Advertisement

Positive Photoresists

  • Wayne M. Moreau
Part of the Microdevices book series (MDPF)

Abstract

After exposure to 150- to 800-nm radiation, positive photoresists develop more rapidly in the exposed region at a rate R which is about ten times greater than the unexposed rate, R 0. For various lithographic processing, the various preferred profiles (Table 2-1-1) are formed at different doses and R/R 0 development conditions.

Keywords

Quantum Yield Modulation Transfer Function Chain Scission Japanese Patent German Patent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Kosar, Light Sensitive Systems, Wiley, New York, 1965.Google Scholar
  2. 2.
    M. Dinaburg, Photosensitive Diazo Compounds, Focal Press, New York, 1968.Google Scholar
  3. 3.
    P. Hanson, Photogr. Sci. Eng. 14, 438 (1970)MathSciNetGoogle Scholar
  4. 4.
    J. Pacansky and J. Lyerla, IBM J. Res. Dev. 23, 42 (1979); J. Electrochem. Soc. 124, 862 (1977).Google Scholar
  5. 5.
    H. Meier and K. Zeller, Angew. Chem. Int. Ed. Engl. 14, 32 (1975).Google Scholar
  6. 6.
    M. Kaplan and D. Meyerhofer, RCA Rev. 40, 170 (1979); Polym. Eng. Sci. 20, 1073 (1980).Google Scholar
  7. 7.
    D. Meyerhofer, IEEE Trans. Electron Devices ED-22, 921 (1980).Google Scholar
  8. 8.
    W. De Forest, Photoresist Materials and Processes, McGraw-Hill, New York, 1975, p. 54.Google Scholar
  9. 9.
    G. Willson, R. Miller, D. McKean, T. Tompkins, N. Clecak, and D. Hofer, SPE RETEC Photopolymers, Ellen ville, N.Y., 1982, p. 111, Organic Coatings Proceedings, Am. Chem. Soc. 40, 54 (1983), U. S. Patent 4, 397,937 (1983), IBM; Polym. Eng. Sci. 23, 1004 (1983).Google Scholar
  10. 10.
    W. Babie, M. Chow, and W. Moreau, Am. Chem. Soc. Org. Coat. Prepr. 48, 53 (1983).Google Scholar
  11. 11.
    European Patent 68, 346, Chem. Abstr. 99, 30749 (1983), Hoechst.Google Scholar
  12. 12.
    U. S. Patent 4,207,107 (1981), RCA.Google Scholar
  13. 13.
    U.S. Patent 4,173,470 (1979), Bell.Google Scholar
  14. 14.
    U.S. Patent 4,123,279 (1978), Fuji.Google Scholar
  15. 15.
    S. Farenholtz, Am. Chem. Soc. Org. Coat. 35, 311 (1975).Google Scholar
  16. 16.
    A. Knop, Applications of Phenolic Resins, Springer Verlag, Berlin, 1979.Google Scholar
  17. 17.
    E. Gipstein, A. Duano, and T. Tompkins, J. Electrochem. Soc. 129, 201 (1981).Google Scholar
  18. 18.
    B. Grant, N. Clecak, R. Tureg, and C. Willson, IEEE Trans. Electron Devices ED-28, 1300 (1981), U.S. Patent 4,284,706 (1980).Google Scholar
  19. 19.
    M. Bowden, L. Thompson, S. Farenholtz, and E. Doerries, J. Electrochem. Soc. 128, 1304 (1981); U.S. Patent 4,289,845 (1982), Bell.Google Scholar
  20. 20.
    U.S. Patent 4,398,001 (1983), IBM.Google Scholar
  21. 21.
    H. Hiroaka and L. Welsh, Am. Chem. Soc. Org. Coat. Prepr. 48, 48 (1983).Google Scholar
  22. 22.
    U.S. Patent 4,250,247 (1981), Hoechst.Google Scholar
  23. 23.
    Japanese Patent 75,127,619; Chem. Abstr. 85, 12367 (1975).Google Scholar
  24. 24.
    Japanese Patent 76,120,712; Chem. Abstr. 86, 13177 (1976).Google Scholar
  25. 25.
    French Patent 2,477,294; Chem. Abstr. 96, 43856 (1982).Google Scholar
  26. 26.
