Advertisement

Negative Photoresists

  • Wayne M. Moreau
Part of the Microdevices book series (MDPF)

Abstract

Negative photoresists are polymers or compositions that retain the exposed region after development. Upon exposure, the exposed region becomes more insoluble (slower dissolving) than the unexposed region. The insolubilization can be brought about by:
  1. 1.

    Increase in molecular weight due to polymerization or cross-linking

     
  2. 2.

    Change in polarity due to formation of more polar or more nonpolar functional groups

     
  3. 3.

    Change in oxidation state of ion or the permanent ionization of a charge transfer complex

     

Keywords

Quantum Yield Modulation Transfer Function Exposed Region Japanese Patent Oxygen Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Charlesby, Atomic Radiation and polymers, Pergamon Press, Elmsford, N.Y., 1960.Google Scholar
  2. 2.
    F. Laming and R. Straile, J. Electrochem. Soc. 119, 1745 (1972).CrossRefGoogle Scholar
  3. 3.
    N. Atoda and H. Kawakatsu, J. Electrochem. Soc. 123, 1519 (1976).CrossRefGoogle Scholar
  4. 4.
    T. Kobayashi and E. Arai, J. Appl. Phys. 52, 4785 (1981).CrossRefGoogle Scholar
  5. 5.
    A. Reiser and E. Pitts, J. Photogr. Sci. 29, 87 (1981).Google Scholar
  6. 6.
    A. Reiser and E. Pitts, Photogr. Sci. Eng. 20, 225 (1976).Google Scholar
  7. 7.
    N. Parham, E. Pitts, and A. Reiser, Photogr. Sci. Eng. 21, 145 (1977).Google Scholar
  8. 8.
    J. Kirk and G. Filmore, Appl. Opt. 11, 2347 (1972).CrossRefGoogle Scholar
  9. 9.
    J. Freijilich and J. Clair, J. Opt. Soc. Am. 67, 92 (1977).CrossRefGoogle Scholar
  10. 10.
    P. Egerton, J. Trigg, E. Hyde, and A. Reiser, Macromolecules 14, 100 (1981).CrossRefGoogle Scholar
  11. 11.
    M. Nakase and Y. Matsumoto, Photogr. Sci. Eng. 23, 215 (1979).Google Scholar
  12. 12.
    K. Tai, R. Vadimsky, C. Kemmer, J. Wagner, A. Timko, and V. Lambertini, J. Vac. Sci. Technoi 17, 1169(1980).CrossRefGoogle Scholar
  13. 13.(a)
    J. Kosar, Light Sensitive Systems, Wiley, New York, 1965.Google Scholar
  14. 13.(b)
    W. DeForest, Photoresist Materials and Processes, McGraw-Hill, New York, 1975, p. 168.Google Scholar
  15. 14.
    G. A. Delzenne, in Encyclopedia of Polymer Science and Technology, Suppl. Vol. 1, edited by H. Mark and N. Bikales, Interscience, New York, 1976, p. 401.Google Scholar
  16. 15.
    J. Rennen, Photochem. Photobiol. 19, 173 (1975).Google Scholar
  17. 16.
    A. Reiser and P. Egerton, Macromolecules 12, 670 (1979).CrossRefGoogle Scholar
  18. 17.
    K. Murski and S. Simoliunas, Electrochem. Soc. Ext. Abstr. 80-2, 838 (1980).Google Scholar
  19. 18.
    C. Azuma, K. Sanui, and N. Ogata, J. Appl. Polym. Sci. 27, 2065 (1982).CrossRefGoogle Scholar
  20. 19.
    T. Nishibuko, J. Polym. Sci. 21, 2025 (1983).Google Scholar
  21. 20.
    U.S. Patent 2,716,102 (1958), Eastman Kodak.Google Scholar
  22. 21.
    H. Tanaka and Y. Sato, J. Polym. Sci. 10, 3279 (1972).Google Scholar
  23. 22.
    S. Merril and C. Unruh, J. Appl. Polym. Sci. 7, 273 (1963).CrossRefGoogle Scholar
