Advertisement

Positive Radiation Resists

  • Wayne M. Moreau
Part of the Microdevices book series (MDPF)

Abstract

Positive radiation resists are required for submicrometer lithography using high-energy (10–200 keV) X-ray, ion, and electron beams. Since the resolution of an exposure process is limited by the wavelength of forward and, moreover, backscat-tered radiation, high-energy rays of atom-size wavelengths are capable of resolution to 50 Å (Fig. 3-1-1). However, the practical resolution limit is about 500 Å. If the backscatter is reduced or eliminated using silicon membranes instead of thick wafers, nanometer-size devices can be fabricated.

Keywords

Modulation Transfer Function Ethyl Acrylate Japanese Patent Methyl Isobutyl Ketone Onium Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Varnell, P. Shah, and R. Havemann, Proc. IEEE 71, 612 (1983).Google Scholar
  2. 2.
    D. Herriott, J. Vac. Sci. Technol. 20, 781 (1982).Google Scholar
  3. 3.
    D. Spears and H. Smith, Solid State Technol. July 1972, p. 21.Google Scholar
  4. 4.
    E. Weber, SPIE Proc. 333, 95 (1982).Google Scholar
  5. 5.
    H. Bohlen, J. Greschner, J. Keyser, W. Kulcke, and P. Nehmiz, IBM J. Res. Dev. 26, 568 (1982).Google Scholar
  6. 6.
    R. Speidel and M. Mayr, Optik (Stuttgart) 48, 247 (1977).Google Scholar
  7. 7.
    M. Hatzakis, D. Hofer, and T. Chang, J. Vac. Sci. Technol. 16, 1631 (1979); U. S. Patent 4,267,259 (1981), IBM.Google Scholar
  8. 8.
    M. Heritage, J. Vac. Sci. Technol. 12, 1135 (1975).Google Scholar
  9. 9.
    W. Brown, T. Venkatesan, and A. Wagner, Solid State Technol. Aug. 1981, p. 60.Google Scholar
  10. 10.
    L. Fried, J. Havas, P. Totta, J. Logan, G. Paal, and J. Lechaton, IBM J. Res. Dev. 26, 362 (1982).Google Scholar
  11. 11.
    B. El Karek and A. Pattletz, J. Vac. Sci. Technol. 15, 1047 (1978).Google Scholar
  12. 12.
    H. Ryssel, Appl. Phys. A 27, 239 (1982); G. Bird, Photogr. Sci. Eng. 25, 246 (1981).Google Scholar
  13. 13.(a)
    J. Greeneich, in Electron Beam Technology in Microelectronics Fabrication, edited by G. Brewer, Academic Press, New York, 1980, p. 209Google Scholar
  14. 13.(b)
    J. Trotel and B. Fay, ibid. p. 309.Google Scholar
  15. 14.
    C. Ting, Record of the 11th Symposium on Electron, Ion, and Laser Beam Technology, edited by R. Thomley, San Francisco Press, San Francisco, 1971, p. 345.Google Scholar
  16. 15.
    U. S. Patent 3,535,137 (1971), IBM.Google Scholar
  17. 16.
    R. Selliger and W. Fleming, J. Appl. Phys. 45, 1416 (1974).Google Scholar
  18. 17.
    D. Spears and H. Smith, Electron. Lett. 8, 102 (1972).Google Scholar
  19. 18.
    U. S. Patents 3,934,057; 4,024,293 (IBM).Google Scholar
  20. 19.
    S. Beaumont, P. Bower, T. Tamamura, and C. Wilkinson, Appl. Phys. Lett. 38, 436 (1981).Google Scholar
  21. 20.
    U. S, Patent 4,004,044 (1976), IBM.Google Scholar
  22. 21.
    M. Hatzakis, J. Electrochem. Soc. 116, 1033 (1969).Google Scholar
  23. 22.
    B. Mallon, J. Polym. Sci. Part A 6, 2637 (1968).Google Scholar
  24. 23.
    L. Karapiperis, I. Adesida, G Lee, and E. Wolfe, J. Vac. Sci. Technol. 19, 1259 (1981).Google Scholar
  25. 24.
    W. Buckley and G. Hughes, J. Electrochem. Soc. 128, 1106 (1981).Google Scholar
  26. 25.
    M. Natase and Y. Matsumoto, Photogr. Sci. Eng. 23, 215 (1979).Google Scholar
  27. 25a.
    R. Heidenreich, J. Appl Phys. 48, 1418 (1977).Google Scholar
  28. 26.
    S. Bernacki and H. Smith, IEEE Trans. Electron Devices ED-22, 421 (1975); R. Heidenreich, J. Ballantyne, and L. Thompson, J. Vac. Sci. Technol. 12, 1284 (1975).Google Scholar
  29. 27.
    T. Matsukawa, J. Appl. Phys. 45, 733 (1974); R. Hawryluk, H. Smith, A. Soares, and A. Hawryluk, J. Appl. Phys. 46, 2528 (1975).Google Scholar
  30. 28.
    T. Kato, J. Vac. Sci. Technol. 19, 1279 (1981).Google Scholar
  31. 29.
    J. Ziegler, Handbook of Stopping Cross Sections for All Elements, Pergamon Press, Elmsford, N.Y., 1980.Google Scholar
  32. 30.
    M. Levi, IEEE Electron Device Lett. EDL-1, 194 (1980).Google Scholar
  33. 31.
    W. Brown, T. Venkatesan, and A. Wagner, Solid State Technol. Aug. 1981, p. 60.Google Scholar
  34. 32.
    A. Crewe, J. Vac. Sci. Technol. 16, 258 (1979); M. Tsuda, Polym. Eng. Sci. 17, 390 (1977).Google Scholar
  35. 33.
    L. Dorfman, J. Chem. Educ. 58, 84 (1981).Google Scholar
  36. 34.
    F. Field and F. Franklin, Electron Impact Phenomena, Academic Press, New York, 1957.zbMATHGoogle Scholar
  37. 35.
    H. Hiroaka, IBM J. Res. Dev. 21, 121 (1977).Google Scholar
  38. 36.
    C. McNeal, J. Am. Chem. Soc. 103, 1609 (1981).Google Scholar
  39. 37.
    R. Kieb, J. Phys. Chem. 63, 1838 (1959).Google Scholar
  40. 38.
    M. Kaplan and D. Meyerhofer, RCA Rev. 40, 166 (1979); Polym. Eng. Sci. 20, 1073 (1980).Google Scholar
  41. 39.
    K. Kawabuchi, S. Sakurai, and M. Yoshimi, Electron. Leu. 19, 287 (1983).Google Scholar
  42. 40.
    R. Watts, Solid State Technol. May 1979, p. 69.Google Scholar
  43. 41.
    U. S. Patents 3,743,842 (1973), MIT; 4,037,111 (1979), Bell; 4,035,522 (1978), IBM.Google Scholar
  44. 42.