    Japanese Patent 82,173,941; Chem. Abstr. 99, 13965 (1983).Google Scholar
  27. 27.
    U.S. Patent 3,637,384 (1972), GAF; U.S. Patent 4,384,037 (1983), JSR.Google Scholar
  28. 28.
    U.S. Patent 3,890,153 (1975), Phillips.Google Scholar
  29. 29.
    US. Patent 4,339,521 (1981), Siemens; German Patent 2,631,535; Chem. Abstr. 86, 198007 (1976).Google Scholar
  30. 30.
    Japanese Patent 83,48,045; Chem. Abstr. 99, 80066h (1983).Google Scholar
  31. 31.
    U.S. Patent 3,661,582 (1972), Bell.Google Scholar
  32. 32.
    U.S. Patent 4,365,019 (1982), Kodak.Google Scholar
  33. 33.
    European Patent 70,201; Chem. Abstr. 98, 189014 (1982).Google Scholar
  34. 34.
    U.S. Patent 4,115,128 (1981), Fuji.Google Scholar
  35. 35.
    U.S. Patent 4,307,173 (1979), HoechstGoogle Scholar
  36. 36.
    U.S. Patent 4,009,033 (1978), IBM.Google Scholar
  37. 37.
    U.S. Patent 4,036,644 (1979), IBM.Google Scholar
  38. 38.
    U.S. Patent 4,059,449 (1977), RCA.Google Scholar
  39. 39.
    Japanese Patent 77,126,221; Chem. Abstr. 89, 120920 (1977).Google Scholar
  40. 40.
    Russian Patent 744,426.Google Scholar
  41. 41.
    U.S. Patent 4,148,654 (1982), Shipley.Google Scholar
  42. 42.
    Japanese Patent 80,129,341; Chem. Abstr. 80, 129341 (1978).Google Scholar
  43. 43.
    U.S. Patent 3,130,047 (1964), Azoplate.Google Scholar
  44. 44.
    U.S. Patent 3,264,104 (1966), Azoplate.Google Scholar
  45. 45.
    U.S. Patent 3,827,908 (1974), IBM.Google Scholar
  46. 46.
    U.S. Patent 4,336,319 (1981), Fuji.Google Scholar
  47. 47.
    U.S. Patent 4,259,430 (1981), IBM.Google Scholar
  48. 48.
    U.S. Patent 4,089,766 (1979), IBM.Google Scholar
  49. 49.
    Japanese Patent 78,135,621; Chem. Abstr. 90, 130686 (1979).Google Scholar
  50. 50.
    Russian Patent 731,413; Chem. Abstr. 93, 177308 (1980).Google Scholar
  51. 51.
    U.S. Patent 3,634,082 (1972), Shipley.Google Scholar
  52. 52.
    German Patent 2,944,237; Chem. Abstr. 93, 15922 (1980).Google Scholar
  53. 53.
    U.S. Patent 4,007,047 (1977), IBM.Google Scholar
  54. 54.
    J. Magerlin and D. Webb, IBM J. Res. Dev. 24, 561 (1980).Google Scholar
  55. 55.
    U.S. Patent 4,104,070 (1980), IBM.Google Scholar
  56. 56.
    Japanese Patent 80,32,088; Chem. Abstr. 93, 1995530 (1980).Google Scholar
  57. 57.
    Russian Patent 595,694; Chem. Abstr. 88, 161485 (1978).Google Scholar
  58. 58.
    French Patent 2,017,782, RCA.Google Scholar
  59. 59.
    K. Nakumura, Chem. Lett. 1972, 763 (1972).Google Scholar
  60. 60.
    A. Ouano, Am. Chem. Soc. Org. Coat. 48, 42 (1983).Google Scholar
  61. 61.
    A. Ouano, Polym. Eng. Sci. 18, 306 (1978).Google Scholar
  62. 62.
    D. Ilten and R. Sutton, J. Electrochem. Soc. 119, 539 (1972).Google Scholar
  63. 63.
    B. Broyde, J. Electrochem. Soc. 117, 1555 (1970).Google Scholar
  64. 64.
    A. Paramov, Chem. Abstr. 81, 97720 (1974).Google Scholar
  65. 65.