  24. 23.
    W. Moreau, Am. Chem. Soc. Polym. Prepr. 10, 362 (1969).Google Scholar
  25. 24.
    T. Shankoffand A. Trozzolo, Photogr. Sci. Eng. 19, 173 (1975).Google Scholar
  26. 25.
    Y. Kirsh, Russ. J. Phys. Chem. 39, 1002 (1965).Google Scholar
  27. 26.
    J. Arcesi, F. Rauner, and J. Williams, J. Appl Polym. Sci. 15, 513 (1971).CrossRefGoogle Scholar
  28. 27.
    R. Agnihotri, F. Hood, L. Lesoine, and J. Offenbach, Photogr. Sci. Eng. 15, 141 (1971).Google Scholar
  29. 28.
    M. Kato and H. Nakane, Photogr. Sci. Eng. 23, 207 (1979).Google Scholar
  30. 29.
    K. Nakamura, T. Sakata, and S. Kikuchi, Bull. Chem. Soc. Jpn. 41, 1765 (1968).CrossRefGoogle Scholar
  31. 30.
    E. Engvall, Kodak Photoresist Seminar, May 1969 and Oct. 1976.Google Scholar
  32. 31.
    U.S. Patent 2,652,273 (1972), IBM.Google Scholar
  33. 32.
    W. Moreau, R. Cox, and N. Clecak, Polym. Eng. Sci. 14, 95 (1981).Google Scholar
  34. 33.
    U.S. Patent 3,716,390 (1971), DuPont.Google Scholar
  35. 34.
    P. Egerton, J. Trigg, E. Hyde, and A. Reiser, Macromolecules 14, 95 (1981).CrossRefGoogle Scholar
  36. 35.
    E. De Broer and R. Breslow, Tetrahedron Lett. 1967, 1033 (1967).Google Scholar
  37. 36.
    M. Mijovic, P. Beymor, T. Shawe, K. Petrak, and A. Reiser, Macromolecules 15, 1464 (1982).CrossRefGoogle Scholar
  38. 37.
    B. Gong, Y. Te, M. Gu, and Q. Zhang, J. Vac. Sci. Techol. 16, 1980 (1979).CrossRefGoogle Scholar
  39. 38.
    A. Schonberg, Preparative Organic Photochemistry, Springer Verlag, Berlin, 1968, p. 114.Google Scholar
  40. 39.
    U.S. Patent 4,302,527 (1981), Kodak.Google Scholar
  41. 40.
    U.S. Patent 2,940,853 (1962).Google Scholar
  42. 41.
    W. Moreau, SPE RETEC Photopolymers, Ellenville, N.Y., 1970, p. 137.Google Scholar
  43. 42.
    J. Swenton, T. Ikeler, and B. Williams, J. Am. Chem. Soc. 92, 3103 (1970).CrossRefGoogle Scholar
  44. 43.
    A. Reiser, G. Bowes, and R. Home, Trans. Faraday Soc. 63, 3162 (1970).Google Scholar
  45. 44.
    T. Iwayanagi, T. Kohashi, and S. Nonogaki, J. Electrochem. Soc. 127, 2759 (1980).CrossRefGoogle Scholar
  46. 45.
    S. Shimizu and G. Bird, J. Electrochem. Soc. 124, 1394 (1977).CrossRefGoogle Scholar
  47. 46.
    S. Shimizu and G. Bird, J. Electrochem. Soc. 126, 273 (1979).CrossRefGoogle Scholar
  48. 47.
    R. Agnihotri, D. Falcon, F. Hood, L. Lesoine, G. Needham, and J. Offenbach, Photogr. Sci. Eng. 16, 443 (1972).Google Scholar
  49. 48.
    W. Hunter and P. Crabtree, Photogr. Sci. Eng. 13, 271 (1969).Google Scholar
  50. 49.
    U.S. Patents 3,669,662 and 3,669,669 (1972), IBM.Google Scholar
  51. 50.
    A. Reiser, R. Egerton, and E. Pitts, Trans. Faraday Soc. 65, 3265 (1969), 64, 1806 (1968).CrossRefGoogle Scholar
  52. 51.
    T. Zueva, Chem. Abstr. 98, 188958 (1983).Google Scholar
  53. 52.
    R. Walters and R. Brechner, J. Electrochem. Soc. 119, 1703 (1972).CrossRefGoogle Scholar
  54. 53.
    U.S. Patent 3,615,952 (1971), RCA.Google Scholar
  55. 54.
    Japanese Patent 83,40,547, Chem. Abstr. 99, 13971 (1983).Google Scholar