    K. Okada, J. Vac. Sci. Technol. 17, 1233 (1980).Google Scholar
  45. 43.
    J. Pearlman and J. Riordan, J. Vac. Sci. Technol. 19, 1190 (1981).Google Scholar
  46. 44.
    B. Fay, I. Trotel, Y. Petroff, R. Pinchaux, and P. Thiry, Appl. Phys. Lett. 29, 370 (1976).Google Scholar
  47. 45.(a)
    K. Heinrich, H. Betz, A. Heuberger, and S. Pongratz, J. Vac. Sci. Technol. 19, 1254 (1981).Google Scholar
  48. 45.(b)
    T. Ono and A. Ozawa, J. Vac. Sci. Technol. B2, 68 (1984).Google Scholar
  49. 45.(c)
    Y. Saitoh, H. Yoshihara, I. Watametre, and S. Nakayama, J. Vac. Sci. Technol. B2, 63 (1984).Google Scholar
  50. 46.
    W. Buckley, J. Electrochem. Soc. 128, 1116 (1981).Google Scholar
  51. 47.
    C. Fencil and G. Hughes, Circuits Manuf. Dec. 1982, p. 22.Google Scholar
  52. 48.
    M. Kaplan, SPE RETEC Photopolymers, Ellenville, N.Y., 1982, p. 249; Polym. Eng. Sci. 23, 957 (1983).Google Scholar
  53. 49.
    I. Haller, R. Feder, M. Hatzakis, and E. Speller, J. Electrochem. Soc. 126, 154 (1979).Google Scholar
  54. 50.
    R. Feder, IBM Tech. Discl. Bull. 18, 2343 (1975).Google Scholar
  55. 51.
    K. Murease, M. Kakuchi, and S. Sugawara, Microcircuit Eng. Conf., Paris, 1977, p. 261.Google Scholar
  56. 52.
    L. Thompson and M. Bowden, J. Electrochem. Soc. 121, 1500 (1974); J. Appl. Phys. 44, 4039 (1973).Google Scholar
  57. 53.
    G. Taylor, Solid State Technol. May 1980, p. 69.Google Scholar
  58. 54.
    Y. Saithoh, V. H. Yoshihara, and I. Watanabe, Jpn. J. Appl. Phys. 21, L52 (1982).Google Scholar
  59. 55.
    A. Eranian, A. Coutlet, E. Datamanti, and J. Dubois, Am. Chem. Soc. Symp. Ser. 151, 275 (1981); U. S. Patent 4,268,590 (1981), Thomson-CSF.Google Scholar
  60. 56.
    W. Moreau, W. Moyer, D. Merritt, M. Hatzakis, L. Pederson, and D. Johnson, J. Vac. Sci. Technol. 16, 1989 (1979).Google Scholar
  61. 57.
    Y. Bocko, Sov. Phys. Tech. Phys. 27, 1416 (1982).Google Scholar
  62. 58.
    M. Kakuchi, V. S. Sagawara, K. Murase, and K. Matsuyama, J. Electrochem. Soc. 124, 1648 (1977).Google Scholar
  63. 59.
    W. Moreau, Opt. Eng. 22, 181 (1983).Google Scholar
  64. 60.
    E. Spiller, J. Topalian, E. Castellani, L. Romankiw, R. Feder, and M. Heritage, Solid State Technol. April 1976, p. 65.Google Scholar
  65. 61.
    Japanese Patent 80,17,112; Chem. Abstr. 93, 16986 (1980).Google Scholar
  66. 62.
    F. Asmussen, H. Betz, J. Chen, A. Heuberger, S. Pongratz, H. Sotobayashi, and W. Schindel, J. Electrochem. Soc. 130, 180 (1983).Google Scholar
  67. 63.
    P. Blais, Electrochem. Soc. Ext. Abstr. 80, 835 (1980).Google Scholar
  68. 64.
    P. Lenzo and E. Spencer, Appl. Phys. Lett. 24, 289 (1974).Google Scholar
  69. 65.
    P. Burggraaf, Semicond. Int. Sept. 1983, p. 60.Google Scholar
  70. 66.
    J. Lane, Proc. 1983 Int. Conf. Electron, Ion, Photon Beams; J. Vac. Sci. Technol. B1, 1072 (1983); S. Farenholtz, J. Vac. Sci. Technol. 19, 1111 (1981).Google Scholar
  71. 67.
    M. Bowden, L. Thompson, S. Farenholtz, and E. Doerries, J. Electrochem. Soc. 128, 1304 (1981).Google Scholar
  72. 68.
    U. S. Patent 4,409,319 (1983), IBM.Google Scholar
  73. 69.
    H. Ito and G. Willson, Org. Coat. Appl. Polym. Sci. Proc. 48, 60 (1983).Google Scholar
  74. 70.
    N. Economou, D. Flanders, and J. Donnelly, J. Vac. Sci. Technol. 19, 1172 (1981).Google Scholar
  75. 71.
    R. Seliger, J. Ward, V. Wang, and R. Kiebena, Appl. Phys. Lett. 34, 310 (1979).Google Scholar
  76. 72.
    P. Grigaitis and L. Pranevicus, Appl. Phys. Lett. 34, 310 (1979); Jpn. J. Appl Phys. 20, L261 (1981).Google Scholar
  77. 73.
    P. Bohn, J. Taylor, and H. Guckel, Anal. Chem. 53, 1082 (1981); J. Vac. Sci. Technol. 17, 735 (1980).Google Scholar
  78. 74.
    D. Rensch, R. Seliger, G. Csanky, R. Olney, and H. Stover, J. Vac. Sci. Technol. 16, 1897 (1979); L. Karapiperis and C. Lee, Appl. Phys. Lett. 35, 395 (1978).Google Scholar
  79. 75.
    P. Sullivan and J. McCoy, IEEE Trans. Electron Devices ED-23, 412 (1976).Google Scholar
  80. 76.
    J. Woodhouse, A. Fields, and A. Bucklow, J. Phys. D 7, 483 (1974).Google Scholar
  81. 77.
    M. Gazard, J. Dubois, L. Duchesne, and A. Chapiro, Polym. Eng. Sci. 20, 1069 (1980).Google Scholar
  82. 78.
    K. Kanaya, K. Shimizu, and Y. Ishikawa, J. Phys. D 1, 1657 (1968).Google Scholar
  83. 79.
    K. Csepregi, F. Iberl, and P. Eichinger, Appl. Phys. Lett. 37, 630 (1980).Google Scholar
  84. 80.
    R. Brault and L. Miller, Polym. Eng. Sci. 20, 1064 (1980), 23, 941 (1983); J. Electrochem. Soc. 128, 1159 (1981).Google Scholar
  85. 81.
    I. Adesida, L. Rathbum, J. Chinn, and E. Wolf, J. Vac. Sci. Technol. 21, 666 (1982).Google Scholar
  86. 82.