    J. Shaw, M. Frisch, and F. Dill, IBM J. Res. Dev. 21, 219 (1977).Google Scholar
  66. 66.
    Chem. Abstr. 84, 31812 (1976).Google Scholar
  67. 67.
    Chem. Abstr. 84, 4214 (1976).Google Scholar
  68. 68.
    Chem. Abstr. 82, 111177 (1975).Google Scholar
  69. 69.
    T. Shankoff, J. Brunning, and R. Johnston, Polym. Eng. Sci. 20, 1102 (1980).Google Scholar
  70. 70.
    D. Leers, Solid State Technol. March 1981, p. 91.Google Scholar
  71. 71.
    K. Jain, C. Willson, and B. Lin, IEEE Electron Device Lett. EDL-3, 53 (1982); IBM J. Res. Dev. 26, 151 (1982).Google Scholar
  72. 72.
    B. Lin, J. Vac. Sci. Technol. 19, 1313 (1981); U.S. Patent 4,360,585 (1983), GE.Google Scholar
  73. 73.
    U.S. Patent 4,239,787 (1981), Bell.Google Scholar
  74. 74.
    S. MacDonald, R. Miller, C. Willson, G. Feinberg, R. Gleason, R. Halverson, W. MacIntyre, and W. Motsiff, Kodak Microelectronics, 1982, p. 114.Google Scholar
  75. 75.
    U.S. Patent 4,104,070 (1978).Google Scholar
  76. 76.
    L. Katrisyma, Russ. Chem. Rev. 35, 388 (1966).Google Scholar
  77. 77.
    C. Willson, in Introduction to Microlithography, edited by C. Willson and L. Thompson, Am. Chem. Soc. Symp. Ser. 219, 88–148 (1983).Google Scholar
  78. 78.
    B. Griffing, J. Vac. Sci. Technol. 19, 1423 (1981).Google Scholar
  79. 79.
    L. Mury, J. Matthews, and C. Wood, SPIE Proc. 334, 241 (1982).Google Scholar
  80. 80.
    P. Van Pelt, SPIE Proc. 275, 150 (1981).Google Scholar
  81. 81.
    Y. Kawamura, J. Appl. Phys. 53, 6489 (1981), Appl. Phys. Lett. 40, 374 (1982).Google Scholar
  82. 82.
    N. Veno, K. Sugita, S. Konishi, and K. Tanimoto, Jpn. J. Appl. Phys. 20, L709 (1981).Google Scholar
  83. 83.
    K. Sugita, N. Ueno, S. Konishi, and Y. Suzuki, J. Photogr. Sci. Eng. 27, 149 (1983).Google Scholar
  84. 84.
    J. Bachus, Solid State Technol. Feb. 1982, p. 124.Google Scholar
  85. 85.
    D. Doane, Electrochem. Soc. Ext. Abstr. No. 332 (1980).Google Scholar
  86. 86.
    T. McGrath, Solid State Technol. Dec. 1983, p. 165.Google Scholar
  87. 87.
    W. Moreau and P. Schmidt, Electrochem. Soc. Ext. Abstr. 138, 459 (1970).Google Scholar
  88. 88.
    M. King, IEEE Trans. Electron Devices ED-26, 711 (1979).Google Scholar
  89. 89.
    A. Offner, Photogr. Sci. Eng. 13, 374 (1979).Google Scholar
  90. 90.
    S. Iwamatsu and K. Asonami, Solid State Technol. May 1980, p. 81.Google Scholar
  91. 91.
    B. Ranby and J. Rabek, Photodegradation, Photooxidation, and Photostabilization of Polymers, Wiley, New York, 1975, pp. 143–164.Google Scholar
  92. 92.
    E. Dane and J. Gullet, Macromolecules 6, 230 (1974).Google Scholar
  93. 93.
    J. MacCallum and C. Schoff, Trans. Faraday Soc. 67, 2383 (1971), 67, 2372 (1971).Google Scholar
  94. 94.
    A. Gupta, R. Liang, F. Tsay, and J. Moacanin, Macromolecules 13, 1696 (1980).Google Scholar
  95. 95.
    H. Hiroaka, IBM J. Res. Dev. 21, 121 (1977).Google Scholar
  96. 96.
