Skip to main content

Positive Radiation Resists

  • Chapter
Semiconductor Lithography

Part of the book series: Microdevices ((MDPF))

Abstract

Positive radiation resists are required for submicrometer lithography using high-energy (10–200 keV) X-ray, ion, and electron beams. Since the resolution of an exposure process is limited by the wavelength of forward and, moreover, backscat-tered radiation, high-energy rays of atom-size wavelengths are capable of resolution to 50 Å (Fig. 3-1-1). However, the practical resolution limit is about 500 Å. If the backscatter is reduced or eliminated using silicon membranes instead of thick wafers, nanometer-size devices can be fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Varnell, P. Shah, and R. Havemann, Proc. IEEE 71, 612 (1983).

    Google Scholar 

  2. D. Herriott, J. Vac. Sci. Technol. 20, 781 (1982).

    Google Scholar 

  3. D. Spears and H. Smith, Solid State Technol. July 1972, p. 21.

    Google Scholar 

  4. E. Weber, SPIE Proc. 333, 95 (1982).

    Google Scholar 

  5. H. Bohlen, J. Greschner, J. Keyser, W. Kulcke, and P. Nehmiz, IBM J. Res. Dev. 26, 568 (1982).

    Google Scholar 

  6. R. Speidel and M. Mayr, Optik (Stuttgart) 48, 247 (1977).

    Google Scholar 

  7. M. Hatzakis, D. Hofer, and T. Chang, J. Vac. Sci. Technol. 16, 1631 (1979); U. S. Patent 4,267,259 (1981), IBM.

    Google Scholar 

  8. M. Heritage, J. Vac. Sci. Technol. 12, 1135 (1975).

    Google Scholar 

  9. W. Brown, T. Venkatesan, and A. Wagner, Solid State Technol. Aug. 1981, p. 60.

    Google Scholar 

  10. L. Fried, J. Havas, P. Totta, J. Logan, G. Paal, and J. Lechaton, IBM J. Res. Dev. 26, 362 (1982).

    Google Scholar 

  11. B. El Karek and A. Pattletz, J. Vac. Sci. Technol. 15, 1047 (1978).

    Google Scholar 

  12. H. Ryssel, Appl. Phys. A 27, 239 (1982); G. Bird, Photogr. Sci. Eng. 25, 246 (1981).

    Google Scholar 

  13. J. Greeneich, in Electron Beam Technology in Microelectronics Fabrication, edited by G. Brewer, Academic Press, New York, 1980, p. 209

    Google Scholar 

  14. J. Trotel and B. Fay, ibid. p. 309.

    Google Scholar 

  15. C. Ting, Record of the 11th Symposium on Electron, Ion, and Laser Beam Technology, edited by R. Thomley, San Francisco Press, San Francisco, 1971, p. 345.

    Google Scholar 

  16. U. S. Patent 3,535,137 (1971), IBM.

    Google Scholar 

  17. R. Selliger and W. Fleming, J. Appl. Phys. 45, 1416 (1974).

    Google Scholar 

  18. D. Spears and H. Smith, Electron. Lett. 8, 102 (1972).

    Google Scholar 

  19. U. S. Patents 3,934,057; 4,024,293 (IBM).

    Google Scholar 

  20. S. Beaumont, P. Bower, T. Tamamura, and C. Wilkinson, Appl. Phys. Lett. 38, 436 (1981).

    Google Scholar 

  21. U. S, Patent 4,004,044 (1976), IBM.

    Google Scholar 

  22. M. Hatzakis, J. Electrochem. Soc. 116, 1033 (1969).

    Google Scholar 

  23. B. Mallon, J. Polym. Sci. Part A 6, 2637 (1968).

    Google Scholar 

  24. L. Karapiperis, I. Adesida, G Lee, and E. Wolfe, J. Vac. Sci. Technol. 19, 1259 (1981).

    Google Scholar 

  25. W. Buckley and G. Hughes, J. Electrochem. Soc. 128, 1106 (1981).

    Google Scholar 

  26. M. Natase and Y. Matsumoto, Photogr. Sci. Eng. 23, 215 (1979).

    Google Scholar 

  27. R. Heidenreich, J. Appl Phys. 48, 1418 (1977).

    Google Scholar 

  28. S. Bernacki and H. Smith, IEEE Trans. Electron Devices ED-22, 421 (1975); R. Heidenreich, J. Ballantyne, and L. Thompson, J. Vac. Sci. Technol. 12, 1284 (1975).

    Google Scholar 

  29. T. Matsukawa, J. Appl. Phys. 45, 733 (1974); R. Hawryluk, H. Smith, A. Soares, and A. Hawryluk, J. Appl. Phys. 46, 2528 (1975).