    G. Taylor, T. Venkatesan, A. Wagner, B. Wilkens, and D. Barr, J. Vac. Sci. Technol. 19, 1379 (1981); U. S. Patent 4,377,437 (1983), Bell.Google Scholar
  87. 83.
    H. Kurvano, K. Yoshida, and S. Yamazaki, Jpn. J. Appl. Phys. 19, L615 (1980).Google Scholar
  88. 84.
    D. Tenant, J. Vac. Sci. Technol. B1, 493 (1983).Google Scholar
  89. 85.
    B. Hunt and R. Buhrman, J. Vac. Sci. Technol. 19, 1310 (1981).Google Scholar
  90. 86.
    A. Wagner, Solid State Technol. May 1983, p. 97.Google Scholar
  91. 87.
    T. Hall, A. Wagner, and L. Thompson, J. Appl. Phys. 53, 3997 (1982).Google Scholar
  92. 88.
    A. Macrander, SPIE Proc. 333, 142 (1982).Google Scholar
  93. 89.
    H. Ryssel, K. Haberger, and H. Kranz, J. Vac. Sci. Technol. 19, 1358 (1981).Google Scholar
  94. 90.
    K. Moriwaki, H. Aritome, S. Namba, and L. Karapiperis, Jpn. J. Appl. Phys. 20, L881 (1981).Google Scholar
  95. 91.
    B. Maclver, J. Electrochem. Soc. 129, 827, 2384 (1982).Google Scholar
  96. 92.
    Japanese Patent 80,73,047, Chem. Abstr. 93, 248282 (1980).Google Scholar
  97. 93.
    Japanese Patent 80,22,864, Chem. Abstr. 93, 58286 (1980).Google Scholar
  98. 94.
    Y. Okuyama, T. Hashimoto, and T. Koguchi, J. Electrochem. Soc. 125, 1293 (1978).Google Scholar
  99. 95.
    K. Harada, T. Tamamura, and O. Kogure, J. Electrochem. Soc. 129, 2576 (1982).Google Scholar
  100. 96.
    Y. Wada, M. Migitaka, K. Mochiji, and H. Obayashi, J. Electrochem. Soc. 130, 1127 (1983).Google Scholar
  101. 97.
    U. S. Patent 4,239,787 (1980), Bell.Google Scholar
  102. 98.
    K. Mochiji, Y. Wada, and H. Obayashi, J. Electrochem. Soc. 129, 2556 (1982).Google Scholar
  103. 99.
    Y. Iida, V. H. Okabayashi, and K. Suzuki, Jpn. J. Appl. Phys. 16, 1313 (1977).Google Scholar
  104. 100.
    U. S. Patent 3,920,483 (1975), IBM.Google Scholar
  105. 101.
    German Patent 2,930,416, Chem. Abstr. 93, 228638 (1980).Google Scholar
  106. 102.
    Japanese Patent 80 28078, Chem. Abstr. 93, 58291 (1980).Google Scholar
  107. 103.
    Japanese Patent 79,115,128, Chem. Abstr. 92, 67739 (1979).Google Scholar
  108. 104.
    S. Forrest, V. M. Kaplin, P. Schmidt, T. Venkatesan, and A. Lovinger, Appl. Phys. Lett. 41, 708 (1982), 43, 30 (1983); J. Appl. Phys. 54, 3150 (1983).Google Scholar
  109. 105.
    European Patent Application 193,022 (1980), IBM; E. Spiller, Appl. Opt. 19, 3022 (1980).Google Scholar
  110. 106.
    K. Suzuki, Electron. Lett. 16, 178 (1980).Google Scholar
  111. 107.
    K. Galloway, J. Electrochem. Soc. 127, 1862 (1980).Google Scholar
  112. 108.
    T. Venkatesan, T. Wolf, D. Allara, B. Wilkens, and G. Taylor, Appl. Phys. Lett. 43, 934 (1983).Google Scholar
  113. 109.
    T. Venkatesan, W. Brown, C. Murry, K. Marcantonio, and B. Wilkens, Polym. Eng. Sci. 23, 931 (1983).Google Scholar
  114. 110.
    I. Haller, M. Hatzakis, and R. Srinivassan, IBM J. Res. Dev. May 1968, p. 251; U. S. Patent 3,535,137 (1973), IBM.Google Scholar
  115. 111.
    M. Komuro, N. Atoda, and H. Kawakatsu, J. Electrochem. Soc. 126, 483 (1979).Google Scholar
  116. 112.
    G. Mladenov and B. Emmonoth, Appl. Phys. Lett. 38, 1000 (1981).Google Scholar
  117. 113.
    K. Balasubramanyan, L. Karapiperis, C. Lee, and A. Rouff, J. Vac. Sci. Technol. 19, 18 (1981).Google Scholar
  118. 114.(a)
    J. Phang and H. Ahmed, J. Vac. Sci. Technol. 16, 1756 (1979)Google Scholar
  119. 114.(b)
    M. Parikh, J. Vac. Sci. Technol. 15, 935 (1978)Google Scholar
  120. 114.(c)
    C Shaw, J. Vac. Sci. Technol. 19, 1286 (1981)Google Scholar
  121. 114.(d)
    T. Chang, J. Vac. Sci. Technol. 12, 1271 (1975)Google Scholar
  122. 114.(e)
    I. Adesida and T. Everhart, J. Appl. Phys. 51, 5994 (1980)Google Scholar
  123. 114.(f)
    M. Rosenfield, A. Neureuther, and C. Ting, J. Vac. Sci. Technol. 19, 1242 (1981)Google Scholar
  124. 114.(g)
    R. Hawryluk, J. Vac. Sci. Technol. 19, 1 (1981)Google Scholar
  125. 114.(h)
    G. Owen and P. Rissman, J. Appl. Phys. 54, 3573 (1983)Google Scholar
  126. 114.(i)
    P. Vettiger, J. Vac. Sci. Technol. Bl, 1378 (1983)Google Scholar
  127. 114.(j)
    M. Nakase, IEEE Trans. Electron Devices ED-27, 1460 (1980).Google Scholar
  128. 115.
    B. Lin, Solid State Technol. May 1983, p. 105.Google Scholar
  129. 116.
    A. Broers, J. Electrochem. Soc. 128, 166 (1981); D. Kyser and C. Ting, J. Vac. Sci. Technol. 16, 1759 (1979).Google Scholar
  130. 117.
    M. Yoshimi, K. Kawabuchi, T. Takigawa, M. Takahashi, and Y. Kato, Electron. Lett. 18, 880 (1982), 16, 621 (1980).Google Scholar
  131. 118.
    A. Iranmanesh and R. Pease, Electrochem. Soc. Ext. Abstr. 82-1, 507 (1982).Google Scholar
  132. 119.