    R. Fox, L. Issacs, and S. Stokes, J. Polym. Sci. A1, 1079 (1963).Google Scholar
  97. 97.
    K. Harada and S. Sugawara, J. Appl. Polym. Sci. 27, 1441 (1982).Google Scholar
  98. 98.
    N. Viswanathan and H. Santini, Kodak Microelectronics Seminar, 1982, p. 47.Google Scholar
  99. 99.
    M. Lanagan, S. Lindsey, and N. Viswanathan, Jpn. J. Appl. Phys. 22, 267 (1983).Google Scholar
  100. 100.
    M. Tsuda, Y. Nakamura, S. Oikawa, H. Nagata, Y. Yakota, H. Nakane, T. Tsunori, Y. Nakase, and T. Mifusi, Photogr. Sci. Eng. 23, 290 (1979).Google Scholar
  101. 101.
    German Patent 2,911,286, Tokyo Ohko; Chem. Abstr. 92, 86003 (1980).Google Scholar
  102. 102.
    C. Wilkins, E. Reichmanis, and E. Chandross, J. Electrochem. Soc. 127, 2510 (1980); U.S. Patent 4,382,120 (1983), Bell.Google Scholar
  103. 103.
    E. Reichmanis, C. Wilkins, and E. Chandross, J. Vac. Sci. Technol. 19, 1338 (1981).Google Scholar
  104. 104.
    Y. Amerik and J. Guillet, Macromolecules 4, 375 (1971).Google Scholar
  105. 105.
    N. Grassie and A. Davidson, Polym. Degr. Stabil. 3, 45 (1980).Google Scholar
  106. 106.
    U.S. Patent 3,853,814 (1974), J. Guillet.Google Scholar
  107. 107.
    C. Wilkins, E. Reichmanis, and E. Chandross, J. Electrochem. Soc. 129, 2553 (1982).Google Scholar
  108. 108.
    European Patent 48,889, Siemens; Chem. Abstr. 97, 31279 (1982).Google Scholar
  109. 109.
    K. Nate and T. Kobayashi, J. Electrochem. Soc. 128, 1395 (1981).Google Scholar
  110. 110.
    Japanese Patent 83,93,047; Chem. Abstr. 99, 96853 (1983).Google Scholar
  111. 111.
    T. Bowmer, C. Wilkins, E. Reichmanis, and M. Hellman, Polymer 20, 2661 (1982).Google Scholar
  112. 112.
    Japanese Patent 83,49,942; Chem. Abstr. 99, 61731 (1983), 99, 30758 (1983).Google Scholar
  113. 113.
    British Patent 2,099,168; Chem. Abstr. 98, 98822 (1983).Google Scholar
  114. 114.
    W. Moreau, Opt. Eng. 22, 181 (1983).Google Scholar
  115. 115.
    Japanese Patent 83,48,048; Chem. Abstr. 99, 30757 (1983).Google Scholar
  116. 116.
    U.S. Patent 4,278,754 (1981), Oki.Google Scholar
  117. 117.
    Y. Yamashita, K. Ogure, M. Kunishi, R. Kawazawa, S. Ohno, and Y. Mizokawi, J. Vac. Sci. Technol. 16, 2026 (1979).Google Scholar
  118. 118.
    J. Guillet, Macromolecules 5, 212 (1972).Google Scholar
  119. 119.
    U.S. Patent 4,276,369 (1981), Tokyo Ohko.Google Scholar
  120. 120.
    U.S. Patent 4,243,740 (1981), Tokyo Ohko.Google Scholar
  121. 121.
    J. Kwiwi and W. Schnabel, Macromolecules 11, 468 (1978).Google Scholar
  122. 122.
    M. Gazard, A. Chapiro, J. Dubois, and M. Duchesne, Polym. Eng. Sci. 20, 1069 (1980).Google Scholar
  123. 123.
    E. Chandross, C. Wilkins, E. Reichmanis, and M. Hartless, Solid State Technol. Aug. 1981, p. 81.Google Scholar
  124. 124.
    U. S. Patent 3,849,137 (1974).Google Scholar
  125. 125.
    H. Barzynski and D. Sanger, Angew. Makromol. Chem. 93, 131 (1981).Google Scholar
  126. 126.
    U.S. Patent 4,086,210 (1978), Kodak.Google Scholar
  127. 127.