    Google Scholar 

  30. T. Kato, J. Vac. Sci. Technol. 19, 1279 (1981).

    Google Scholar 

  31. J. Ziegler, Handbook of Stopping Cross Sections for All Elements, Pergamon Press, Elmsford, N.Y., 1980.

    Google Scholar 

  32. M. Levi, IEEE Electron Device Lett. EDL-1, 194 (1980).

    Google Scholar 

  33. W. Brown, T. Venkatesan, and A. Wagner, Solid State Technol. Aug. 1981, p. 60.

    Google Scholar 

  34. A. Crewe, J. Vac. Sci. Technol. 16, 258 (1979); M. Tsuda, Polym. Eng. Sci. 17, 390 (1977).

    Google Scholar 

  35. L. Dorfman, J. Chem. Educ. 58, 84 (1981).

    Google Scholar 

  36. F. Field and F. Franklin, Electron Impact Phenomena, Academic Press, New York, 1957.

    MATH  Google Scholar 

  37. H. Hiroaka, IBM J. Res. Dev. 21, 121 (1977).

    Google Scholar 

  38. C. McNeal, J. Am. Chem. Soc. 103, 1609 (1981).

    Google Scholar 

  39. R. Kieb, J. Phys. Chem. 63, 1838 (1959).

    Google Scholar 

  40. M. Kaplan and D. Meyerhofer, RCA Rev. 40, 166 (1979); Polym. Eng. Sci. 20, 1073 (1980).

    Google Scholar 

  41. K. Kawabuchi, S. Sakurai, and M. Yoshimi, Electron. Leu. 19, 287 (1983).

    Google Scholar 

  42. R. Watts, Solid State Technol. May 1979, p. 69.

    Google Scholar 

  43. U. S. Patents 3,743,842 (1973), MIT; 4,037,111 (1979), Bell; 4,035,522 (1978), IBM.

    Google Scholar 

  44. K. Okada, J. Vac. Sci. Technol. 17, 1233 (1980).

    Google Scholar 

  45. J. Pearlman and J. Riordan, J. Vac. Sci. Technol. 19, 1190 (1981).

    Google Scholar 

  46. B. Fay, I. Trotel, Y. Petroff, R. Pinchaux, and P. Thiry, Appl. Phys. Lett. 29, 370 (1976).

    Google Scholar 

  47. K. Heinrich, H. Betz, A. Heuberger, and S. Pongratz, J. Vac. Sci. Technol. 19, 1254 (1981).

    Google Scholar 

  48. T. Ono and A. Ozawa, J. Vac. Sci. Technol. B2, 68 (1984).

    Google Scholar 

  49. Y. Saitoh, H. Yoshihara, I. Watametre, and S. Nakayama, J. Vac. Sci. Technol. B2, 63 (1984).

    Google Scholar 

  50. W. Buckley, J. Electrochem. Soc. 128, 1116 (1981).

    Google Scholar 

  51. C. Fencil and G. Hughes, Circuits Manuf. Dec. 1982, p. 22.

    Google Scholar 

  52. M. Kaplan, SPE RETEC Photopolymers, Ellenville, N.Y., 1982, p. 249; Polym. Eng. Sci. 23, 957 (1983).

    Google Scholar 

  53. I. Haller, R. Feder, M. Hatzakis, and E. Speller, J. Electrochem. Soc. 126, 154 (1979).

    Google Scholar 

  54. R. Feder, IBM Tech. Discl. Bull. 18, 2343 (1975).

    Google Scholar 

  55. K. Murease, M. Kakuchi, and S. Sugawara, Microcircuit Eng. Conf., Paris, 1977, p. 261.

    Google Scholar 

  56. L. Thompson and M. Bowden, J. Electrochem. Soc. 121, 1500 (1974); J. Appl. Phys. 44, 4039 (1973).

    Google Scholar 

  57. G. Taylor, Solid State Technol. May 1980, p. 69.

    Google Scholar 

  58. Y. Saithoh, V. H. Yoshihara, and I. Watanabe, Jpn. J. Appl. Phys. 21, L52 (1982).

    Google Scholar 

  59. A. Eranian, A. Coutlet, E. Datamanti, and J. Dubois, Am. Chem. Soc. Symp. Ser. 151, 275 (1981); U. S. Patent 4,268,590 (1981), Thomson-CSF.

    Google Scholar 

  60. W. Moreau, W. Moyer, D. Merritt, M. Hatzakis, L. Pederson, and D. Johnson, J. Vac. Sci. Technol. 16, 1989 (1979).

    Google Scholar 

  61. Y. Bocko, Sov. Phys. Tech. Phys. 27, 1416 (1982).

    Google Scholar 

  62. M. Kakuchi, V. S. Sagawara, K. Murase, and K. Matsuyama, J. Electrochem. Soc. 124, 1648 (1977).

    Google Scholar 

  63. W. Moreau, Opt. Eng. 22, 181 (1983).

    Google Scholar 

  64. E. Spiller, J. Topalian, E. Castellani, L. Romankiw, R. Feder, and M. Heritage, Solid State Technol. April 1976, p. 65.

    Google Scholar 

  65. Japanese Patent 80,17,112; Chem. Abstr. 93, 16986 (1980).

    Google Scholar 

  66. F. Asmussen, H. Betz, J. Chen, A. Heuberger, S. Pongratz, H. Sotobayashi, and W. Schindel, J. Electrochem. Soc. 130, 180 (1983).

    Google Scholar 

  67. P. Blais, Electrochem. Soc. Ext. Abstr. 80, 835 (1980).

    Google Scholar 

  68. P. Lenzo and E. Spencer, Appl. Phys. Lett. 24, 289 (1974).

    Google Scholar 

  69. P. Burggraaf, Semicond. Int. Sept. 1983, p. 60.

    Google Scholar 

  70. J. Lane, Proc. 1983 Int. Conf. Electron, Ion, Photon Beams; J. Vac. Sci. Technol. B1, 1072 (1983); S. Farenholtz, J. Vac. Sci. Technol. 19, 1111 (1981).

    Google Scholar 

  71. M. Bowden, L. Thompson, S. Farenholtz, and E. Doerries, J. Electrochem. Soc. 128, 1304 (1981).

    Google Scholar 

  72. U. S. Patent 4,409,319 (1983), IBM.

    Google Scholar 

  73. H. Ito and G. Willson, Org. Coat. Appl. Polym. Sci. Proc. 48, 60 (1983).

    Google Scholar 

  74. N. Economou, D. Flanders, and J. Donnelly, J. Vac. Sci. Technol. 19, 1172 (1981).

    Google Scholar 

  75. R. Seliger, J. Ward, V. Wang, and R. Kiebena, Appl. Phys. Lett. 34, 310 (1979).

    Google Scholar 

  76. P. Grigaitis and L. Pranevicus, Appl. Phys. Lett. 34, 310 (1979); Jpn. J. Appl Phys. 20, L261 (1981).

    Google Scholar 

  77. P. Bohn, J. Taylor, and H. Guckel, Anal. Chem. 53, 1082 (1981); J. Vac. Sci. Technol. 17, 735 (1980).

    Google Scholar 

  78. D. Rensch, R. Seliger, G. Csanky, R. Olney, and H. Stover, J. Vac. Sci. Technol. 16, 1897 (1979); L. Karapiperis and C. Lee, Appl. Phys. Lett. 35, 395 (1978).

    Google Scholar 

  79. P. Sullivan and J. McCoy, IEEE Trans. Electron Devices ED-23, 412 (1976).

    Google Scholar 

  80. J. Woodhouse, A. Fields, and A. Bucklow, J. Phys. D 7, 483 (1974).

    Google Scholar 

  81. M. Gazard, J. Dubois, L. Duchesne, and A. Chapiro, Polym. Eng. Sci. 20, 1069 (1980).

    Google Scholar 

  82. K. Kanaya, K. Shimizu, and Y. Ishikawa, J. Phys. D 1, 1657 (1968).

    Google Scholar 

  83. K. Csepregi, F. Iberl, and P. Eichinger, Appl. Phys. Lett. 37, 630 (1980).

    Google Scholar 

  84. R. Brault and L. Miller, Polym. Eng. Sci. 20, 1064 (1980), 23, 941 (1983); J. Electrochem. Soc. 128, 1159 (1981).

    Google Scholar 

  85. I. Adesida, L. Rathbum, J. Chinn, and E. Wolf, J. Vac. Sci. Technol. 21, 666 (1982).

    Google Scholar 

  86. G. Taylor, T. Venkatesan, A. Wagner, B. Wilkens, and D. Barr, J. Vac. Sci. Technol. 19, 1379 (1981); U. S. Patent 4,377,437 (1983), Bell.