    H. Ralph, G. Duggan, and R. Elliott, Electrrochem. Soc. Ext. Abstr. 82-1, 514 (1982); T. Lin, IBM J. Res. Dev. Sept. 1967, p. 257.Google Scholar
  133. 120.
    A. Avidenko and M. Malev, Vacuum 27, 583 (1977).Google Scholar
  134. 121.
    T. Kelen, Polymer Degradation, Van Nostrand, Princeton, N.J., 1983.Google Scholar
  135. 122.
    M. Dole, editor, Radiation Chemistry of Macromolecules, Vols. I and II, Academic Press, New York, 1973.Google Scholar
  136. 123.
    T. Tada, J. Electrochem. Soc. 129, 1070 (1982); S. Schlick and L. Kevan, J. Appl. Polym. Sci. 27, 319 (1982).Google Scholar
  137. 124.
    A. Torikai, H. Kato, and Z. Kuri, J. Polym. Sci. 14, 1065 (1976); M. Tabata, J. Polym. Sci. 21, 3257 (1983).Google Scholar
  138. 125.
    Y. Yamamoto, Macromolecules 10, 1316 (1977).Google Scholar
  139. 126.
    M. Tabata, J. Polym. Sci. Polym. Chem. Ed. 21, 3257 (1983).Google Scholar
  140. 127.
    M. Bowden, L. Stillwagon, T. Thompson, and T. Bowmer, Org. Coat. Appl. Polym. Sci. Proc. 48, 161 (1983).Google Scholar
  141. 128.
    H. Pfeiffer, Microcircuit Eng., 1983, Paper A-1.Google Scholar
  142. 129.
    E. Weber, SPIE Proc. 333, 94 (1982).Google Scholar
  143. 130.
    R. Moore, G. Colloma, H. Pfeiffer, E. Weber, and O. Woodward, J. Vac. Sci. Technol. 19, 950 (1981); Solid State Technol. Sept. 1983, p. 127.Google Scholar
  144. 131.
    M. Miyazaki, N. Saitou, and C. Munakata, J. Phys. E 14, 194 (1981).Google Scholar
  145. 132.
    A. Broers, IEEE Trans. Electron Devices ED-28, 1268 (1981).Google Scholar
  146. 133.
    H. Ku and L. Scala, J. Electrochem. Soc. 116, 980 (1969).Google Scholar
  147. 134.
    J. Greeneich, J. Electrochem. Soc. 122, 970 (1975).Google Scholar
  148. 135.
    U. S. Patent 3,996,393 (1975), IBM.Google Scholar
  149. 136.
    C. Pittman, M. Uedo, C. Chen, J. Kwiatkowski, C. Cook, and J. Helbert, J. Electrochem. Soc. 128, 1758 (1981), and early references therein.Google Scholar
  150. 137.
    J. Helbert, C. Cook, J. Pittman, and C. Chen, J. Electrochem. Soc. 126, 694 (1979); U. S. Patent 3,914,462 (1974), Hitachi.Google Scholar
  151. 138.
    E. Gipstein, W. Moreau, and O. Need, J. Electrochem. Soc. 123, 1105 (1973).Google Scholar
  152. 139.
    U. S. Patent 3,898,350 (1974), IBM.Google Scholar
  153. 140.
    U. S. Patent 4,011,351 (1978), IBM.Google Scholar
  154. 141.
    Y. Hatano, Proc. 8th Int. Conf. Electron, Ion Beams, 1978, p. 332.Google Scholar
  155. 142.
    U. S. Patent 4,004,043 (1978), IBM.Google Scholar
  156. 143.
    U. S. Patent 3,931,435 (1976), IBM.Google Scholar
  157. 144.
    W. Moreau, W. Moyer, D. Merritt, M. Hatzakis, L. Pederson, and D. Johnson, J. Vac. Sci. Technol. 16, 1989 (1979); U. S. Patent 4,087,569 (1979), IBM.Google Scholar
  158. 145.
    M. Hatzakis and D. Webb, J. Vac. Sci. Technol. 16, 2008 (1979); U. S. Patent 4,156,745 (1981), IBM.Google Scholar
  159. 146.
    C. Anderson, Y. Namaste, F. Rodriguez, and K. Obendorf, Am. Chem. Soc. Org. Coat. Prepr. 48, 156 (1983).Google Scholar
  160. 147.
    U. S. Patent 4,279,984 (1982), Matsushita.Google Scholar
  161. 148.
    U. S. Patent 3,914,462 (1973), Hitachi.Google Scholar
  162. 149.
    M. Kakuchi, S. Sugawara, K. Murase, and K. Matsuyama, J. Electrochem. Soc. 124, 1648 (1977); Rev. Electr. Commun. Lab. 27, 1113 (1979).Google Scholar
  163. 150.
    T. Kitakohji, J. Electrochem. Soc. 126, 1881 (1979).Google Scholar
  164. 151.
    T. Kitayama, Jpn. Semicond. Technol. News 2(4), 2 (1983).Google Scholar
  165. 152.
    Japanese Patent 80,58,211, Chem. Abstr. 93, 141027 (1980).Google Scholar
  166. 153.
    T. Tada, J. Electrochem. Soc. 126, 1829 (1979), 130, 912 (1983); U. S. Patent 4,268,607 (1981), VLSI.Google Scholar
  167. 154.
    C. Chen, C. Pittmann, and J. Helbert, J. Polym. Sci. Polym. Chem. Ed. 18, 169 (1980); J. Vac. Sci. Technol. 16, 1992 (1979); U. S. Patents 4,304,840 and 4,302,259 (1981), Honeywell; J. Lai, J. Electrochem. Soc. 129, 1596 (1982).Google Scholar
  168. 155.
    M. Yamada and S. Hattori, Jpn. J. Appl. Phys. 20, 1969 (1981).Google Scholar
  169. 156.
    C. Pittmann, J. Helbert, and C. Chen, J. Polym. Sci. 18, 3413 (1980).Google Scholar
  170. 157.
    J. Helbert, Polym. Eng. Sci. 17, 402 (1977); French Patent 2,240,200, TLGoogle Scholar
  171. 158.
    M. Hatzakis, J. Vac. Sci. Technol. 16, 1984 (1979).Google Scholar
  172. 159.
    U. S. Patent 4,125,672 (1978), Nippon.Google Scholar
  173. 160.
    H. Ito, D. Miller, and C. Willson, Macromolecules 15, 915 (1982).Google Scholar
  174. 161.
    U. S. Patent 3,996,393 (1975), IBM.Google Scholar
  175. 162.
    R. Harris, J. Electrochem. Soc. 120, 272 (1973).Google Scholar
  176. 163.
    N. Atoda, M. Komeiro, and H. Kawakatsu, J. Appl. Phys. 50, 3707 (1979).Google Scholar
  177. 164.
    L. Gavens, B. Wu, D. Hess, A. Bell, and D. Soong, J. Vac. Sci. Technol. B1, 481 (1983).Google Scholar
  178. 165.