    C. Petropoulos, J. Polym. Sci. Polym. Chem. Ed. 15, 1637 (1977).Google Scholar
  128. 128.
    U.S. Patent 3,991,033 (1976), DuPont.Google Scholar
  129. 129.
    US. Patent 4,150,989 (1979), DuPont.Google Scholar
  130. 130.
    H. Ito and C. Willson, in Polymers in Electronics, edited by T. Davidson, Am. Chem. Soc, 1984, p. 11; Polym. Eng. Sci. 23, 1012 (1983).Google Scholar
  131. 131.
    H. Ito and C. Willson, SPE RETEC Photopolymers, Ellenville, N.Y., 1982, p. 331.Google Scholar
  132. 132.
    U.S. Patent 3,849,137 (1974), Badische.Google Scholar
  133. 133.
    U.S. Patent 3,917,483 (1975), Xerox.Google Scholar
  134. 134.
    U.S. Patent 4,108,839 (1978), DuPont.Google Scholar
  135. 135.
    U.S. Patent 3,963,491 (1976), Xerox.Google Scholar
  136. 136.
    U.S. Patent 3,915,706 (1975), Xerox.Google Scholar
  137. 137.
    U.S. Patent 3,984,253 (1976), Kodak.Google Scholar
  138. 138.
    U.S. Patent 3,923,514 (1975), Xerox.Google Scholar
  139. 139.
    U.S. Patent 3,940,507 (1976), RCA.Google Scholar
  140. 140.
    U.S. Patent 3,779,778 (1973), 3M.Google Scholar
  141. 141.
    U.S. Patent 4,248,957 (1981), Hoechst.Google Scholar
  142. 142.
    U.S. Patent 4,250,247 (1981), Hoechst.Google Scholar
  143. 143.
    J. Crivello and J. Lam, J. Polym. Sci. Polym. Chem. Ed. 17, 2877 (1979).Google Scholar
  144. 144.
    J. Crivello, Am. Chem. Soc. Org. Coat. 48, 65 (1983), Polym. Eng. Sci. 23, 953 (1983).Google Scholar
  145. 145.
    U.S. Patent 4,193,799 (1979), GE.Google Scholar
  146. 146.
    U.S. Patent 4,245,029 (1981), GE.Google Scholar
  147. 147.
    U.S. Patent 4,256,828 (1981), 3M.Google Scholar
  148. 148.
    U.S. Patent 4,156,035 (1978), W. Grace.Google Scholar
  149. 149.
    S. Schlesinger, Photogr. Sci. Eng. 18, 187 (1974), Polym. Eng. Sci. 14, 513 (1974).Google Scholar
  150. 150.
    J. Burgess and D. Schaefer, J. Vac. Sci. Technol. 6, 134 (1969).Google Scholar
  151. 151.
    H. Steppan, G. Buhr, and H. Vollmann, Angew. Chem. Int. Ed. Engl. 21, 455 (1982), reference 50 therein.Google Scholar
  152. 152.
    A. Monahan, Macromolecules 1, 408 (1968).Google Scholar
  153. 153.
    W. Meyer, B. Curtis, and H. Brunner, Microelectron. Eng. 1, 29 (1983), U. S. Patent 4,443,044 (1984), RCA.Google Scholar
  154. 154.
    G. Sheldrick and O. Vogl. Polym. Eng. Sci. 16, 68 (1976).Google Scholar
  155. 155.
    U.S. Patent 3,375,110 (1968), Union Carbide.Google Scholar
  156. 156.
    U.S. Patent 3,763,397 (1969), Kodak.Google Scholar
  157. 157.
    T. Wolf, G. Taylor, T. Venkatesan, and R. Kraetsch, Paper F-6, Electron, Ion, and Photon Beam Conference, Los Angeles, 1983.Google Scholar
  158. 158.
    H. Craighead, J. White, R. Howrad, L. Jackel, R. Behringer, J. Sweeney, and R. Epworth, Paper J-1, Electron, Ion, and Photon Beam Conference, Los Angeles, 1983; J. Vac. Sci. Technol. B1, 1186 (1983).Google Scholar
  159. 159.
