholar
  183. 177.
    R. Bowman, Proceeding of Kodak Seminar on Microelectronics, 1974, p. 1.Google Scholar
  184. 178.
    R. Finne and D. Klein, J. Electrochem. Soc. 114, 965 (1967).Google Scholar
  185. 179.
    K. Monta, Fujitsu Sci. Tech. J. June 1978, p. 43.Google Scholar
  186. 180.
    M. Kakuchi, Rev. Electron. Commun. 27, 1113 (1979).Google Scholar
  187. 181.
    S. Morita and K. Hattori, J. AppL Phys. 51, 3938 (1980).Google Scholar
  188. 182.
    G. Thomas, Solid State Electron. 11, 378 (1968).Google Scholar
  189. 183.
    U.S. Patent 4,394,437 (1983).Google Scholar
  190. 184.
    U.S. Patent 3,873,313 (1977).Google Scholar
  191. 185.
    U.S. Patent 4,332,881 (1982), Bell.Google Scholar
  192. 186.
    D. Bobkin and B. Cantos, IEEE Electron Device Lett. EDL–2, 222 (1981).Google Scholar
  193. 187.
    M. Kawaguchi and A. Tokahashi, Macromolecules 16, 1465 (1983).Google Scholar
  194. 188.
    C. Evans and R. Blattner, Semicond. Int. Nov. 1980, p. 109.Google Scholar
  195. 189.
    W. Andrus, J. Buono, and A. Wisnewski, Semicond. Int. Nov. 1980, p. 71.Google Scholar
  196. 190.
    M. Dan, I. Tanabe, M. Hoga, and S. Torisawa, Kodak Microelectronics Seminar, 1979, p. 103.Google Scholar
  197. 191.
    S. Iwamatsu, J. Electrochem. Soc. 129, 224 (1982).Google Scholar
  198. 192.
    M. Gulett, Semicond. Int. March 1981, p. 87.Google Scholar
  199. 193.
    J. Hollenstein, Electron. Packag. Prod. April 1978, p. 90.Google Scholar
  200. 194.
    A. Dalisa, AppL Phys. Lett. 17, 208 (1970).Google Scholar
  201. 195.
    F. Laming and P. Straile, J. Electrochem. Soc. 120, 292 (1973).Google Scholar
  202. 196.
    B. Whitsel, Microelectron. Manuf Test. Dec. 1983, p. 13.Google Scholar
  203. 197.
    C. Stapper, IBM J. Res. Dev. 27, 549 (1983).Google Scholar
  204. 198.
    T. Meguro, H. Kurita, and T. Itoh, J. Electrochem. Soc. 128, 1379 (1981).Google Scholar
  205. 199.
    S. Jenekhe, Polym. Eng. Sci. 23, 830 (1983).Google Scholar
  206. 200.
    W. Flack, D. Hess, D. Soong, and A. Bell, J. Appl. Phys. 56, 1199 (1983).Google Scholar
  207. 201.
    U.S. Patent 4,439,514 (1984), University Patents.Google Scholar
  208. 202.
    Japanese Patent 58,105,143, Chem. Abstr. 101, 101231 (1983).Google Scholar
  209. 203.
    W. Morgan and J. Burnett, Semicond. Int. June 1984, p. 137.Google Scholar
  210. 204.
    J. Lee, Semicond. Int. June 1984, p. 101.Google Scholar
  211. 205.
    D. Tavers, Microelectron. Manuf. Test. Nov. 1984, p. 13.Google Scholar
  212. 206.
    M. Maeda and H. Nakamura, Thin Solid Films 111, 279 (1984).Google Scholar
  213. 207.
    W. Shannon, RCA Rev. 31, 431 (1970).Google Scholar
  214. 208.
    G. Mendes, L. Cescato, J. Freijlich, E. Braga, and A. Mannamma, Thin Solid Films 117, 1079 (1984).Google Scholar
  215. 209.
    C. Fu and D. Dameron, IEEE Electron Device Lett. EDL–5, 398 (1984).Google Scholar
  216. 210.
    Japanese Patent 58,205,148, Chem. Abstr. 101, 201532 (1984).Google Scholar
  217. 211.
    Japanese Patent 59,11,895, Chem. Abstr. 101, 201544 (1984).Google Scholar
  218. 212.
    U.S. Patent 3,627,599 (1971), RCA.Google Scholar
  219. 213.