    J. Lai and L. Sheperd, J. Appl. Polym. Sci. 20, 2367 (1976).Google Scholar
  179. 166.
    E. Gipstein, O. Need, A. Ouano, and D. Johnson, IBM J. Res. Dev. 21, 143 (1977).Google Scholar
  180. 167.
    M. Ballauf and B. Wolf, Macromolecules 14, 654 (1981).Google Scholar
  181. 168.
    K. Harada, T. Tamamura, and O. Kogure, J. Electrochem. Soc. 129, 2576 (1982).Google Scholar
  182. 169.
    C Pittman, M. Ueda, C. Chen, C. Cook, J. Helbert, and J. Kwatkowski, J. Electrochem. Soc. 128, 1759 (1981); Macromolecules 11, 1104 (1978).Google Scholar
  183. 170.
    N. Grassie, Polym. Degr. 3, 209 (1981).Google Scholar
  184. 171.
    G. Willson, H. Ito, D. Miller, and T. Tessier, SPE RETEC Photopolymers, 1982; Polym. Eng. Sci. 23, 1000 (1983).Google Scholar
  185. 172.
    N. Viswanathan, J. Polym. Sci. Polym. Chem. Ed. 14, 1553 (1976).Google Scholar
  186. 173.
    J. Dubois, M. Gazard, and G Duchesne, Int. Conf. Microlithogr., Paris, 1977, p. 289.Google Scholar
  187. 174.
    Japanese Patent 78,21,286, Chem. Abstr. 89, 138401 (1979).Google Scholar
  188. 175.
    Japanese Patent 78,51,284, Tokyo Shibaura; Chem. Abstr. 90, 31974h (1978).Google Scholar
  189. 176.
    French Patent 2,304,933, Chem. Abstr. 91, 220371 (1979), Thompson CSF.Google Scholar
  190. 177.
    Japanese Patent 79,41,719, Chem. Abstr. 91, 999536 (1979), Cho LSI.Google Scholar
  191. 178.
    U. S. Patent 4,051,271 (1978), AGIST.Google Scholar
  192. 179.
    U. S. Patent 3,931,435 (1976), IBM.Google Scholar
  193. 180.
    K. Murase, Int. Conf. Microlithogr., Paris, 1977, p. 265.Google Scholar
  194. 181.
    A. Ouano, Polym. Eng. Sci. 18, 306 (1978), 20, 160 (1980).Google Scholar
  195. 182.
    K. Harada, J. Macromol. Sci. C3, 347 (1969).Google Scholar
  196. 183.
    D. Yoon, IBM Internal Report RJ1684 (1975).Google Scholar
  197. 184.
    W. Moreau and P. Schmidt, Electrochem. Soc. Ext. Abstr. 70, 459 (1970).Google Scholar
  198. 185.
    A. Charlesby and R. Blackburn, Nature 210, 1036 (1966).Google Scholar
  199. 186.
    H. Harada and S. Sugawara, J. Appl. Polym. Sci. 27, 1441 (1982).Google Scholar
  200. 187.
    U. S. Patents 3,934,057 and 4,024,293, IBM.Google Scholar
  201. 188.
    G. Geuskeins, MacromoL Chem. 160, 343 (1973), 165, 273 (1973).Google Scholar
  202. 189.
    J. Gardella and D. Hercules, Anal. Chem. 52, 2273 (1980).Google Scholar
  203. 190.
    J. Bargon, E. Gipstein, H. Hiroaka, and L. Welsh, J. Appl. Polym. Sci. 22, 3397 (1978); U. S. Patent 4,084,569 (1979).Google Scholar
  204. 191.
    E. Roberts, Am. Chem. Soc. Org. Coat. Prepr. 33, 359 (1973); U. S. Patents 4,061,832 (1978) and 3,981,985 (1976), U.S. Phillips; Polym. Eng. Sci. 23, 968 (1983).Google Scholar
  205. 192.
    U. S. Patent 4,276,365 (1981), Fujitsu.Google Scholar
  206. 193.
    U. S. Patent 4,273,857 (1981), Fujitsu.Google Scholar
  207. 194.
    M. Suzuki and Y. Ohnishi, J. Electrochem. Soc. 129, 402 (1982).Google Scholar
  208. 195.
    T. Tada, J. Electrochem. Soc. 126, 1635 (1979).Google Scholar
  209. 196.
    F. Asmussen, H. Betz, J. Chen, A. A. Heuberger, S. Pongrantz, H. Sotobayashi, and W. Schnabel, J. Electrochem. Soc. 130, 180 (1983).Google Scholar
  210. 197.
    U. S. Patent 4,121,936 (1978), Fuji.Google Scholar
  211. 198.
    U. S. Patent 4,279,984 (1981), Matsushita.Google Scholar
  212. 199.
    Japanese Patent 80,52,051, Chem. Abstr. 93, 177306 (1980).Google Scholar
  213. 200.
    German Patent 2,946,206, Chem. Abstr. 93, 248264 (1980).Google Scholar
  214. 201.
    Japanese Patent 80,151,637, Chem. Abstr. 94, 165703 (1981).Google Scholar
  215. 202.
    U. S. Patent 4,264,715 (1981), VLSI.Google Scholar
  216. 203.
    U. S. Patent 4,276,365 (1981), Fujitsu.Google Scholar
  217. 204.
    U. S. Patent 4,268,607 (1981), VLSI.Google Scholar
  218. 205.
    T. Kitakohji, Y. Yoneda, K. Kitamura, H. Okuyama, and K. Muiakawa, J. Electrochem. Soc. 126, 1881 (1979).Google Scholar
  219. 206.
    German Patent 2,537,932, Chem. Abstr. 91, 132155 (1979).Google Scholar
  220. 207.
    Japanese Patent 79,66,836, Chem. Abstr. 92, 119729 (1980).Google Scholar
  221. 208.
    Japanese Patent 80,159,436, Chem. Abstr. 94, 112562 (1982).Google Scholar
  222. 209.
    Japanese Patent 80,108,656, Chem. Abstr. 94, 112563 (1982).Google Scholar
  223. 210.
    Japanese Patent 78,125,023, Chem. Abstr. 89, 144309 (1978).Google Scholar
  224. 211.
    U. S. Patent 3,984,582, IBM; I. Haller, J. Electrochem. Soc. 126, 154 (1979).Google Scholar
  225. 212.
    Japanese Patent 79,66,122, Chem. Abstr. 91, 166416 (1979).Google Scholar
  226. 213.
    Japanese Patent 78,32,718, Chem. Abstr. 89, 188990 (1978).Google Scholar
  227. 214.
    Y. Yamashita, J. Vac. Sci. Technol. 16, 2026 (1979); Jpn. J. Appl. Phys. 20, L22 (1981); German Patent 2,849,996, Chem. Abstr. 92, 102322 (1980); Japanese Patent 79,29,627, Chem. Abstr. 91, 66338 (1979).Google Scholar
  228. 215.