    Google Scholar 

  87. H. Kurvano, K. Yoshida, and S. Yamazaki, Jpn. J. Appl. Phys. 19, L615 (1980).

    Google Scholar 

  88. D. Tenant, J. Vac. Sci. Technol. B1, 493 (1983).

    Google Scholar 

  89. B. Hunt and R. Buhrman, J. Vac. Sci. Technol. 19, 1310 (1981).

    Google Scholar 

  90. A. Wagner, Solid State Technol. May 1983, p. 97.

    Google Scholar 

  91. T. Hall, A. Wagner, and L. Thompson, J. Appl. Phys. 53, 3997 (1982).

    Google Scholar 

  92. A. Macrander, SPIE Proc. 333, 142 (1982).

    Google Scholar 

  93. H. Ryssel, K. Haberger, and H. Kranz, J. Vac. Sci. Technol. 19, 1358 (1981).

    Google Scholar 

  94. K. Moriwaki, H. Aritome, S. Namba, and L. Karapiperis, Jpn. J. Appl. Phys. 20, L881 (1981).

    Google Scholar 

  95. B. Maclver, J. Electrochem. Soc. 129, 827, 2384 (1982).

    Google Scholar 

  96. Japanese Patent 80,73,047, Chem. Abstr. 93, 248282 (1980).

    Google Scholar 

  97. Japanese Patent 80,22,864, Chem. Abstr. 93, 58286 (1980).

    Google Scholar 

  98. Y. Okuyama, T. Hashimoto, and T. Koguchi, J. Electrochem. Soc. 125, 1293 (1978).

    Google Scholar 

  99. K. Harada, T. Tamamura, and O. Kogure, J. Electrochem. Soc. 129, 2576 (1982).

    Google Scholar 

  100. Y. Wada, M. Migitaka, K. Mochiji, and H. Obayashi, J. Electrochem. Soc. 130, 1127 (1983).

    Google Scholar 

  101. U. S. Patent 4,239,787 (1980), Bell.

    Google Scholar 

  102. K. Mochiji, Y. Wada, and H. Obayashi, J. Electrochem. Soc. 129, 2556 (1982).

    Google Scholar 

  103. Y. Iida, V. H. Okabayashi, and K. Suzuki, Jpn. J. Appl. Phys. 16, 1313 (1977).

    Google Scholar 

  104. U. S. Patent 3,920,483 (1975), IBM.

    Google Scholar 

  105. German Patent 2,930,416, Chem. Abstr. 93, 228638 (1980).

    Google Scholar 

  106. Japanese Patent 80 28078, Chem. Abstr. 93, 58291 (1980).

    Google Scholar 

  107. Japanese Patent 79,115,128, Chem. Abstr. 92, 67739 (1979).

    Google Scholar 

  108. S. Forrest, V. M. Kaplin, P. Schmidt, T. Venkatesan, and A. Lovinger, Appl. Phys. Lett. 41, 708 (1982), 43, 30 (1983); J. Appl. Phys. 54, 3150 (1983).

    Google Scholar 

  109. European Patent Application 193,022 (1980), IBM; E. Spiller, Appl. Opt. 19, 3022 (1980).

    Google Scholar 

  110. K. Suzuki, Electron. Lett. 16, 178 (1980).

    Google Scholar 

  111. K. Galloway, J. Electrochem. Soc. 127, 1862 (1980).

    Google Scholar 

  112. T. Venkatesan, T. Wolf, D. Allara, B. Wilkens, and G. Taylor, Appl. Phys. Lett. 43, 934 (1983).

    Google Scholar 

  113. T. Venkatesan, W. Brown, C. Murry, K. Marcantonio, and B. Wilkens, Polym. Eng. Sci. 23, 931 (1983).

    Google Scholar 

  114. I. Haller, M. Hatzakis, and R. Srinivassan, IBM J. Res. Dev. May 1968, p. 251; U. S. Patent 3,535,137 (1973), IBM.

    Google Scholar 

  115. M. Komuro, N. Atoda, and H. Kawakatsu, J. Electrochem. Soc. 126, 483 (1979).

    Google Scholar 

  116. G. Mladenov and B. Emmonoth, Appl. Phys. Lett. 38, 1000 (1981).

    Google Scholar 

  117. K. Balasubramanyan, L. Karapiperis, C. Lee, and A. Rouff, J. Vac. Sci. Technol. 19, 18 (1981).

    Google Scholar 

  118. J. Phang and H. Ahmed, J. Vac. Sci. Technol. 16, 1756 (1979)

    Google Scholar 

  119. M. Parikh, J. Vac. Sci. Technol. 15, 935 (1978)

    Google Scholar 

  120. C Shaw, J. Vac. Sci. Technol. 19, 1286 (1981)

    Google Scholar 

  121. T. Chang, J. Vac. Sci. Technol. 12, 1271 (1975)

    Google Scholar 

  122. I. Adesida and T. Everhart, J. Appl. Phys. 51, 5994 (1980)

    Google Scholar 

  123. M. Rosenfield, A. Neureuther, and C. Ting, J. Vac. Sci. Technol. 19, 1242 (1981)

    Google Scholar 

  124. R. Hawryluk, J. Vac. Sci. Technol. 19, 1 (1981)

    Google Scholar 

  125. G. Owen and P. Rissman, J. Appl. Phys. 54, 3573 (1983)

    Google Scholar 

  126. P. Vettiger, J. Vac. Sci. Technol. Bl, 1378 (1983)

    Google Scholar 

  127. M. Nakase, IEEE Trans. Electron Devices ED-27, 1460 (1980).

    Google Scholar 

  128. B. Lin, Solid State Technol. May 1983, p. 105.

    Google Scholar 

  129. A. Broers, J. Electrochem. Soc. 128, 166 (1981); D. Kyser and C. Ting, J. Vac. Sci. Technol. 16, 1759 (1979).

    Google Scholar 

  130. M. Yoshimi, K. Kawabuchi, T. Takigawa, M. Takahashi, and Y. Kato, Electron. Lett. 18, 880 (1982), 16, 621 (1980).

    Google Scholar 

  131. A. Iranmanesh and R. Pease, Electrochem. Soc. Ext. Abstr. 82-1, 507 (1982).

    Google Scholar 

  132. H. Ralph, G. Duggan, and R. Elliott, Electrrochem. Soc. Ext. Abstr. 82-1, 514 (1982); T. Lin, IBM J. Res. Dev. Sept. 1967, p. 257.