  56. 55.
    U.S. Patent 4,294,908 (1981), Japanese Synthetic Rubber Co.Google Scholar
  57. 56.
    U.S. Patent 4,268,603 (1981).Google Scholar
  58. 57.
    R. Lussow, J. Vac. Sci. Technol. 6, 18 (1969).CrossRefGoogle Scholar
  59. 58.
    U.S. Patent 3,695,886 (1972), IBM.Google Scholar
  60. 59.
    J. Frejilich and R. Knoesel, Appl. Opti. 18, 1135 (1979).CrossRefGoogle Scholar
  61. 60.
    U.S. Patent 3,493,380 (1970), Kodak.Google Scholar
  62. 61.
    German Patent 2,817,256, Allied Chem.; Chem. Abstr. 90, 195637b (1976).Google Scholar
  63. 62.
    U.S. Patent 3,493,380 (1970), Kodak.Google Scholar
  64. 63.
    Japanese Patent 80, 155, 353, Chem. Abstr. 94, 200872 (1980); Japanese Patent 80,87,143, Chem. Abstr. 94, 10032 (1980).Google Scholar
  65. 64.
    Russian Patent 708,287, Chem. Abstr. 91, 207140 (1978).Google Scholar
  66. 65.
    Japanese Patent 79,140,535, Chem. Abstr. 92, 119732 (1979).Google Scholar
  67. 66.
    F. Laming and R. Straile, J. Electrochem. Soc. 120, 292 (1973). L. Hirobe and S. Iwamatsu, J. Electrochem. Soc. 126, 1426 (1979).CrossRefGoogle Scholar
  68. 67.
    U.S. Patent 3,884,703 (1974), Hitachi.Google Scholar
  69. 68.
    U.S. Patent 4,299,910 (1981), RCA.Google Scholar
  70. 69.
    U.S. Patent 4,254,197 (1981), Hitachi.Google Scholar
  71. 70.
    U.S. Patent 3,072,485 (1963); 3,475,176 (1969), Kodak.Google Scholar
  72. 71.
    T. Matsuzuwa and H. Tomioka, IEEE Electron Device Lett. EDL-2, 90 (1981).CrossRefGoogle Scholar
  73. 72.
    I. Iwayangi, T. Kohashi, S. Nonogaki, T. Matsuzawa, K. Douta, and H. Yanazawa, IEEE Trans. Electron Devices ED-28, 1306 (1981), J. Electrochem. Soc. 127, 2759 (1980).CrossRefGoogle Scholar
  74. 73.
    T. Matsuzawa and H. Tomioka, IEEE Trans. Electron Devices ED-28, 1284 (1981), ED-30, 1780 (1983).CrossRefGoogle Scholar
  75. 74.
    U.S. Patent 4,148,655 (1979), Oji Paper.Google Scholar
  76. 75.
    T. Tsunoda, T. Yamoka, Y. Osabe, and Y. Hata, Photogr. Sci. Eng. 20, 188 (1977).Google Scholar
  77. 76.
    U.S. Patent 4,268,603 (1981), Tokyo Ohko.Google Scholar
  78. 77.
    Japanese Patent 82,84,452, Sanyo; Chem. Abstr. 98, 25528 (1982).Google Scholar
  79. 78.
    Japanese Patent 82,70,530, Chem. Abstr. 87, 44226f (1982).Google Scholar
  80. 79.
    Japanese Patent 78,127,723, Chem. Abstr. 90, 144308 (1978).Google Scholar
  81. 80.
    U.S. Patent 4,287,294 (1981), Siemens.Google Scholar
  82. 81.
    U.S. Patent 4,399,910 (1981), RCA.Google Scholar
  83. 82.
    U.S. Patent 4,254,197 (1981), Hitachi.Google Scholar
  84. 83.
    Japanese Patent 80,77,741, Chem. Abstr. 94, 100300 (1980).Google Scholar
  85. 84.
    Japanese Patent 82,105,736, Daceil Ind.; Chem. Abstr. 99, 30759r (1982).Google Scholar
  86. 85.
    German Patent 3,239,613, Chem. Absdtr. 99, 13922 (1982).Google Scholar
  87. 86.
    M. Tsuda, S. Oikawa, W. Kanai, K. Hashimoto, A. Yokata, K. Nuino, I. Hijikata, A. Uehara, and H. Nakane, J. Vac. Sci. Technol. 19, 1351 (1981), 19, 259 (1981).CrossRefGoogle Scholar
  88. 87.