    W. Ham, RCA Rev. 39, 231 (1978).Google Scholar
  220. 214.
    P. Giese, Solid State Technol. Nov. 1983, p. 163.Google Scholar
  221. 215.
    R. Bond and H. Naguib, SPIE Proc. 221, 74 (1980).Google Scholar
  222. 216.
    N. Durrant and P. Jenkins, Microcontamination April 1985, p. 44.Google Scholar
  223. 217.
    D. Johnson, Semicond. Int. April 1985, p. 168.Google Scholar
  224. 218.
    J. Burnett, Microcontamination May 1985, p. 32.Google Scholar
  225. 219.
    J. Yu, J. Zakin, and G. Patterson, J. Polym. Sci. 23, 2493 (1979).Google Scholar
  226. 220.
    P. Luckham and J. Klein, Macromolecules 18, 721 (1985).Google Scholar
  227. 221.
    Japanese Patent 60,02,947, Chem. Abstr. 102, 14905 (1985).Google Scholar
  228. 222.
    Japanese Patent 59,182,439, Chem. Abstr. 102, 53988 (1985).Google Scholar
  229. 223.
    L. White, Proc. SPIE 539, 29 (1985).Google Scholar
  230. 224.
    L. White, J. Electrochem. Soc. 132, 3051 (1985).Google Scholar
  231. 225.
    R. Wilson and P. Piacente, Electrochem. Soc. Proc. 85–6, 124 (1985), J. Electrochem. Soc. 133, 981 (1986).Google Scholar
  232. 226.
    Y. Lin, A. Purdes, S. Salier, and W. Hunter, J. Appl. Phys. 55, 1110 (1984).Google Scholar
  233. 227.
    S. Gunarwardena, R. Haven, U. Kaempf, M. Parikh, B. Tullis, and J. Victor, J. Environ. Sci. 27(3), 23 (1984).Google Scholar
  234. 228.
    S. Hoenig, Solid State Technol. Sept. 1985, p. 129.Google Scholar
  235. 229.
    R. Bowling, J. Electrochem. Soc. 132, 2208 (1985).Google Scholar
  236. 230.
    J. Burnett, Solid State Technol. Sept. 1985, p. 121.Google Scholar
  237. 231.
    E. Baker, Microelectron. Manuf. Test. July 1985, p. 20.Google Scholar
  238. 232.
    R. Donovan, B. Locke, and D. Ensor, Solid State Technol. Sept. 1985, p. 139.Google Scholar
  239. 233.
    R. Donovan, B. Locke, C. Osburn, and A. Caviness, J. Electrochem. Soc. 132, 2730 (1985).Google Scholar
  240. 234.
    P. Sukanek, J. Imag. Technol. 11, 184 (1985).Google Scholar
  241. 235.
    U.S. Patent 4,510,176 (1985), AT&T.Google Scholar
  242. 236.
    Japanese Patent 60,24,545, Chem. Abstr. 102, 22940 (1985), JSR.Google Scholar
  243. 237.
    European Patent 126,266, Chem. Abstr. 103, 14589 (1985), Allied.Google Scholar
  244. 238.
    Japanese Patent 60,02,947, Chem. Abstr. 102, 14095 (1985), Fujitsu.Google Scholar
  245. 239.
    M. Gibson and J. Freijlich, Thin Solid Films 128, 161 (1985).Google Scholar
  246. 240.
    A. Piegari and E. Masetti, Thin Solid Films 124, 249 (1985).Google Scholar
  247. 241.
    U.S. Patent 4,473,795 (1984), IBM.Google Scholar
  248. 242.
    U.S. Patent 4,514,440 (1985), Allied.Google Scholar
  249. 243.
    A. Ferris-Prabhu, IEEE Trans. Electron Devices ED-32, 1727 (1985).Google Scholar
  250. 244.
    L. White, RCA Rev. 47, 345 (1986).Google Scholar
  251. 245.
    I. Matsuba and K. Matsumoto, IEEE Trans. Electron Devices ED-33, 1236 (1986).Google Scholar
  252. 246.
    R. Wilson and P. Piacente, J. Electrochem. Soc. 133, 981 (1986).Google Scholar
  253. 247.
    M. Levinson and C. Wilkins, J. Electrochem. Soc. 133, 619 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Wayne M. Moreau
    • 1
  1. 1.General Technology DivisionInternational Business Machines CorporationNew YorkUSA

Personalised recommendations