    Google Scholar 

  133. A. Avidenko and M. Malev, Vacuum 27, 583 (1977).

    Google Scholar 

  134. T. Kelen, Polymer Degradation, Van Nostrand, Princeton, N.J., 1983.

    Google Scholar 

  135. M. Dole, editor, Radiation Chemistry of Macromolecules, Vols. I and II, Academic Press, New York, 1973.

    Google Scholar 

  136. T. Tada, J. Electrochem. Soc. 129, 1070 (1982); S. Schlick and L. Kevan, J. Appl. Polym. Sci. 27, 319 (1982).

    Google Scholar 

  137. A. Torikai, H. Kato, and Z. Kuri, J. Polym. Sci. 14, 1065 (1976); M. Tabata, J. Polym. Sci. 21, 3257 (1983).

    Google Scholar 

  138. Y. Yamamoto, Macromolecules 10, 1316 (1977).

    Google Scholar 

  139. M. Tabata, J. Polym. Sci. Polym. Chem. Ed. 21, 3257 (1983).

    Google Scholar 

  140. M. Bowden, L. Stillwagon, T. Thompson, and T. Bowmer, Org. Coat. Appl. Polym. Sci. Proc. 48, 161 (1983).

    Google Scholar 

  141. H. Pfeiffer, Microcircuit Eng., 1983, Paper A-1.

    Google Scholar 

  142. E. Weber, SPIE Proc. 333, 94 (1982).

    Google Scholar 

  143. R. Moore, G. Colloma, H. Pfeiffer, E. Weber, and O. Woodward, J. Vac. Sci. Technol. 19, 950 (1981); Solid State Technol. Sept. 1983, p. 127.

    Google Scholar 

  144. M. Miyazaki, N. Saitou, and C. Munakata, J. Phys. E 14, 194 (1981).

    Google Scholar 

  145. A. Broers, IEEE Trans. Electron Devices ED-28, 1268 (1981).

    Google Scholar 

  146. H. Ku and L. Scala, J. Electrochem. Soc. 116, 980 (1969).

    Google Scholar 

  147. J. Greeneich, J. Electrochem. Soc. 122, 970 (1975).

    Google Scholar 

  148. U. S. Patent 3,996,393 (1975), IBM.

    Google Scholar 

  149. C. Pittman, M. Uedo, C. Chen, J. Kwiatkowski, C. Cook, and J. Helbert, J. Electrochem. Soc. 128, 1758 (1981), and early references therein.

    Google Scholar 

  150. J. Helbert, C. Cook, J. Pittman, and C. Chen, J. Electrochem. Soc. 126, 694 (1979); U. S. Patent 3,914,462 (1974), Hitachi.

    Google Scholar 

  151. E. Gipstein, W. Moreau, and O. Need, J. Electrochem. Soc. 123, 1105 (1973).

    Google Scholar 

  152. U. S. Patent 3,898,350 (1974), IBM.

    Google Scholar 

  153. U. S. Patent 4,011,351 (1978), IBM.

    Google Scholar 

  154. Y. Hatano, Proc. 8th Int. Conf. Electron, Ion Beams, 1978, p. 332.

    Google Scholar 

  155. U. S. Patent 4,004,043 (1978), IBM.

    Google Scholar 

  156. U. S. Patent 3,931,435 (1976), IBM.

    Google Scholar 

  157. W. Moreau, W. Moyer, D. Merritt, M. Hatzakis, L. Pederson, and D. Johnson, J. Vac. Sci. Technol. 16, 1989 (1979); U. S. Patent 4,087,569 (1979), IBM.

    Google Scholar 

  158. M. Hatzakis and D. Webb, J. Vac. Sci. Technol. 16, 2008 (1979); U. S. Patent 4,156,745 (1981), IBM.

    Google Scholar 

  159. C. Anderson, Y. Namaste, F. Rodriguez, and K. Obendorf, Am. Chem. Soc. Org. Coat. Prepr. 48, 156 (1983).

    Google Scholar 

  160. U. S. Patent 4,279,984 (1982), Matsushita.

    Google Scholar 

  161. U. S. Patent 3,914,462 (1973), Hitachi.

    Google Scholar 

  162. M. Kakuchi, S. Sugawara, K. Murase, and K. Matsuyama, J. Electrochem. Soc. 124, 1648 (1977); Rev. Electr. Commun. Lab. 27, 1113 (1979).

    Google Scholar 

  163. T. Kitakohji, J. Electrochem. Soc. 126, 1881 (1979).

    Google Scholar 

  164. T. Kitayama, Jpn. Semicond. Technol. News 2(4), 2 (1983).

    Google Scholar 

  165. Japanese Patent 80,58,211, Chem. Abstr. 93, 141027 (1980).

    Google Scholar 

  166. T. Tada, J. Electrochem. Soc. 126, 1829 (1979), 130, 912 (1983); U. S. Patent 4,268,607 (1981), VLSI.

    Google Scholar 

  167. C. Chen, C. Pittmann, and J. Helbert, J. Polym. Sci. Polym. Chem. Ed. 18, 169 (1980); J. Vac. Sci. Technol. 16, 1992 (1979); U. S. Patents 4,304,840 and 4,302,259 (1981), Honeywell; J. Lai, J. Electrochem. Soc. 129, 1596 (1982).

    Google Scholar 

  168. M. Yamada and S. Hattori, Jpn. J. Appl. Phys. 20, 1969 (1981).

    Google Scholar 

  169. C. Pittmann, J. Helbert, and C. Chen, J. Polym. Sci. 18, 3413 (1980).

    Google Scholar 

  170. J. Helbert, Polym. Eng. Sci. 17, 402 (1977); French Patent 2,240,200, TL

    Google Scholar 

  171. M. Hatzakis, J. Vac. Sci. Technol. 16, 1984 (1979).

    Google Scholar 

  172. U. S. Patent 4,125,672 (1978), Nippon.

    Google Scholar 

  173. H. Ito, D. Miller, and C. Willson, Macromolecules 15, 915 (1982).

    Google Scholar 

  174. U. S. Patent 3,996,393 (1975), IBM.

    Google Scholar 

  175. R. Harris, J. Electrochem. Soc. 120, 272 (1973).

    Google Scholar 

  176. N. Atoda, M. Komeiro, and H. Kawakatsu, J. Appl. Phys. 50, 3707 (1979).

    Google Scholar 

  177. L. Gavens, B. Wu, D. Hess, A. Bell, and D. Soong, J. Vac. Sci. Technol. B1, 481 (1983).

    Google Scholar 

  178. J. Lai and L. Sheperd, J. Appl. Polym. Sci. 20, 2367 (1976).

    Google Scholar 

  179. E. Gipstein, O. Need, A. Ouano, and D. Johnson, IBM J. Res. Dev. 21, 143 (1977).

    Google Scholar 

  180. M. Ballauf and B. Wolf, Macromolecules 14, 654 (1981).

    Google Scholar 

  181. K. Harada, T. Tamamura, and O. Kogure, J. Electrochem. Soc. 129, 2576 (1982).

    Google Scholar 

  182. C Pittman, M. Ueda, C. Chen, C. Cook, J. Helbert, and J. Kwatkowski, J. Electrochem. Soc. 128, 1759 (1981); Macromolecules 11, 1104 (1978).