    A. Mura, J. Vac. Sci. Technol. 16, 1996 (1979); Japanese Patent 80, 151,637, Chem. Abstr. 94, 165703 (1980).Google Scholar
  229. 216.
    S. Matsuda, Polym. Eng. Sci. 17, 410 (1977).Google Scholar
  230. 217.
    Japanese Patent 80,90,950, Chem. Abstr. 94, 55936 (1980).Google Scholar
  231. 218.
    U. S. Patent 4,096,290 (1979), IBM.Google Scholar
  232. 219.
    German Patent 2,437,422, Chem. Abstr. 86, 24468 (1977).Google Scholar
  233. 220.
    J. Chinn, I. Adesida, E. Wolfe, and R. Tiberio, J. Vac. Sci. Technol. 19, 1418 (1981).Google Scholar
  234. 221.
    K. Harada, J. Appl. Polym. Sci. 26, 3395 (1981); J. Electrochem. Soc. 128, 491 (1981).Google Scholar
  235. 222.
    L. Pederson, J. Electrochem. Soc. 129, 206 (1982).Google Scholar
  236. 223.
    Japanese Patent 80,142,337, Chem. Abstr. 94, 112566 (1980); U. S. Patent 4,289,573 (1981), IBM.Google Scholar
  237. 224.
    U. S. Patent 4,289,573 (1981), IBM.Google Scholar
  238. 225.
    European Patent 8,787, Chem. Abstr. 93, 228635 (1980).Google Scholar
  239. 226.
    Japanese Patent 80,159,436, Chem. Abstr. 94, 217649 (1980).Google Scholar
  240. 227.
    K. Harada, O. Kogure, and K. Murase, IEEE Trans. Electron Devices ED-29, 518 (1982).Google Scholar
  241. 228.
    J. Lai, J. Electrochem. Soc. 129, 1596 (1982).Google Scholar
  242. 229.
    Japanese Patent 81,16,416, Chem. Abstr. 95, 159909 (1981).Google Scholar
  243. 230.
    Japanese Patent 81,39,539, Chem. Abstr. 95, 12409 (1981).Google Scholar
  244. 231.
    E. Gipstein, W. Moreau, and O. Need, J. Electrochem. Soc. 123, 1105 (1976).Google Scholar
  245. 232.
    J. Aronte, Fujitsu Sci. Tech. J. June 1978, p. 143.Google Scholar
  246. 233.
    M. Yamada and S. Hattori, Jpn. J. Appl. Phys. 20, 1969 (1981).Google Scholar
  247. 234.
    Japanese Patent 81,95,903, Chem. Abstr. 96, 60868 (1981).Google Scholar
  248. 235.
    Japanese Patent 77,93,493, Chem. Abstr. 88, 56981 (1977), 86, 198006 (1976).Google Scholar
  249. 236.
    J. Tamano, Plasma Chem. Plasma Process. 1, 261 (1981).Google Scholar
  250. 237.
    M. Gazard, S. Haltori, M. Iida, and S. Monta, Polym. Eng. Sci. 20, 1069 (1980).Google Scholar
  251. 238.
    U. S. Patent 4,193,797 (1981), DuPont.Google Scholar
  252. 239.
    J. Brown and J. O’Donnell, Macromolecules 3, 265 (1970), 5, 109 (1972).Google Scholar
  253. 240.
    N. Tokura, in Encyclopedia of Polymer Science and Technology, Wiley, New York, 1969, pp. 460–485.Google Scholar
  254. 241.
    L. Thompson, M. Bowden, J. Ballantyne, R. Pease, L. Yau, S. Skinner, and J. Frackoviak, in Microcircuit Engineering, edited by H. Ahmed and W. Nixon, Cambridge University Press, London, 1981, p. 239.Google Scholar
  255. 242.
    M. Bowden and L. Thompson, J. Appl. Polym. Sci. 17, 3211 (1973).Google Scholar
  256. 243.
    M. Bowden and L. Thompson, Appl. Polym. Symp. 23, 99 (1974).Google Scholar
  257. 244.
    M. Bowden, J. Polym. Sci. Polym. Symp. 49, 221 (1975).Google Scholar
  258. 245.
    M. Bowden, L. Thompson, and J. Ballantyne, J. Vac. Sci. Technol. 12, 1295 (1975).Google Scholar
  259. 246.
    M. Bowden and L. Thompson, Polym. Eng. Sci. 14, 5251 (1974), 17, 269 (1977).Google Scholar
  260. 247.
    M. Bowden and L. Thompson, J. Electrochem. Soc. 121, 1620 (1974).Google Scholar
  261. 248.
    R. Himics and M. Kaplan, Am. Chem. Soc. Org. Coat. Prepr. 35, 266 (1975); Polym. Eng. Sci. 17, 406 (1977).Google Scholar
  262. 249.
    E. Gipstein, W. Moreau, G. Chiu, and O. Need, J. Appl. Polym. Sci. 21, 677 (1977).Google Scholar
  263. 250.
    M. Bowden, L. Thompson, W. Robinson, and M. Biolsi, Macromolecules 15, 1417 (1982).Google Scholar
  264. 251.
    T. Bowmer and J. O’Donnell, Polymer 22, 71 (1981) and references therein; Radiat. Phys. Chem. 17, 177 (1981); J. Polym. Sci. 19, 45 (1981).Google Scholar
  265. 252.
    T. Bowmer and M. Bowden, Am. Chem. Soc. Org. Coat. Appl. Polym. Sci. 48, 171 (1983).Google Scholar
  266. 253.
    A. Gutierrez, J. Pacansky, and R. Kroeker, ACS Org. Coat. Appl. Polym. Sci. 46, 520 (1982).Google Scholar
  267. 254.
    J. Pacansky, R. Krocker, E. Gipstein, and A. Gutierrez, Electrochem. Soc. Ext. Abstr. 82-1, 447 (1982).Google Scholar
  268. 255.
    J. Calvert and J. Pitts, Photochemistry, Wiley, New York, 1966, p. 653, and references to Norrish rotating sector method for radical lifetime.Google Scholar
  269. 256.
    M. Bowden and T. Bowmer, Am. Chem. Soc. Org. Coat. Appl. Polym. Sci. 48, 161 (1983).Google Scholar
  270. 257.
    U. S. Patent 3,884,696 (1975), Bell.Google Scholar
  271. 258.
    U. S. Patent 3,935,331 (1976), RCA.Google Scholar
  272. 259.
    U. S. Patent 3,898,350 (1975), IBM.Google Scholar
  273. 260.
    U. S. Patent 4,007,295 (1977), RCA.Google Scholar
  274. 261.
    M. Bowden and L. Thompson, J. Electrochem. Soc. 121, 1620 (1974).Google Scholar
  275. 262.
    U. S. Patent 4,007,295 (1977).Google Scholar
  276. 263.