    M. Tsuda, M. Yabuta, S. Oikawa, A. Yokota, and H. Nakane, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1984, p. 371.Google Scholar
  89. 88.
    European Patent Application EP 70,198, Hitachi; Chem. Abstr. 98, 152811b (1981).Google Scholar
  90. 89.
    U. S. Patents 3,467,523, 3,462,268, 3,455,689, 3,453,108 (1969), GAF.Google Scholar
  91. 90.
    U.S. Patent 3,728,305 (1968).Google Scholar
  92. 91.
    T. Nishibuko, T. Kizawa, I. Imagawa, and K. Kobayashi, J. Polym. Sci. Polym. Chem. Ed. 19, 2705 (1981).CrossRefGoogle Scholar
  93. 92.
    U.S. Patent 3,002,003 (1961), Kodak.Google Scholar
  94. 93.
    W. Likowsky, in Nitrene, edited by R. Abramovitch and B. Davis, Wiley, New York, 1979; Chem. Rev. 64, 149 (1964). S. Patai, Chemistry of the Azido Group, Interscience, New York, 1969. G. Abbe, Chem. Rev. 68, 345 (1968).Google Scholar
  95. 94.
    E. Froschule and R. Backhus, Solid State Electron. 14, 95 (1971).CrossRefGoogle Scholar
  96. 95.
    D. Smith, Polym. Eng. Sci. 12, 264 (1968).Google Scholar
  97. 96.
    J. Chong, J. Appl. Polym. Sci. 13, 241 (1969).CrossRefGoogle Scholar
  98. 97.
    U.S. Patent 3,705,055 (1971), Western Electric.Google Scholar
  99. 98.
    W. Moreau and P. Schmidt, Electrochem. Soc. Ext. Abstr. 70-2, 459 (1970).Google Scholar
  100. 99.
    U.S. Patent 4,267,258 (1981), Fujitsu.Google Scholar
  101. 100.
    U.S. Patent 4,286,049 (1981), Nippon.Google Scholar
  102. 101.
    O. Kogure, Jpn. J. Appl. Phys. 21, 206 (1982).CrossRefGoogle Scholar
  103. 102.
    S. Iwamura and S. Sugaware, Jpn. J. Appl. Phys. 21, 776 (1982).CrossRefGoogle Scholar
  104. 103.
    U.S. Patent 4,267,258 (1982), Fujitsu.Google Scholar
  105. 104.
    S. Iwamura, J. Electrochem. Soc. 126, 1628 (1979).CrossRefGoogle Scholar
  106. 105.
    D. Turner, Macromolecules 14, 216 (1981).CrossRefGoogle Scholar
  107. 106.
    J. Pacansky and J. Lyerla, IBM J. Res. Dev. 23, 42 (1979).CrossRefGoogle Scholar
  108. 107.
    U.S. Patent 3,533,796 (1970), GAF.Google Scholar
  109. 108.
    U.S. Patent 4,104,070 (1978).Google Scholar
  110. 109.
    Japanese Patent 80,32,088, Chem. Abstr. 93, 195530y (1980).Google Scholar
  111. 110.
    G. Willson, in Introduction to Microlithography, edited by L. Thompson, C. Willson, and M. Bowden, Am. Chem. Soc. Symp. Ser. 219, 121 (1983).Google Scholar
  112. 111.
    L. White, J. Electrochem. Soc. 130, 1543 (1983).CrossRefGoogle Scholar
  113. 112.
    R. Rubner, H. Ahne, E. Kuhn, and G. Kolodzeij, Photogr. Sci. Eng. 23, 303 (1979).Google Scholar
  114. 113.
    U.S. Patent 4,218,283 (1980), Hitachi.Google Scholar
  115. 114.
    U.S. Patent 3,883,352 (1975), W. Grace.Google Scholar
  116. 115.
    U.S. Patents 4,208,477 (1980), 4,316,974 (1981), Ashahi.Google Scholar
  117. 116.
    U.S. Patent 3,753,270 (1974), DuPont.Google Scholar
  118. 117.
    U.S. Patents 3,957,512, 4,045,223, 4,088,489, 4,287,294, Re 30,186, Siemens.Google Scholar
  119. 118.
    U.S. Patent 4,093,461 (1979), Siemens.Google Scholar
  120. 119.
    U.S. Patent 4,399,521 (1982), Siemens.Google Scholar
  121. 120.
    U.S. Patent 4,310,641 (1982), Siemens.Google Scholar