    Google Scholar 

  183. N. Grassie, Polym. Degr. 3, 209 (1981).

    Google Scholar 

  184. G. Willson, H. Ito, D. Miller, and T. Tessier, SPE RETEC Photopolymers, 1982; Polym. Eng. Sci. 23, 1000 (1983).

    Google Scholar 

  185. N. Viswanathan, J. Polym. Sci. Polym. Chem. Ed. 14, 1553 (1976).

    Google Scholar 

  186. J. Dubois, M. Gazard, and G Duchesne, Int. Conf. Microlithogr., Paris, 1977, p. 289.

    Google Scholar 

  187. Japanese Patent 78,21,286, Chem. Abstr. 89, 138401 (1979).

    Google Scholar 

  188. Japanese Patent 78,51,284, Tokyo Shibaura; Chem. Abstr. 90, 31974h (1978).

    Google Scholar 

  189. French Patent 2,304,933, Chem. Abstr. 91, 220371 (1979), Thompson CSF.

    Google Scholar 

  190. Japanese Patent 79,41,719, Chem. Abstr. 91, 999536 (1979), Cho LSI.

    Google Scholar 

  191. U. S. Patent 4,051,271 (1978), AGIST.

    Google Scholar 

  192. U. S. Patent 3,931,435 (1976), IBM.

    Google Scholar 

  193. K. Murase, Int. Conf. Microlithogr., Paris, 1977, p. 265.

    Google Scholar 

  194. A. Ouano, Polym. Eng. Sci. 18, 306 (1978), 20, 160 (1980).

    Google Scholar 

  195. K. Harada, J. Macromol. Sci. C3, 347 (1969).

    Google Scholar 

  196. D. Yoon, IBM Internal Report RJ1684 (1975).

    Google Scholar 

  197. W. Moreau and P. Schmidt, Electrochem. Soc. Ext. Abstr. 70, 459 (1970).

    Google Scholar 

  198. A. Charlesby and R. Blackburn, Nature 210, 1036 (1966).

    Google Scholar 

  199. H. Harada and S. Sugawara, J. Appl. Polym. Sci. 27, 1441 (1982).

    Google Scholar 

  200. U. S. Patents 3,934,057 and 4,024,293, IBM.

    Google Scholar 

  201. G. Geuskeins, MacromoL Chem. 160, 343 (1973), 165, 273 (1973).

    Google Scholar 

  202. J. Gardella and D. Hercules, Anal. Chem. 52, 2273 (1980).

    Google Scholar 

  203. J. Bargon, E. Gipstein, H. Hiroaka, and L. Welsh, J. Appl. Polym. Sci. 22, 3397 (1978); U. S. Patent 4,084,569 (1979).

    Google Scholar 

  204. E. Roberts, Am. Chem. Soc. Org. Coat. Prepr. 33, 359 (1973); U. S. Patents 4,061,832 (1978) and 3,981,985 (1976), U.S. Phillips; Polym. Eng. Sci. 23, 968 (1983).

    Google Scholar 

  205. U. S. Patent 4,276,365 (1981), Fujitsu.

    Google Scholar 

  206. U. S. Patent 4,273,857 (1981), Fujitsu.

    Google Scholar 

  207. M. Suzuki and Y. Ohnishi, J. Electrochem. Soc. 129, 402 (1982).

    Google Scholar 

  208. T. Tada, J. Electrochem. Soc. 126, 1635 (1979).

    Google Scholar 

  209. F. Asmussen, H. Betz, J. Chen, A. A. Heuberger, S. Pongrantz, H. Sotobayashi, and W. Schnabel, J. Electrochem. Soc. 130, 180 (1983).

    Google Scholar 

  210. U. S. Patent 4,121,936 (1978), Fuji.

    Google Scholar 

  211. U. S. Patent 4,279,984 (1981), Matsushita.

    Google Scholar 

  212. Japanese Patent 80,52,051, Chem. Abstr. 93, 177306 (1980).

    Google Scholar 

  213. German Patent 2,946,206, Chem. Abstr. 93, 248264 (1980).

    Google Scholar 

  214. Japanese Patent 80,151,637, Chem. Abstr. 94, 165703 (1981).

    Google Scholar 

  215. U. S. Patent 4,264,715 (1981), VLSI.

    Google Scholar 

  216. U. S. Patent 4,276,365 (1981), Fujitsu.

    Google Scholar 

  217. U. S. Patent 4,268,607 (1981), VLSI.

    Google Scholar 

  218. T. Kitakohji, Y. Yoneda, K. Kitamura, H. Okuyama, and K. Muiakawa, J. Electrochem. Soc. 126, 1881 (1979).

    Google Scholar 

  219. German Patent 2,537,932, Chem. Abstr. 91, 132155 (1979).

    Google Scholar 

  220. Japanese Patent 79,66,836, Chem. Abstr. 92, 119729 (1980).

    Google Scholar 

  221. Japanese Patent 80,159,436, Chem. Abstr. 94, 112562 (1982).

    Google Scholar 

  222. Japanese Patent 80,108,656, Chem. Abstr. 94, 112563 (1982).

    Google Scholar 

  223. Japanese Patent 78,125,023, Chem. Abstr. 89, 144309 (1978).

    Google Scholar 

  224. U. S. Patent 3,984,582, IBM; I. Haller, J. Electrochem. Soc. 126, 154 (1979).

    Google Scholar 

  225. Japanese Patent 79,66,122, Chem. Abstr. 91, 166416 (1979).

    Google Scholar 

  226. Japanese Patent 78,32,718, Chem. Abstr. 89, 188990 (1978).

    Google Scholar 

  227. Y. Yamashita, J. Vac. Sci. Technol. 16, 2026 (1979); Jpn. J. Appl. Phys. 20, L22 (1981); German Patent 2,849,996, Chem. Abstr. 92, 102322 (1980); Japanese Patent 79,29,627, Chem. Abstr. 91, 66338 (1979).