    H. Hiroaka, L. Welsh, and J. Bargon, Paper F-1, Electron, Ion, and Photon Beam Conference, Los Angeles, 1983; J. Vac. Sci. Technol. B1, 1062 (1983).Google Scholar
  160. 160.
    M. Tsuida and S. Oikawa, Photogr. Sci. Eng. 23, 177 (1979).Google Scholar
  161. 161.
    M. Janai and P. Rudman, Photogr. Sci. Eng. 20, 234 (1976).Google Scholar
  162. 162.
    S. Pappas and J. Jilek, Photogr. Sci. Eng. 23, 140 (1979).Google Scholar
  163. 163.
    W. Sorenson and T. Campbell, Preparative Methods of Polymer Chemistry, Wiley, New York, 1968, pp. 342–398.Google Scholar
  164. 164.
    J. Pacansky, Polym. Eng. Sci. 20, 1049 (1980).Google Scholar
  165. 165.
    U.S. Patent 4,377,631 (1983), Hunt.Google Scholar
  166. 166.
    E. Vollenbroek, E. Spiertz, and H. Kroon, Polym. Eng. Sci. 23, 925 (1983).Google Scholar
  167. 167.
    T. Gupta, Eur. Polym. J. 17, 1127 (1981).Google Scholar
  168. 168.
    C. G. Willson, in Introduction to Microlithography, edited by L. Thompson, C. Willson, and M. Bowden, Am. Chem. Soc. Symp. Ser. 219, 102–104 (1983).Google Scholar
  169. 169.
    B. Ranby and J. Rabek, Photodegradation, Photooxidation, and Photostabilization of Polymers, Wiley, New York, 1977, pp 323–325.Google Scholar
  170. 170.
    J. Burgess and D. Schafer, J. Vac. Sci. Technol. 6, 135 (1969).Google Scholar
  171. 171.
    P. Trefonas, R. Miller, D. Hoefr, and R. West, J. Polym. Sci. Polym. Lett. Ed. 21, 823 (1983).Google Scholar
  172. 172.
    T. Pampalone, Solid State Technol. June 1984, p. 115.Google Scholar
  173. 173.
    D. Hofer, A. Neureuther, C. Willson, and R. Miller, SPIE Advances in Resist Technology 469, 108 (1984).Google Scholar
  174. 174.
    T. Deutsch and M. Geis, J. Appl. Phys. 54, 7201 (1983).Google Scholar
  175. 175.
    J. Sheats, Appl. Phys. Lett. 44, 1016 (1984).Google Scholar
  176. 176.
    U. S. Patent 4,454,221 (1984).Google Scholar
  177. 177.
    B. Dickens, Polymer 25, 706 (1984).Google Scholar
  178. 178.
    U. S. Patent 4,444,195 (1984), Konishiroku Ind.Google Scholar
  179. 179.
    U. S. Patent 4,460,674 (1984), Konishiroku Ind.Google Scholar
  180. 180.
    M. Nakase, Photogr. Sci. Eng. 27, 254 (1983).Google Scholar
  181. 181.
    Japanese Patent 58,190,946, Chem. Abstr. 100, 165446 (1984).Google Scholar
  182. 182.
    Czechoslovakian Patent 213,016, Chem. Abstr. 100, 219037 (1984).Google Scholar
  183. 183.
    German Patent 3,220,816, Chem. Abstr. 100, 219047 (1984).Google Scholar
  184. 184.
    Russian Patent 1,068,879, Chem. Abstr. 100, 219051 (1984).Google Scholar
  185. 185.
    European Patent Application EP 95,388, Chem. Abstr. 100, 219051 (1984).Google Scholar
  186. 186.
    Japanese Patent 57,201,229, Chem. Abstr. 100, 129885 (1984).Google Scholar
  187. 187.
    Japanese Patent 57,162,330, Chem. Abstr. 100, 15329 (1984).Google Scholar
  188. 188.
    Anon, Res. Discl. 240, 173 (1984), Chem. Abstr. 100, 200822 (1984).Google Scholar
  189. 189.
    U. S. Patent 4,456,760 (1984), BASF.Google Scholar
  190. 190.
    G. Taylor, Solid State Technol. June 1984, p. 105.Google Scholar
  191. 191.
    D. Meyerhofer, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1984, p. 305.Google Scholar
  192. 192.