  122. 121.
    U.S. Patent 4,332,882 (1982), Siemens.Google Scholar
  123. 122.
    U.S. Patent 4,242,437 (1980), Bayer.Google Scholar
  124. 123.
    U.S. Patent 4, 332,883 (1982), Siemens.Google Scholar
  125. 124.
    U.S. Patent 3,043,802 (1962), Bayer.Google Scholar
  126. 125.
    Japanese Patent 81,50,928, Chem. Abstr. 96, 13661 (1981).Google Scholar
  127. 126.
    U.S. Patent 3,725,064 (1973), GAF.Google Scholar
  128. 127.
    U.S. Patent 3,594,175 (1972), GE.Google Scholar
  129. 128.
    M. Gazard, A. Chapiro, M. Duchesne, and J. Dubois, Polym. Eng. Sci. 20, 1069 (1980).CrossRefGoogle Scholar
  130. 129.
    C. Roffey, Phoiopolymerization of Surface Coatings, Wiley, New York, 1982, p. 137.Google Scholar
  131. 130.
    DuPont Co. Technical Literature on Riston, Wilmington, Del.Google Scholar
  132. 131.
    U.S. Patents 3,469,982, 3,547,651, 3,784,378, DuPont.Google Scholar
  133. 132.
    U.S. Patents 4,415,651, 4,415,652, (1983), DuPont.Google Scholar
  134. 133.
    U.S. Patent 4,289,841 (1981), DuPont.Google Scholar
  135. 134.
    D. Keleman, Solid State Technol. 19, 37 (1976).CrossRefGoogle Scholar
  136. 135.
    U.S. Patent 3,847,609 (1974), DuPont.Google Scholar
  137. 136.
    U.S. Patent 3,650,744 (1972), GE.Google Scholar
  138. 137.
    J. Bauer, Electron. Packag. Prod. May 1978, p. 87.Google Scholar
  139. 138.
    E. Eisenbach, Angew. Makromol. Chem. 109, 101 (1982).CrossRefGoogle Scholar
  140. 139.
    H. Steppan, G. Buhr, and H. Vollmann, Angew. Chem. Int. Ed. Engl. 21, 455 (1982).CrossRefGoogle Scholar
  141. 140.
    U. S. Patent 4,410,612 (1983), DuPont.Google Scholar
  142. 141.
    G. Briegleb, Donor-Acceptor Complexes, Springer Verlag, Berlin, 1966.Google Scholar
  143. 142.
    L. Andrews and R. Keefer, Molecular Complexes in Organic Chemistry, Holden-Day, San Francisco, 1964.Google Scholar
  144. 143.
    G. Stevens, Microphotography, Wiley, New York, 1967, p. 22.Google Scholar
  145. 144.
    F. Kaufman, IBM J. Res. Dev. 25, 303 (1981); U.S. Patent 4,338,392 (1982), IBM.CrossRefGoogle Scholar
  146. 145.
    D. Hofer, F. Kaufman, S. Kramer, and A. Aviram, Appl. Phys. Lett. 37, 314 (1980).CrossRefGoogle Scholar
  147. 146.
    F. Kaufman and S. Kramer, Electrochem. Soc. Ext. Abstr. 82-1, 443 (1982).Google Scholar
  148. 147.
    U.S. Patent 3,147,117 (1964), Horizons.Google Scholar
  149. 148.
    U.S. Patents 3,522,044, 3,525,616 (1970), 3.529,966 (Kalle), 3,592,646 (1971), Kodak.Google Scholar
  150. 149.
    G. Chern and I. Lauks, J. Appl. Phys. 53, 6979 (1982) and the many references therein.CrossRefGoogle Scholar
  151. 150.
    Y. Yoshikawa, O. Ochi, H. Nagai, and Y. Mizushima, Appl. Phys. Lett. 29, 677 (1976).CrossRefGoogle Scholar
  152. 151.
    Electrochem. Soc. Ext. Abstr. 82-1, 152–180 (1982).Google Scholar
  153. 152.
    M. Chang, T. Hou, J. Chen, K. Kolowicz, and J. Zemel, J. Vac. Sci. Technol. 16, 1973 (1979).CrossRefGoogle Scholar
  154. 153.
    K. Tai, R. Vadimsky, C. Kemmer, A. Timko, and V. Lambertini, J. Vac. Sci. TechnoL 17, 1169 (1980).CrossRefGoogle Scholar