    Google Scholar 

  228. A. Mura, J. Vac. Sci. Technol. 16, 1996 (1979); Japanese Patent 80, 151,637, Chem. Abstr. 94, 165703 (1980).

    Google Scholar 

  229. S. Matsuda, Polym. Eng. Sci. 17, 410 (1977).

    Google Scholar 

  230. Japanese Patent 80,90,950, Chem. Abstr. 94, 55936 (1980).

    Google Scholar 

  231. U. S. Patent 4,096,290 (1979), IBM.

    Google Scholar 

  232. German Patent 2,437,422, Chem. Abstr. 86, 24468 (1977).

    Google Scholar 

  233. J. Chinn, I. Adesida, E. Wolfe, and R. Tiberio, J. Vac. Sci. Technol. 19, 1418 (1981).

    Google Scholar 

  234. K. Harada, J. Appl. Polym. Sci. 26, 3395 (1981); J. Electrochem. Soc. 128, 491 (1981).

    Google Scholar 

  235. L. Pederson, J. Electrochem. Soc. 129, 206 (1982).

    Google Scholar 

  236. Japanese Patent 80,142,337, Chem. Abstr. 94, 112566 (1980); U. S. Patent 4,289,573 (1981), IBM.

    Google Scholar 

  237. U. S. Patent 4,289,573 (1981), IBM.

    Google Scholar 

  238. European Patent 8,787, Chem. Abstr. 93, 228635 (1980).

    Google Scholar 

  239. Japanese Patent 80,159,436, Chem. Abstr. 94, 217649 (1980).

    Google Scholar 

  240. K. Harada, O. Kogure, and K. Murase, IEEE Trans. Electron Devices ED-29, 518 (1982).

    Google Scholar 

  241. J. Lai, J. Electrochem. Soc. 129, 1596 (1982).

    Google Scholar 

  242. Japanese Patent 81,16,416, Chem. Abstr. 95, 159909 (1981).

    Google Scholar 

  243. Japanese Patent 81,39,539, Chem. Abstr. 95, 12409 (1981).

    Google Scholar 

  244. E. Gipstein, W. Moreau, and O. Need, J. Electrochem. Soc. 123, 1105 (1976).

    Google Scholar 

  245. J. Aronte, Fujitsu Sci. Tech. J. June 1978, p. 143.

    Google Scholar 

  246. M. Yamada and S. Hattori, Jpn. J. Appl. Phys. 20, 1969 (1981).

    Google Scholar 

  247. Japanese Patent 81,95,903, Chem. Abstr. 96, 60868 (1981).

    Google Scholar 

  248. Japanese Patent 77,93,493, Chem. Abstr. 88, 56981 (1977), 86, 198006 (1976).

    Google Scholar 

  249. J. Tamano, Plasma Chem. Plasma Process. 1, 261 (1981).

    Google Scholar 

  250. M. Gazard, S. Haltori, M. Iida, and S. Monta, Polym. Eng. Sci. 20, 1069 (1980).

    Google Scholar 

  251. U. S. Patent 4,193,797 (1981), DuPont.

    Google Scholar 

  252. J. Brown and J. O’Donnell, Macromolecules 3, 265 (1970), 5, 109 (1972).

    Google Scholar 

  253. N. Tokura, in Encyclopedia of Polymer Science and Technology, Wiley, New York, 1969, pp. 460–485.

    Google Scholar 

  254. L. Thompson, M. Bowden, J. Ballantyne, R. Pease, L. Yau, S. Skinner, and J. Frackoviak, in Microcircuit Engineering, edited by H. Ahmed and W. Nixon, Cambridge University Press, London, 1981, p. 239.

    Google Scholar 

  255. M. Bowden and L. Thompson, J. Appl. Polym. Sci. 17, 3211 (1973).

    Google Scholar 

  256. M. Bowden and L. Thompson, Appl. Polym. Symp. 23, 99 (1974).

    Google Scholar 

  257. M. Bowden, J. Polym. Sci. Polym. Symp. 49, 221 (1975).

    Google Scholar 

  258. M. Bowden, L. Thompson, and J. Ballantyne, J. Vac. Sci. Technol. 12, 1295 (1975).

    Google Scholar 

  259. M. Bowden and L. Thompson, Polym. Eng. Sci. 14, 5251 (1974), 17, 269 (1977).

    Google Scholar 

  260. M. Bowden and L. Thompson, J. Electrochem. Soc. 121, 1620 (1974).

    Google Scholar 

  261. R. Himics and M. Kaplan, Am. Chem. Soc. Org. Coat. Prepr. 35, 266 (1975); Polym. Eng. Sci. 17, 406 (1977).

    Google Scholar 

  262. E. Gipstein, W. Moreau, G. Chiu, and O. Need, J. Appl. Polym. Sci. 21, 677 (1977).

    Google Scholar 

  263. M. Bowden, L. Thompson, W. Robinson, and M. Biolsi, Macromolecules 15, 1417 (1982).

    Google Scholar 

  264. T. Bowmer and J. O’Donnell, Polymer 22, 71 (1981) and references therein; Radiat. Phys. Chem. 17, 177 (1981); J. Polym. Sci. 19, 45 (1981).

    Google Scholar 

  265. T. Bowmer and M. Bowden, Am. Chem. Soc. Org. Coat. Appl. Polym. Sci. 48, 171 (1983).

    Google Scholar 

  266. A. Gutierrez, J. Pacansky, and R. Kroeker, ACS Org. Coat. Appl. Polym. Sci. 46, 520 (1982).

    Google Scholar 

  267. J. Pacansky, R. Krocker, E. Gipstein, and A. Gutierrez, Electrochem. Soc. Ext. Abstr. 82-1, 447 (1982).

    Google Scholar 

  268. J. Calvert and J. Pitts, Photochemistry, Wiley, New York, 1966, p. 653, and references to Norrish rotating sector method for radical lifetime.

    Google Scholar 

  269. M. Bowden and T. Bowmer, Am. Chem. Soc. Org. Coat. Appl. Polym. Sci. 48, 161 (1983).

    Google Scholar 

  270. U. S. Patent 3,884,696 (1975), Bell.

    Google Scholar 

  271. U. S. Patent 3,935,331 (1976), RCA.

    Google Scholar 

  272. U. S. Patent 3,898,350 (1975), IBM.

    Google Scholar 

  273. U. S. Patent 4,007,295 (1977), RCA.

    Google Scholar 

  274. M. Bowden and L. Thompson, J. Electrochem. Soc. 121, 1620 (1974).

    Google Scholar 

  275. U. S. Patent 4,007,295 (1977).

    Google Scholar 

  276. M. Bowden, L. Thompson, J. Ballantyne, R. Pease, L. Yau, J. Frackoviak, and J. Skinners, in Microcircuit Engineering, edited by W. Nixon, Pergamon Press, New York, 1981.