    U.S. Patent 4,405,708 (1983), U. S. Phillips.Google Scholar
  193. 193.
    U. S. Patent 4,404,272 (1983), Hoechst.Google Scholar
  194. 194.
    U. S. Patent 4,474,864 (1984), IBM.Google Scholar
  195. 195.
    S. Pappas, B. Pappas, L. Gatechair, and W. Schnabel, J. Polym. Sci. 22, 69 (1984).Google Scholar
  196. 196.
    T. Pampalone, M. Hanifan, S. Jain, and K. Krieger, J. Electrochem. Soc. 131, 2670 (1984).Google Scholar
  197. 197.
    F. Branwell, S. Fahrenholtz, R. Jadujura, and C. Paley, J. Chem. Educ. 55, 403 (1978).Google Scholar
  198. 198.
    U.S. Patent 4,460,674 (1984), Konishiroku Ind.Google Scholar
  199. 199.
    U.S. Patents 4,457,999 and 4,458,000 (1984), Am. Hoechst.Google Scholar
  200. 200.
    German Patent 3,337,315, Chem. Abstr. 101, 181207 (1984).Google Scholar
  201. 201.
    M. Ishikawa, J. Polym. Sci. 22, 669 (1984).Google Scholar
  202. 202.
    A. Vanier, Mikroelektronika 13, 3119 (1984) (Izd. Sov. Radio), Chem. Abstr. 101, 219624 (1984).Google Scholar
  203. 203.
    Japanese Patent 59,92,532, Chem. Abstr. 101, 238180 (1984).Google Scholar
  204. 204.
    P. Dyer and J. Sidhu, J. Appl. Phys. 57, 1420 (1985).Google Scholar
  205. 205.
    J. Freenet, T. Tessier, C. Willson, and H. Ito, Macromolecules 18, 317 (1985).Google Scholar
  206. 206.
    T. Shankoffand A. Trozollo, Photogr. Sci. Eng. 19, 173 (1975).Google Scholar
  207. 207.
    Japanese Patent 59,155,838, Chem. Abstr. 102, 36775 (1985).Google Scholar
  208. 208.
    East German Patent 211,415, Chem. Abstr. 102, 140893 (1985).Google Scholar
  209. 209.
    Japanese Patent 59,180,545, Chem. Abstr. 102, 140893 (1985).Google Scholar
  210. 210.
    R. Miller, D. Hofer, D. McNean, C. Willson, P. West, and P. Trefonis, Am. Chem. Soc. Symp. Ser. 266, 293 (1984).Google Scholar
  211. 211.
    Y. Saotome, H. Gokan, K. Saigo, M. Suzuki, and Y. Ohnishi, J. Electrochem. Soc. 132, 909 (1985).Google Scholar
  212. 212.
    U.S. Patent 4,522,911 (1985), IBM.Google Scholar
  213. 213.
    U.S. Patent 4,529,682 (1985), Hunt.Google Scholar
  214. 214.
    U.S. Patent 4,522,911 (1985), IBM.Google Scholar
  215. 215.
    J. Ziegler, L. Harrah, and W. Johnson, Proc. SPIE Int. Soc. Opt. Eng. 539, 166 (1985), U.S. Patent 4,587,205 (1986).Google Scholar
  216. 216.
    Japanese Patent 60,52,845 (1985), JSR; Chem. Abstr. 103, 113359 (1985).Google Scholar
  217. 217.
    E. Alling and C. Stauffer, SPIE Opt. Eng. 539, 194 (1985).Google Scholar
  218. 218.
    U.S. Patent 4,546,066 (1985), IBM.Google Scholar
  219. 219.
    U.S. Patent 4,544,627 (1985), Fuji.Google Scholar
  220. 220.
    H. Klose, R. Seguish, and W. Arder, IEEE Trans. Electron Devices ED-32, 1654 (1985).Google Scholar
  221. 221.
    U.S. Patent 4,524,121 (1985), Rohm & Haas.Google Scholar
  222. 222.
    German Patent 3,344,202 (1985), Merck; Chem. Abstr. 103, 79517 (1985).Google Scholar
  223. 223.
    U. S. Patent 4,546,064 (1985), NAP.Google Scholar
  224. 224.