  155. 154.
    K. Tai, R. Sinclair, R. Vadimsky, J. Moran, and R. Rand, J. Vac. Sci. Technol. 16, 1977 (1979).CrossRefGoogle Scholar
  156. 155.
    A. Ruoffand K. Balasubramayan, J. Vac. Sci. Technol. 19, 1374 (1981)J. Vac. Sci. Technol. 19, 1374 (1981).Google Scholar
  157. 156.
    A. Yoshikawa, O. Ochi, and Y. Mizushima, Appl. Phys. Lett. 36, 107 (1980).CrossRefGoogle Scholar
  158. 157.
    P. Huggett, K. Frick, and H. Lehmann, Appl. Phys. Lett. 42, 592 (1983).CrossRefGoogle Scholar
  159. 158.
    J. Lavine, G. Goldberg, and A. Das. IEEE Trans. Electron Devices ED-28, 1311 (1981); U.S. Patent 4,269,935 (1981), Ionomet.CrossRefGoogle Scholar
  160. 159.
    A. Pastor, G. Toniginami, R. Pastor, S. Wong, and R. Chew, Thin Solid Films 67, 9 (1980).CrossRefGoogle Scholar
  161. 160.
    D. Ehrlich, R. Osgood, and T. Deutsch, J. Vac. Sci. TechnoL B2, 23 (1982).CrossRefGoogle Scholar
  162. 161.
    T. Yamaoka, Y. Osobe, and T. Tsunoda, in Modification of Polymers, Am. Chem. Soc. Symp. Ser. 121, 185 (1980).CrossRefGoogle Scholar
  163. 162.
    W. Moreau, IBM Tech. Disci. Bull. 12, 1418 (1970).Google Scholar
  164. 163.
    R. Jacobson, J. Photogr. Sci. 31, 1 (1983).Google Scholar
  165. 164.
    S. MacDonald, C. Willson, R. Millert, W. Maclntyre, W. Motsiff, and R. Gleason, Proceedings of Kodak Microelectronics, Interface 82, p. 114.Google Scholar
  166. 165.
    Proceedings of the Symposium on Inorganic Resist Systems, edited by D. Doane and A. Heller, Electrochemical Society, 1982.Google Scholar
  167. 166.
    S. Inamura, T. Tamamura, and O. Kogure, Polym. J. 16, 391 (1984).CrossRefGoogle Scholar
  168. 167.
    G. Davis, Am. Chem. Soc. Symp. Ser. 242, 259 (1984).Google Scholar
  169. 168.
    Japanese Patent 58,55,926, Chem. Abstr. 101, 46303 (1983).Google Scholar
  170. 169.
    V. Srinivasan and S. Babu, Photogr. Sci. Eng. 28, 175 (1984).Google Scholar
  171. 170.
    M. Tsunooka, T. Ueda, and M. Tanaka, J, Polym. Sci. 22, 2217 (1984).Google Scholar
  172. 171.
    S. Pappas, B. Pappas, L. Gatechair, and W. Schnabel, J. Polym. Sci. 22, 69 (1984).Google Scholar
  173. 172.
    W. Watt, H. Hoffmann, H. Pobiner, L Schkolnick, and L. Yang, J. Polym. Sci. 22, 1789 (1984).Google Scholar
  174. 173.
    S. Pappas, L. Gatechair, and J. Jilek, J. Polym. Sci. 22, 77 (1984).Google Scholar
  175. 174.
    S. Nishimoto, J. Polym. Sci. 22, 323 (1984).Google Scholar
  176. 175.
    K. Iwata, T. Hagiwara, and H. Matsuzawa, J. Polym. Sci. 22, 215L (1984).Google Scholar
  177. 176.
    S. Heilmann, J. Polym. Sci. 22, 1179 (1984).Google Scholar
  178. 177.
    N. Yoda and H. Hiramoto, J. Macromol. Sci. Chem. 21, 1641 (1984).CrossRefGoogle Scholar
  179. 178.
    P. Huggett and H. Lehman, J. Electron. Mater., 14, 205 (1985).CrossRefGoogle Scholar
  180. 179.
    A. Yoshikawa, O. Ochi, T. Mizushima, and T. Hisaki, Jpn. J. AppL Phys. 20, L81 (1981); U.S. Patent 4,350,541 (1982), Nippon Tel.CrossRefGoogle Scholar
  181. 180.
    W. Leung, A. Neureuther, and W. Oldham, J. Vac. Sci. TechnoL B3, 310 (1985).Google Scholar
  182. 181.
    U.S. Patent 4,515,887 (1985), GE.Google Scholar
  183. 182.
    A. Tanaka, M. Morita, and K. Onose, Jpn. J. Appl. Phys. 24, L112 (1985).CrossRefGoogle Scholar
  184. 183.
    European Patent 131,992 (1985), Phillips; Chem. Abstr. 103, 176539 (1985).Google Scholar
  185. 184.
    Japanese Patent 59,222,833 (1984), Hitachi; Chem. Abstr. 102, 176538 (1984).Google Scholar
  186. 185.
    German Patent 3,342,851 (1985), Merck; Chem. Abstr. 103, 150965 (1985).Google Scholar
  187. 186.
    Japanese Patent 59,220,730 Ube (1985), Chem. Abstr. 102 195201 (1985).Google Scholar
  188. 187.
    U.S. Patent 4,481,340 (1984).Google Scholar
  189. 188.
    Japanese Patent 59,212,382, Chem. Abstr. 103, 45827 (1985).Google Scholar
  190. 189.
    N. Yoda and H. Hiramoto, J. Macromol. Chem. 121, 1641 (1984).Google Scholar
  191. 190.
    G. Rohde, M. Riediker, A. Schaffner, and J. Bateman, Proc. SPIE Opt. Eng. 539, 175 (1985).Google Scholar
  192. 191.
    Japanese Patent 60,177,740 (1985), Maruzen Oil; Chem. Abstr. 103, 62584 (1985).Google Scholar
  193. 192.
    S. Kobuchi, A. Isobe, D. Makino, T. Iwayanagi, H. Hasimoto, and S. Nonogaki, Proc. SPIE Opt. Eng. 539, 182 (1985).Google Scholar
  194. 193.
    European Patent 135,900 (1985), Hunt; Chem. Abstr. 103, 62599 (1985).Google Scholar
  195. 194.
    Japanese Patent 60,70,439 (1985), Hitachi; Chem. Abstr. 103, 62598 (1985).Google Scholar
  196. 195.
    Japanese Patent 60,86,543 (1985), Hitachi; Chem. Abstr. 103, 113320 (1985).Google Scholar
  197. 196.
    German Patent 3,325,022 (1985), Hoechst; Chem. Abstr. 103, 79521 (1985).Google Scholar
  198. 197.
    Japanese Patent 59,214,847 (1984), Nagase; Chem. Abstr. 102, 195202 (1984).Google Scholar
  199. 198.
    U.S. Patent 4,356,254 (1984), Hitachi.Google Scholar
  200. 199.
    Japanese Patent 59,222,833 (1984), Hitachi; Chem. Abstr. 102, 176538 (1984).Google Scholar
  201. 200.
    U.S. Patent 4,196,003 (1982), Fuji.Google Scholar
  202. 201.
    G. Bendkit, SMIE Resist Technol. 539, 242 (1985).Google Scholar
  203. 202.
    Japanese Patent 59,216,140 (1985), AIST; Chem. Abstr. 103, 62581 (1985).Google Scholar
  204. 203.
    K. Iwata, T. Hagiwara, and H. Matsuzawo, J. Polym. Sci. 23, 2361 (1985).Google Scholar
  205. 204.
    C. Willson, H. Ito, J. Frechet, T. Tessier, and F. Houlihan, J. Electrochem. Soc. 133, 181 (1986).CrossRefGoogle Scholar
  206. 205.
    S. Babu and R. Srinivasan, SPIE Resist Technol. 539, 36 (1985).Google Scholar
  207. 206.
    Y. Ohnishi, M. Suzuki, K. Saigo, Y. Satoire, and H. Gokan, SPIE Resist Technol. 539, 62 (1985).Google Scholar
  208. 207.
    M. Spak, D. Mammato, S. Jain, and D. Durham, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 247.Google Scholar
  209. 208.
    U.S. Patent 4,564,576 (1986), NRC.Google Scholar
  210. 209.
    U.S. Patent 4,571,375 (1986), G. Benedikt.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Wayne M. Moreau
    • 1
  1. 1.General Technology DivisionInternational Business Machines CorporationNew YorkUSA

Personalised recommendations