    Google Scholar 

  277. M. Bowden, L. Thompson, S. Farenholtz, and F. Doerries, J. Electrochem. Soc. 128, 1304 (1981), U. S. Patent 4,289,845 (1982), Bell.

    Google Scholar 

  278. U. S. Patent 4,398,001 (1983), IBM.

    Google Scholar 

  279. H. Shiraishi, Am. Chem. Soc. Org. Coat. Appl. Polym. Sci. 48, 178 (1983); Am. Chem. Soc. Symp. Ser. 242, 170 (1983); U. S. Patent 4,409,317 (1981), Hitachi.

    Google Scholar 

  280. S. Farenholtz and T. Kwei, Macromolecules 14, 1076 (1981), 15, 937 (1982); J. Vac. Sci. Technol. 19, 1111 (1981).

    Google Scholar 

  281. M. Bowden, J. Polym. Sci. 26, 1424 (1981).

    MathSciNet  Google Scholar 

  282. H. Hiroaka and L. Welsh, Am. Chem. Soc. Org. Coat. Appl. Polym. Sci. 48, 48 (1983)

    Google Scholar 

  283. R. Andrews and R. Kufer, Molecular Complexes in Organic Chemistry, Holden-Day, San Francisco, 1964

    Google Scholar 

  284. U. S. Patent 3,940,507 (1976), RCA.

    Google Scholar 

  285. S. Torikai, J. Polym. Sci. Part A 2, 239 (1964); J. Polym. Sci. 7, 186 (1969).

    Google Scholar 

  286. U. S. Patents 3,915,704, 3,915,706, 3,917,483, Xerox.

    Google Scholar 

  287. H. Ito and C. Willson, Am. Chem. Soc. Org. Coat Appl. Pol. Sci. 48, 60 (1983).

    Google Scholar 

  288. A. Levine, M. Kaplan, and E. Polinak, Polym. Eng. Sci. 14, 118 (1974); U. S. Patent 4,012,536 (1978), RCA.

    Google Scholar 

  289. U. S. Patent 3,985,914 (1976), IBM.

    Google Scholar 

  290. U. S. Patent 3,961,099 (1975), IBM.

    Google Scholar 

  291. A. Levine, M. Kaplan, and J. Fech, J. Polym. Sci. 11, 311 (1973).

    Google Scholar 

  292. Japanese Patent 78,78,835, Chem. Abstr. 90, 64496 (1978).

    Google Scholar 

  293. Japanese Patent 78,115,832, Chem. Abstr. 90, 130685 (1978).

    Google Scholar 

  294. Japanese Patent 78,81,115, Chem. Abstr. 90, 64498 (1978).

    Google Scholar 

  295. J. Pacansky and J. Lyerla, IBM J. Res. Dev. 23, 42 (1979); J. Electrochem. Soc. 126, 860 (1979).

    Google Scholar 

  296. J. Shaw, M. Fritsch and F. Dill, IBM J. Res. Dev. 21, 219 (1977).

    Google Scholar 

  297. J. Shaw and M. Hatzakis, J. Electrochem. Soc. 126, 2026 (1979).

    Google Scholar 

  298. J. Shaw and M. Hatzakis, IEEE Trans. Electron Devices ED-25, 426 (1978).

    Google Scholar 

  299. U. S. Patent 4,409,319 (1983), IBM.

    Google Scholar 

  300. J. Pacansky and H. Cocufal, J. Am. Chem. Soc. 102, 402 (1980).

    Google Scholar 

  301. J. Pacansky and A. Guetterrez, IBM Internal Report RJ 3627 (1982).

    Google Scholar 

  302. D. O’Sullivan and C. Willson, J. Electrochem. Soc. 129, 811 (1982).

    Google Scholar 

  303. J. Shaw and M. Hatzakis, J. Vac. Sci. Technol. 19, 1343 (1981).

    Google Scholar 

  304. S. Farenholtz, J. Vac. Sci. Technol. 19, 1111 (1981); U. S. Patent 4,173,470 (1979), Bell.

    Google Scholar 

  305. T. Bowmer and J. O’Donnell, J. Macromol. Sci. A17, 243 (1982).

    Google Scholar 

  306. A. Chapiro, Radiation Chemistry of Polymers, Interscience, New York, 1962.

    Google Scholar 

  307. A. Charlesby, Atomic Radiation and Polymers, Pergamon Press, New York, 1960.

    Google Scholar 

  308. Japanese Patent 76,148,417, Chem. Abstr. 86, 131180 (1976).

    Google Scholar 

  309. U. S. Patent 4,074,031 (1978), IBM.

    Google Scholar 

  310. Japanese Patent 76,148,418, Chem. Abstr. 86, 131179 (1976).

    Google Scholar 

  311. U. S. Patent 3,900,737 (1975), Bell.

    Google Scholar 

  312. M. Inoue, Jpn. Electron. Eng. May 1982, p. 60.

    Google Scholar 

  313. S. Fok and G. Hong, Proceedings of Kodak Microelectronics Seminar, 1983.

    Google Scholar 

  314. Y. Hashimoto, Jpn. Semicond. Technol. News 2, 22 (1983).

    Google Scholar 

  315. E. Weber and R. Moore, Solid State Technol. May 1979, p. 61.

    Google Scholar 

  316. G. Clark, Applied X-rays, McGraw-Hill, New York, 1955, p. 216.

    Google Scholar 

  317. K. Mochiji, Appl. Phys. Lett. 45, 251 (1984).

    Google Scholar 

  318. H. Gecim, Electron. Lett. 20, 598 (1984).

    Google Scholar 

  319. J. Golin and J. Glaze, Solid State Technol. Aug. 1984, p. 137.

    Google Scholar 

  320. European Patent Application 96,895, Chem. Abstr. 100, 94542 (1983).

    Google Scholar 

  321. U. S. Patent 4,396,702 (1983), RCA.

    Google Scholar 

  322. U. S. Patent 4,397,939 (1983), RCA.

    Google Scholar 

  323. E. Roberts, Polym. Eng. Sci. 23, 968 (1983).

    Google Scholar 

  324. U. S. Patent 4,414,313 (1983), Honeywell.

    Google Scholar 

  325. Japanese Patent 58,184,944, Chem. Abstr. 100, 165447 (1983).

    Google Scholar 

  326. Japanese Patent 57,139,738, Chem. Abstr. 100, 15327 (1983).

    Google Scholar 

  327. U. S. Patent 4,405,710 (1983), Cornell.

    Google Scholar 

  328. Japanese Patent 57,205,739, Chem. Abstr. 101, 15036 (1984).

    Google Scholar 

  329. German Patent 3,322,886, Chem. Abstr. 100, 129921 (1982).

    Google Scholar 

  330. U. S. Patent 4,415,653 (1983), Honeywell.

    Google Scholar 