    A. Schultz, P. Frank, B. Griffing, and A. Young, J. Polym. Sci. 23, 1749 (1985).Google Scholar
  225. 225.
    S. Pappas, J. Imag. Technol. 14, 146 (1985).Google Scholar
  226. 226.
    M. de Grandpre, D. Vidusek, and M. Legenza, SPIE Resist Technol. 539, 103 (1985).Google Scholar
  227. 227.
    Z. Katovic and M. Stefanic, Ind. Eng. Chem. Prod. Res. Dev. 24, 179 (1985).Google Scholar
  228. 228.
    M. S. Pak, D. Mammato, S. Jam, and D. Durham, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 247.Google Scholar
  229. 229.
    M. Watts and D. DeBreun, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 285.Google Scholar
  230. 230.
    S. Turner, R. Arcus, C. Houle, and W. Schleiger, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 35.Google Scholar
  231. 231.
    J. Frechet, F. Houlihan, F. Bouchard, E. Eichler, A. Huit, R. Allen, S. MacDonald, H. Ito, and C. Willson, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 1.Google Scholar
  232. 232.
    W. Hinsberg, C. Willson, and K. Kanazawa, Proc. SPIE Resist Technol. 539, 6 (1985).Google Scholar
  233. 233.
    F. Buiguez, J. Guibert, C. Rosilic, A. Rosilio, F. Schue, R. Sagnes, B. Serres, L. Girial, W. Abou-Madi, and C. Montginoul, Microcircuit Engineering, edited by H. Beneking and A. Heuberger, Academic Press, New York, 1985, p. 471.Google Scholar
  234. 234.
    A. Furuta, M. Hanabata and Y. Uemiura, J. Vac. Sci. Technol. B4, 430 (1986)Google Scholar
  235. 235.
    F. Houlihan, F. Bouchard, J. Frechet, and C. Willson, Macromolecules 14, 13 (1986).Google Scholar
  236. 236.
    ILS. Patent 4,596,763 (1986), Hoechst.Google Scholar
  237. 237.
    H. Phillips, A. Cole, Y. Liu, and T. Sitnik, Appl Phys. Lett. 48, 192, (1986); 48, 212 (1986).Google Scholar
  238. 238.
    U.S. Patent 4,588,670 (1986), Hoechst.Google Scholar
  239. 239.
    U.S. Patent 4,601,969 (1986), IBM.Google Scholar
  240. 240.
    J. Frechet, F. Bouchard, F. Houlihan, B. Kryczka, E. Eichler, N. Clecak, and C. Willson, J. Imag. Sci. 30, 59 (1986).Google Scholar
  241. 241.
    U. S. Patent 4,550,069 (1986), Hoechst (PM acetate).Google Scholar
  242. 242.
    P. Paniez and A. Weill, Microelectron. Eng. 4, 57 (1985).Google Scholar
  243. 243.
    European Patent Appl. EP 140,273, Chem. Abstr. 104, 197029 (1986).Google Scholar
  244. 244.
    U.S. Patent 4,551,416 (1985), AT & T Bell Labs.Google Scholar
  245. 245.
    C. Oscuh, E. Brahim, F. Jopf, M. McFarland, A. Mooring, and C. Wu, SPIE Proc. 631, 68 (1986).Google Scholar
  246. 246.
    U. S. Patent 4,584,309 (1986), Allied.Google Scholar
  247. 247.
    E. Reichmanis, A. Novembre, R. Tarascon, and A. Shugard, Polym. Mater. Sci. Eng. 55, 299 (1986); SPIE Proc. 631, 40 (1986).Google Scholar
  248. 248.
    J. Frechet, T. Iizawa, F. Bouchard, M. Stanciulescu, C. Willson, and N. Clecak, Polym. Mater. Sci. Eng. 55, 299 (1986).Google Scholar
  249. 249.
    T. Pampalone, A. Gilfillan and P. Zanzucchi, J. Electrochem. Soc. 133, 1917 (1986).Google Scholar
  250. 250.
    R. Turner, K. Ahn, and C. Willson, Polym. Mater. Sci. Eng. 55, 608 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Wayne M. Moreau
    • 1
  1. 1.General Technology DivisionInternational Business Machines CorporationNew YorkUSA

Personalised recommendations