    M. Bowden, L. Thompson, J. Ballantyne, R. Pease, L. Yau, J. Frackoviak, and J. Skinners, in Microcircuit Engineering, edited by W. Nixon, Pergamon Press, New York, 1981.Google Scholar
  277. 264.
    M. Bowden, L. Thompson, S. Farenholtz, and F. Doerries, J. Electrochem. Soc. 128, 1304 (1981), U. S. Patent 4,289,845 (1982), Bell.Google Scholar
  278. 265.
    U. S. Patent 4,398,001 (1983), IBM.Google Scholar
  279. 266.
    H. Shiraishi, Am. Chem. Soc. Org. Coat. Appl. Polym. Sci. 48, 178 (1983); Am. Chem. Soc. Symp. Ser. 242, 170 (1983); U. S. Patent 4,409,317 (1981), Hitachi.Google Scholar
  280. 267.
    S. Farenholtz and T. Kwei, Macromolecules 14, 1076 (1981), 15, 937 (1982); J. Vac. Sci. Technol. 19, 1111 (1981).Google Scholar
  281. 268.
    M. Bowden, J. Polym. Sci. 26, 1424 (1981).MathSciNetGoogle Scholar
  282. 269.(a)
    H. Hiroaka and L. Welsh, Am. Chem. Soc. Org. Coat. Appl. Polym. Sci. 48, 48 (1983)Google Scholar
  283. 269.(b)
    R. Andrews and R. Kufer, Molecular Complexes in Organic Chemistry, Holden-Day, San Francisco, 1964Google Scholar
  284. 269.(c)
    U. S. Patent 3,940,507 (1976), RCA.Google Scholar
  285. 270.
    S. Torikai, J. Polym. Sci. Part A 2, 239 (1964); J. Polym. Sci. 7, 186 (1969).Google Scholar
  286. 271.
    U. S. Patents 3,915,704, 3,915,706, 3,917,483, Xerox.Google Scholar
  287. 272.
    H. Ito and C. Willson, Am. Chem. Soc. Org. Coat Appl. Pol. Sci. 48, 60 (1983).Google Scholar
  288. 273.
    A. Levine, M. Kaplan, and E. Polinak, Polym. Eng. Sci. 14, 118 (1974); U. S. Patent 4,012,536 (1978), RCA.Google Scholar
  289. 274.
    U. S. Patent 3,985,914 (1976), IBM.Google Scholar
  290. 275.
    U. S. Patent 3,961,099 (1975), IBM.Google Scholar
  291. 276.
    A. Levine, M. Kaplan, and J. Fech, J. Polym. Sci. 11, 311 (1973).Google Scholar
  292. 277.
    Japanese Patent 78,78,835, Chem. Abstr. 90, 64496 (1978).Google Scholar
  293. 278.
    Japanese Patent 78,115,832, Chem. Abstr. 90, 130685 (1978).Google Scholar
  294. 279.
    Japanese Patent 78,81,115, Chem. Abstr. 90, 64498 (1978).Google Scholar
  295. 280.
    J. Pacansky and J. Lyerla, IBM J. Res. Dev. 23, 42 (1979); J. Electrochem. Soc. 126, 860 (1979).Google Scholar
  296. 281.
    J. Shaw, M. Fritsch and F. Dill, IBM J. Res. Dev. 21, 219 (1977).Google Scholar
  297. 282.
    J. Shaw and M. Hatzakis, J. Electrochem. Soc. 126, 2026 (1979).Google Scholar
  298. 283.
    J. Shaw and M. Hatzakis, IEEE Trans. Electron Devices ED-25, 426 (1978).Google Scholar
  299. 284.
    U. S. Patent 4,409,319 (1983), IBM.Google Scholar
  300. 285.
    J. Pacansky and H. Cocufal, J. Am. Chem. Soc. 102, 402 (1980).Google Scholar
  301. 286.
    J. Pacansky and A. Guetterrez, IBM Internal Report RJ 3627 (1982).Google Scholar
  302. 287.
    D. O’Sullivan and C. Willson, J. Electrochem. Soc. 129, 811 (1982).Google Scholar
  303. 288.
    J. Shaw and M. Hatzakis, J. Vac. Sci. Technol. 19, 1343 (1981).Google Scholar
  304. 289.
    S. Farenholtz, J. Vac. Sci. Technol. 19, 1111 (1981); U. S. Patent 4,173,470 (1979), Bell.Google Scholar
  305. 290.
    T. Bowmer and J. O’Donnell, J. Macromol. Sci. A17, 243 (1982).Google Scholar
  306. 291.
    A. Chapiro, Radiation Chemistry of Polymers, Interscience, New York, 1962.Google Scholar
  307. 292.
    A. Charlesby, Atomic Radiation and Polymers, Pergamon Press, New York, 1960.Google Scholar
  308. 293.
    Japanese Patent 76,148,417, Chem. Abstr. 86, 131180 (1976).Google Scholar
  309. 294.
    U. S. Patent 4,074,031 (1978), IBM.Google Scholar
  310. 295.
    Japanese Patent 76,148,418, Chem. Abstr. 86, 131179 (1976).Google Scholar
  311. 296.
    U. S. Patent 3,900,737 (1975), Bell.Google Scholar
  312. 297.
    M. Inoue, Jpn. Electron. Eng. May 1982, p. 60.Google Scholar
  313. 298.
    S. Fok and G. Hong, Proceedings of Kodak Microelectronics Seminar, 1983.Google Scholar
  314. 299.
    Y. Hashimoto, Jpn. Semicond. Technol. News 2, 22 (1983).Google Scholar
  315. 300.
    E. Weber and R. Moore, Solid State Technol. May 1979, p. 61.Google Scholar
  316. 301.
    G. Clark, Applied X-rays, McGraw-Hill, New York, 1955, p. 216.Google Scholar
  317. 302.
    K. Mochiji, Appl. Phys. Lett. 45, 251 (1984).Google Scholar
  318. 303.
    H. Gecim, Electron. Lett. 20, 598 (1984).Google Scholar
  319. 304.
    J. Golin and J. Glaze, Solid State Technol. Aug. 1984, p. 137.Google Scholar
  320. 305.
    European Patent Application 96,895, Chem. Abstr. 100, 94542 (1983).Google Scholar
  321. 306.
    U. S. Patent 4,396,702 (1983), RCA.Google Scholar
  322. 307.
    U. S. Patent 4,397,939 (1983), RCA.Google Scholar
  323. 308.
    E. Roberts, Polym. Eng. Sci. 23, 968 (1983).Google Scholar
  324. 309.
    U. S. Patent 4,414,313 (1983), Honeywell.Google Scholar
  325. 310.
    Japanese Patent 58,184,944, Chem. Abstr. 100, 165447 (1983).Google Scholar
  326. 311.
    Japanese Patent 57,139,738, Chem. Abstr. 100, 15327 (1983).Google Scholar
  327. 312.
    U. S. Patent 4,405,710 (1983), Cornell.Google Scholar
  328. 313.
    Japanese Patent 57,205,739, Chem. Abstr. 101, 15036 (1984).Google Scholar
  329. 314.
    German Patent 3,322,886, Chem. Abstr. 100, 129921 (1982).Google Scholar
  330. 315.
    U. S. Patent 4,415,653 (1983), Honeywell.Google Scholar
  331. 316.
    Y. Namatse, F. Rodriguez, C. Anderson, and K. Obendorf, SPIE Proc. 469, 53 (1984).Google Scholar
  332. 317.
    N. Tung, J. Electrochem. Soc. 131, 2152 (1984).Google Scholar
  333. 318.
    J. Jensen and C. Slayman, SPIE Proc. 471, 53 (1984).Google Scholar
  334. 319.
    H. Hiroaka, SPIE Proc. 469, 127 (1984).Google Scholar
  335. 320.
    V. Sharma, S. Affrossmann, and R. Pethrick, Polymer 25, 1087 (1984).Google Scholar
  336. 321.
    V. Sharma, S. Affrossmann, and R. Pethrick, Polymer 25, 1090 (1984).Google Scholar
  337. 322.
    V. Sharma, S. Affrossmann and R. Pethrick, Polymer 25, 1087 (1984).Google Scholar
  338. 323.
    E. Roberts, Solid State Technol. June 1984, p. 135.Google Scholar
  339. 324.
    G. Taylor, Solid State Technol. June 1984, p. 124.Google Scholar
  340. 325.
    J. Jensen, Solid State Technol. June 1984, p. 145.Google Scholar
  341. 326.
    V. Aristov, in Microcircuit Engineering edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1983, p. 343.Google Scholar
  342. 327.
    W. Schnabel and H. Sotobayashi, Prog. Polym. Sci. 9, 297 (1983).Google Scholar
  343. 328.
    E. Roberts and C. Fuller, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1983, p. 297.Google Scholar
  344. 329.
    J. Cleaver, P. Heard, and H. Ahmed, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1983, p. 133.Google Scholar
  345. 330.
    U.S. Patent 4,491,628 (1985), IBM.Google Scholar
  346. 331.
    Japanese Patent 58,114,030, Chem. Abstr. 101, 81659 (1984).Google Scholar
  347. 332.
    Japanese Patent 58,116,532, Chem. Abstr. 101, 81660 (1984).Google Scholar
  348. 333.
    European Patent Application 109,617, Chem. Abstr. 101, 81666 (1984).Google Scholar
  349. 334.
    W. Schnabel, S. Kiamunzer, H. Sotobayashi, F. Asmussen, and Y. Tabata, Macromolecules 17, 2108 (1984).Google Scholar
  350. 335.
    S. Equsa, K. Ishigure, and Y. Tabata, Macromolecules 12, 939 (1979).Google Scholar
  351. 336.
    G. Babu, A. Narula, J. Chien, and S. Hsu, J. Polym. Sci. 22, 195 (1984).Google Scholar
  352. 337.
    Y. Namatase, S. Obendorf, C. Anderson, P. Krasicky, F. Rodriguez, and R. Tiberio, J. Vac. Sci. Technol B1, 1160 (1983).Google Scholar
  353. 338.
    A. Eranian, A. Cordlet, F. Damatani, and J. Dubois, in Microcircuit Engineering, Academic Press, New York, 1984, p. 404.Google Scholar
  354. 339.
    I. Aesida, M. Zhang, and E. Wolfe, J. Electron. Mater. 13, 689 (1984).Google Scholar
  355. 340.
    G. Mladenov, B. Emmoth, and M. Braun, Vacuum 34, 551 (1984).Google Scholar
  356. 341.
    K. Valiev, Sov. Microelectron. 12, 1 (1983).Google Scholar
  357. 342.
    K. Valiev, Sov. Microelectron. 12, 101 (1983).Google Scholar
  358. 343.
    K. Murata, J. Appl. Phys. 57, 575 (1985).Google Scholar
  359. 344.
    G. Babu, A. Narula, S. Hsu, and J. Chien, Macromolecules 17, 2749 (1984).Google Scholar
  360. 345.
    U. S. Patents 3,852,771 (1974); 4,005,437 (1977), RCA.Google Scholar
  361. 346.
    U. S. Patent 3,661,582 (1972), Western Electric.Google Scholar
  362. 347.
    P. Clifford, N. Green, and M. Pilling, J. Phys. Chem. 89, 925 (1985).Google Scholar
  363. 348.
    E. Wallace, C. Chen, C. Pittmann, J. Kwiatkowski, C. Cook, and J. Helbert, Polym. Eng. Sci. 25, 83 (1985).Google Scholar
  364. 349.
    U. S. Patent 4,513,077 (1985), Hitachi.Google Scholar
  365. 350.
    Japanese Patent 60,26,337 (1985), Fujitsu; Chem. Abstr. 103, 62586 (1985).Google Scholar
  366. 351.
    Japanese Patent 60,55,337 (1985), NEC; Chem. Abstr. 103, 62594 (1985).Google Scholar
  367. 352.
    H. Yamashita and Y. Todokoro, J. Vac. Sci. Technol. B3, 1004 (1985).Google Scholar
  368. 353.
    H. Yamashita and Y. Todokoro, Electron. Lett. 21, 645 (1985).Google Scholar
  369. 354.
    K. Mochyi, T. Kimura, and H. Oboyashi, Appl. Phys. Lett. 46, 387 (1985).Google Scholar
  370. 355.
    N. Samoto, R. Shizumu, and H. Hashimoto, Jpn. J. Appl. Phys. 24, 482 (1985).Google Scholar
  371. 356.
    M. Suzuki, Y. Ohnishi, and A. Furuta, J. Electrochem. Soc. 132, 1390 (1985).Google Scholar
  372. 357.
    U. S. Patent 4,476,217 (1985), Honeywell.Google Scholar
  373. 358.
    S. MacDonald, H. Ito, and C. Willson, Microelectron. Eng. 1, 269 (1983).Google Scholar
  374. 359.
    A. Schiltz, A. Weill, and P. Paneez, in Microcircuit Engineering, edited by H. Beneking and H. Beureuther, Academic Press, New York, 1985, p. 545.Google Scholar
  375. 360.
    T. Hayasaka, S. Ishihara, H. Kinoshita, and N. Takeuchi, J. Vac. Sci. Technol. B3, 1581 (1985).Google Scholar
  376. 361.
    J. Frechet, F. Houlihan, and C. Willson, Polym. Mater. Sci. Eng. 53, 268 (1985).Google Scholar
  377. 362.
    A. Gowdz, H. Craighead, and M. Bowden, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 157.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Wayne M. Moreau
    • 1
  1. 1.General Technology DivisionInternational Business Machines CorporationNew YorkUSA

Personalised recommendations