  331. Y. Namatse, F. Rodriguez, C. Anderson, and K. Obendorf, SPIE Proc. 469, 53 (1984).

    Google Scholar 

  332. N. Tung, J. Electrochem. Soc. 131, 2152 (1984).

    Google Scholar 

  333. J. Jensen and C. Slayman, SPIE Proc. 471, 53 (1984).

    Google Scholar 

  334. H. Hiroaka, SPIE Proc. 469, 127 (1984).

    Google Scholar 

  335. V. Sharma, S. Affrossmann, and R. Pethrick, Polymer 25, 1087 (1984).

    Google Scholar 

  336. V. Sharma, S. Affrossmann, and R. Pethrick, Polymer 25, 1090 (1984).

    Google Scholar 

  337. V. Sharma, S. Affrossmann and R. Pethrick, Polymer 25, 1087 (1984).

    Google Scholar 

  338. E. Roberts, Solid State Technol. June 1984, p. 135.

    Google Scholar 

  339. G. Taylor, Solid State Technol. June 1984, p. 124.

    Google Scholar 

  340. J. Jensen, Solid State Technol. June 1984, p. 145.

    Google Scholar 

  341. V. Aristov, in Microcircuit Engineering edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1983, p. 343.

    Google Scholar 

  342. W. Schnabel and H. Sotobayashi, Prog. Polym. Sci. 9, 297 (1983).

    Google Scholar 

  343. E. Roberts and C. Fuller, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1983, p. 297.

    Google Scholar 

  344. J. Cleaver, P. Heard, and H. Ahmed, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1983, p. 133.

    Google Scholar 

  345. U.S. Patent 4,491,628 (1985), IBM.

    Google Scholar 

  346. Japanese Patent 58,114,030, Chem. Abstr. 101, 81659 (1984).

    Google Scholar 

  347. Japanese Patent 58,116,532, Chem. Abstr. 101, 81660 (1984).

    Google Scholar 

  348. European Patent Application 109,617, Chem. Abstr. 101, 81666 (1984).

    Google Scholar 

  349. W. Schnabel, S. Kiamunzer, H. Sotobayashi, F. Asmussen, and Y. Tabata, Macromolecules 17, 2108 (1984).

    Google Scholar 

  350. S. Equsa, K. Ishigure, and Y. Tabata, Macromolecules 12, 939 (1979).

    Google Scholar 

  351. G. Babu, A. Narula, J. Chien, and S. Hsu, J. Polym. Sci. 22, 195 (1984).

    Google Scholar 

  352. Y. Namatase, S. Obendorf, C. Anderson, P. Krasicky, F. Rodriguez, and R. Tiberio, J. Vac. Sci. Technol B1, 1160 (1983).

    Google Scholar 

  353. A. Eranian, A. Cordlet, F. Damatani, and J. Dubois, in Microcircuit Engineering, Academic Press, New York, 1984, p. 404.

    Google Scholar 

  354. I. Aesida, M. Zhang, and E. Wolfe, J. Electron. Mater. 13, 689 (1984).

    Google Scholar 

  355. G. Mladenov, B. Emmoth, and M. Braun, Vacuum 34, 551 (1984).

    Google Scholar 

  356. K. Valiev, Sov. Microelectron. 12, 1 (1983).

    Google Scholar 

  357. K. Valiev, Sov. Microelectron. 12, 101 (1983).

    Google Scholar 

  358. K. Murata, J. Appl. Phys. 57, 575 (1985).

    Google Scholar 

  359. G. Babu, A. Narula, S. Hsu, and J. Chien, Macromolecules 17, 2749 (1984).

    Google Scholar 

  360. U. S. Patents 3,852,771 (1974); 4,005,437 (1977), RCA.

    Google Scholar 

  361. U. S. Patent 3,661,582 (1972), Western Electric.

    Google Scholar 

  362. P. Clifford, N. Green, and M. Pilling, J. Phys. Chem. 89, 925 (1985).

    Google Scholar 

  363. E. Wallace, C. Chen, C. Pittmann, J. Kwiatkowski, C. Cook, and J. Helbert, Polym. Eng. Sci. 25, 83 (1985).

    Google Scholar 

  364. U. S. Patent 4,513,077 (1985), Hitachi.

    Google Scholar 

  365. Japanese Patent 60,26,337 (1985), Fujitsu; Chem. Abstr. 103, 62586 (1985).

    Google Scholar 

  366. Japanese Patent 60,55,337 (1985), NEC; Chem. Abstr. 103, 62594 (1985).

    Google Scholar 

  367. H. Yamashita and Y. Todokoro, J. Vac. Sci. Technol. B3, 1004 (1985).

    Google Scholar 

  368. H. Yamashita and Y. Todokoro, Electron. Lett. 21, 645 (1985).

    Google Scholar 

  369. K. Mochyi, T. Kimura, and H. Oboyashi, Appl. Phys. Lett. 46, 387 (1985).

    Google Scholar 

  370. N. Samoto, R. Shizumu, and H. Hashimoto, Jpn. J. Appl. Phys. 24, 482 (1985).

    Google Scholar 

  371. M. Suzuki, Y. Ohnishi, and A. Furuta, J. Electrochem. Soc. 132, 1390 (1985).

    Google Scholar 

  372. U. S. Patent 4,476,217 (1985), Honeywell.

    Google Scholar 

  373. S. MacDonald, H. Ito, and C. Willson, Microelectron. Eng. 1, 269 (1983).

    Google Scholar 

  374. A. Schiltz, A. Weill, and P. Paneez, in Microcircuit Engineering, edited by H. Beneking and H. Beureuther, Academic Press, New York, 1985, p. 545.

    Google Scholar 

  375. T. Hayasaka, S. Ishihara, H. Kinoshita, and N. Takeuchi, J. Vac. Sci. Technol. B3, 1581 (1985).

    Google Scholar 

  376. J. Frechet, F. Houlihan, and C. Willson, Polym. Mater. Sci. Eng. 53, 268 (1985).

    Google Scholar 

  377. A. Gowdz, H. Craighead, and M. Bowden, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Moreau, W.M. (1988). Positive Radiation Resists. In: Semiconductor Lithography. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0885-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0885-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8228-0

  • Online ISBN: 978-1-4613-0885-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics