Advertisement

Nonresist Processes

  • Wayne M. Moreau
Part of the Microdevices book series (MDPF)

Abstract

Since organic-based resists and etching processes were introduced into semiconductor lithography, there has always been a motivation to replace them with “resistless” processes that directly form circuit components. The direct deposition of metal lines and the direct doping of silicon eliminates all of the resist process steps, some process equipment and the associated organic chemical operations. If we expend 100 mJ/cm2 to expose an organic resist, can the same energy be used to decompose metal or silicon precursors into useful circuit patterns? For specialized applications, we would like to deposit conformal coatings at different thicknesses on the same layer and we desire the capability of repairing defects in a circuit or photomask such as a metal short or a missing image. Another cost motivation would be the elimination of wet chemical processes and the ensuing waste disposal. The successful elimination of wet development can be analogous to the success of the instant developing “Polaroid” process (over aqueous processing in photographic chemistry).

Keywords

Silicon Wafer Silicon Surface Direct Patterning Durable Mask Solid Precursor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Nehmiz, H. Bohlen, and J. Greschner, J. Vac. Sci. Technol 19, 971, 1291 (1981)Google Scholar
  2. 2.
    J. Calvert and J. Pitts, Photochemistry, Wiley, New York, 1966, p. 226.Google Scholar
  3. 3.
    J. Steinfeld, Laser-Induced Chemical Processes, Plenum Press, New York, 1981.Google Scholar
  4. 4.
    D. Flamm and V. Donnelly, Plasma Chem. Plasma Proc. 1, 317 (1981).Google Scholar
  5. 5.
    Z. Liau, B. Tsaur, and J. Mayer, Appl. Phys. Lett. 34, 221 (1979).Google Scholar
  6. 6.
    G. Basile and A. Moisan, Electron Beam and Ion Beam Science and Technology, Eighth International Conferences, Electrochemical Society, 1978, p. 618.Google Scholar
  7. 7.
    R. Moore, G. Caccoma, H. Pfeiffer, E. Weber, and O. Woodard, J. Vac. Sci. Technol 19, 950 (1981).Google Scholar
  8. 8.
    G. Stengl, R. Kaitna, H. Loschner, R. Rieder, P. Wolf, and R. Sacher, J. Vac. Sci. Technol 19, 1164 (1981).Google Scholar
  9. 9.
    U. S. Patent 3,378,401 (1968), 3M.Google Scholar
  10. 10.
    J. Edison, IEEE Spectrum July 1981, p. 27.Google Scholar
  11. 11.
    M. Lacombat, J. Massin, G. Dubroeucq, and M. Brevignon, Solid State Technol Aug. 1980, p. 115.Google Scholar
  12. 12.
    J. Braun, J. Electrochem. Soc. 108, 588 (1961).Google Scholar
  13. 13.
    W. Moreau and P. Schmidt, Electrochem. Soc. Ext. Abstr. Fall 1970, p. 455.Google Scholar
  14. 14.
    R. Solanki, P. Boyer, J. Mahan, and G. Collins, Appl. Phys. Lett. 38, 572 (1981).Google Scholar
  15. 15.
    D. Ehrlich, R. Osgood, and T. Deutsch, IEEE J. Quantum Electron. QE–16, 1233 (1980).Google Scholar
  16. 16.
    D. Ehrlich, R. Osgood, and T. Deutsch, J. Vac. Sci. Technol 21, 23 (1982).Google Scholar
  17. 17.
    J. Ameen and A. Tencza, IBM Tech. Disci. Bull. 12, 1286 (1970).Google Scholar
  18. 18.
    T. Deutsch, D. Ehrlich, and R. Osgood, Appl. Phys. Lett. 35, 175 (1979).Google Scholar
  19. 19.
    D. Ehrlich, R. Osgood, and T. Deutsch, Appl. Phys. Lett. 36, 916 (1980).Google Scholar
  20. 20.
    R. Coombe and F. Wodarczk, Appl. Phys. Lett. 37, 846 (1980).Google Scholar
  21. 21.
    W. Johnson and L. Schlie, Appl. Phys. Lett. 41, 798 (1982).Google Scholar
  22. 22.
    C. Christensen and K. Laben, Appl. Phys. Lett. 32, 254 (1978).Google Scholar
  23. 23.
    V. Baranauskas, C. Mammana, R. Klinger, and J. Greene, Appl. Phys. Lett. 36, 930 (1980).Google Scholar
  24. 24.
    D. Ehrlich, R. Osgood, and T. Deutsch, Appl. Phys. Lett. 39, 957 (1981).Google Scholar
  25. 25.
    R. Andreatta, C. Abele, J. Osmunden, D. Lubben, and J. Greene, Appl. Phys. Lett. 40, 183 (1982).Google Scholar
  26. 26.
    V. Daneu, R. Osgood, and T. Deutsch, Opt. Lett. 6, 563 (1981).Google Scholar
  27. 27.
    G. Pannetier and P. Souchay, Chemical Kinetics, Elsevier, Amsterdam, 1967, p. 304.Google Scholar
  28. 28.
    R. Christy, J. Appl. Phys. 31, 1680 (1980).Google Scholar
  29. 29.
    P. Genequand, Surf. Sci. 25, 643 (1971).Google Scholar
  30. 30.
    S. Allen, J. Porteus, and W. Faith, Appl. Phys. Lett. 41, 416 (1982).Google Scholar
  31. 31.
    L. Maissel, in Handbook of Thin Film Technology, edited by L. Maissel and R. Glang, McGraw-Hill, New York, 1970, pp. 13–28.Google Scholar
  32. 32.
    D. Ehrlich, R. Osgood, D. Silversmith, and T. Deutsch, IEEE Electron Device Lett. EDL–1, 101 (1980).Google Scholar
  33. 33.
    Tylan Co., Solid State Technol Dec. 1982, p. 29.Google Scholar
  34. 34.
    J. Pitts, Photochemistry, Wiley, New York, 1966 Ref. 2, p. 31.Google Scholar
  35. 35.
    P. Boyer, G. Roehe, W. Ritchie, and G. Collins, Appl. Phys. Lett. 40, 716 (1982).Google Scholar
  36. 36.
    G. Leyendecker, D. Bauerle, P. Geittner, and H. Lydtes, Appl. Phys. Lett. 39, 921 (1981).Google Scholar
  37. 37.
    K. Hoh, H. Koyama, K. Uda, and Y. Muira, Jpn. J. Appl. Phys. 19, L375 (1980).Google Scholar
  38. 38.
    I. Boyd, J. Wilson, and J. West, Thin Solid Films 83, L173 (1981).Google Scholar
  39. 39.
    Y. Liu, S. Chiang, and F. Bacon, Appl. Phys. Lett. 38, 1005 (1981).Google Scholar
  40. 40.
    S. Chiang, Y. Liu, and R. Riehl, Appl. Phys. Lett. 39, 752 (1981).Google Scholar
  41. 41.
    M. Matsuura, M. Oshida, A. Suzuki, and K. Hara, Jpn. J. Appl Phys. 20, L726 (1981).Google Scholar
  42. 42.
    I. Boyd and J. Wilson, AppL Phys. Lett. 41, 162 (1982).Google Scholar
  43. 43.
    U. S. Patent 4,183,780 (1980), IBM.Google Scholar
  44. 44.
    U. S. Patent 3,551,213 (1970), Bell.Google Scholar
  45. 45.
    J. Ligenza, J. Appl Phys. 31, 5940 (1960).Google Scholar
  46. 46.
    U. S. Patent 3,122,463 (1961), Bell.Google Scholar
  47. 47.
    J. Steinfeld, T. Anderson, C. Reiser, D. Denison, L. Hartsough, and J. Hollahan, J. Electrochem. Soc. 127, 514 (1980).Google Scholar
  48. 48.
    Y. Horike, Jpn. J. Appl Phys. 20, L817 (1981).Google Scholar
  49. 49.
    J. Coburn, Plasma Chem. Plasma Process 2, 1 (1982).Google Scholar
  50. 50.
    D. Ehrlich, R. Osgood, and T. Deutsch, Appl Phys. Lett. 38, 1018 (1981).Google Scholar
  51. 51.
    T. Chuang, J. Vac. Sci Technol. 19, 638 (1981).Google Scholar
  52. 52.
    K. Daree and W. Kaiser, Glass Technol 18, 19 (1977).Google Scholar
  53. 53.
    F. Houle and T. Chuang, J. Vac. Sci. Technol 20, 734 (1982).Google Scholar
  54. 54.
    T. Chuang, IBM J. Res. Dev. 26, 144 (1982).Google Scholar
  55. 55.
    R. Srinivasan, Appl Phys. Lett. 40, 582 (1982).Google Scholar
  56. 56.
    N. Feldstein and T. Lancsek, RCA Rev. 32, 306 (1971).Google Scholar
  57. 57.
    U. S. Patent 3,672,975 (1972), RCA.Google Scholar
  58. 58.
    J. D’Amico, M. DeAngelo, J. Henrickson, J. Kenney, and D. Sharp, J. Electrochem. Soc. 118, 1695 (1971), 120, 1469 (1973).Google Scholar
  59. 59.
    C. Janssen, H. Jonker, and A. Molenaar, Plating (East Orange, NJ.) Jan. 1971, p. 42.Google Scholar
  60. 60.
    U. S. Patent 3,907,621 (1975), Photocircuits.Google Scholar
  61. 61.
    S. Ohno and K. Maryujama, Am. Chem. Soc. Org. Coat. Abstr. 43, 268 (1980).Google Scholar
  62. 62.
    U. S. Patent 4,259,435 (1981).Google Scholar
  63. 63.
    R. Micheels, A. Darrow, and R. Rauk, Appl Phys. Lett. 39, 418 (1981).Google Scholar
  64. 64.
    R. von Gutfeld, R. Acosta, and L. Romankiw, IBM J. Res. Dev. 26, 136 (1982), U. S. Patent 4,217,183 (1980).Google Scholar
  65. 65.
    J. Puippe, R. Acosta, and R. von Gutfeld, J. Electrochem. Soc. 128, 2540 (1982).Google Scholar
  66. 66.
    M. Aboelfotoh and R. von Gutfeld, J. Appl Phys. 43, 3792 (1972).Google Scholar
  67. 67.
    U. S. Patent 3,345,275 (1967), Westinghouse.Google Scholar
  68. 68.
    U. S. Patent 3,345,274 (1967), Westinghouse.Google Scholar
  69. 69.
    P. Schmidt, J. Oroshnik, and C. Hardman, Solid State Electron. 7, 631 (1964).Google Scholar
  70. 70.
    D. Turner, J. Electrochem. Soc. 105, 402 (1958).Google Scholar
  71. 71.
    P. Magill and C. Speicher, J. Electrochem. Soc. 118, 1000 (1971).Google Scholar
  72. 72.
    R. Wales, J. Electrochem. Soc. 483 (1969).Google Scholar
  73. 73.
    J. Deines, J. Philbrick, M. Poponiak, and D. Dove, Appl Phys. Lett. 34, 746 (1979).Google Scholar
  74. 74.
    U. S. Patent 3,482,974 (1969), GE.Google Scholar
  75. 75.
    U. S. Patent 3,482,975 (1969), GE.Google Scholar
  76. 76.
    U. S. Patent 3,494,768 (1970), GE.Google Scholar
  77. 77.
    A. Dalisa, W. Zwicker, D. Debitteto, and P. Harneck, Appl Phys. Lett. 17, 208 (1970).Google Scholar
  78. 78.
    F. Kuhn-Kuhnenfeld, J. Electrochem. Soc. 119, 1063 (1972).Google Scholar
  79. 79.
    U. S. Patent 3,935,117 (1976), Fuji.Google Scholar
  80. 80.
    H. Hoffman, J. Woodall, and T. Chappell, Appl Phys. Lett. 38, 564 (1981).Google Scholar
  81. 81.
    F. Ostenmayer and P. Kohl, Appl Phys. Lett. 39, 76 (1981).Google Scholar
  82. 82.
    U. S. Patent 4,283,259 (1981) and Ref. 64.Google Scholar
  83. 83.
    W. Moreau and P. Schmidt, Electrochem. Soc. Ext. Abstr. Fall 1970, p. 455.Google Scholar
  84. 84.
    U. S. Patent 3,547,629 (1970), American Screen.Google Scholar
  85. 85.
    U. S. Patent 3,502,871 (1978), Print Arts Res. Lab.Google Scholar
  86. 86.
    T. C. Patton, Paint Flow and Pigment Dispersion, Wiley, New York, 1979.Google Scholar
  87. 87.
    H. Naguib, K. Kavanagh, and L. Hobbs, Solid State Technol. Oct. 1980, p. 109.Google Scholar
  88. 88.
    U. S. Patent 2,914,404.Google Scholar
  89. 89.
    U. S. Patent 3,622,322 (1971), RCA.Google Scholar
  90. 90.
    U. S. Patent 3,779,758 (1973), Photocircuits.Google Scholar
  91. 91.
    U. S. Patent 3,542,550 (1970), IBM.Google Scholar
  92. 92.
    U. S. Patent 3,355,291 (1967), TI.Google Scholar
  93. 93.
    U. S. Patent 3,474,718 (1969), Sperry Rand.Google Scholar
  94. 94.
    U. S. Patent 3,387,975 (1968), Sony.Google Scholar
  95. 95.
    A. Pastor, G. Tanogooniami, R. Pastor, S. Wong, and R. Chew, Thin Solid Films 67, 9 (1980).Google Scholar
  96. 96.
    U. S. Patent 3,390,992 (1968), Rockwell.Google Scholar
  97. 97.
    U. S. Patent 3,551,176 (1970), Hughes.Google Scholar
  98. 98.
    G. Bomchil, O. Benashel, A. Golanski, F. Ferrieu, G. Auvert, A. Perio, and J. Pfister, Appl. Phys. Lett. 41, 46 (1982).Google Scholar
  99. 99.
    Z. Liau, B. Tsau, and J. Mayer, Appl. Phys. Lett. 34, 221 (1979).Google Scholar
  100. 100.
    M. Bosch, A. Dayem, T. Harrison, and A. Lemons, Appl. Phys. Lett. 41, 363 (1982).Google Scholar
  101. 101.
    S. Sastoh, H. Iswara, and S. Furikawa, Appl. Phys. Lett. 37, 203 (1980).Google Scholar
  102. 102.
    T. Shibata, A. Wakita, T. Sigmon, and J. Gibbons, Appl. Phys. Lett. 38, 399 (1981).Google Scholar
  103. 103.
    D. Ehrlich, R. Osgood, and T. Deutsch, Appl. Phys. Lett. 38, 399 (1981).Google Scholar
  104. 104.
    H. Taber, S. Nara, and K. Matsuyama, J. Electrochem. Soc. 121, 69 (1974).Google Scholar
  105. 105.
    U. S. Patents 3,346,384 (1967), 3,482,975 (1969), 3,485,630 (1969), 3,489,563 (1970), 3.494,768 (1970), 3,520,685 (1970), 3,520,687 (1970), GE.Google Scholar
  106. 106.
    J. Burgess and D. Schaefer, J. Vac. Sci. Technol. 6, 143 (1969).Google Scholar
  107. 107.
    U. S. Patent 3,992,208 (1976), Fuji.Google Scholar
  108. 108.
    D. Maydan, Bell Syst. Tech. J. 30, 1761 (1971).Google Scholar
  109. 109.
    V. Zaleckas and J. Koo, Appl. Phys. Lett. 31, 616 (1977).Google Scholar
  110. 110.
    Z. Liau, B. Tsaur, and J. Mayer, Appl. Phys. Lett. 34, 24 (1979).Google Scholar
  111. 111.
    R. Kaplan, SPIE Advances in Laser Engineering and Applications 247, 2 (1980).Google Scholar
  112. 112.
    J. Narayan and F. Young, Appl. Phys. Lett. 35, 330 (1979).Google Scholar
  113. 113.
    P. Baeri, S. Campiasano, G. Fati, and E. Rimini, J. Appl. Phys. 50, 788 (1979).Google Scholar
  114. 114.
    W. Brown, J. Vac. Sci. Technol. 20, 734 (1982).Google Scholar
  115. 115.
    C. Goodridge, Circuits Manuf. July 1981, p. 59.Google Scholar
  116. 116.
    K. Shoulders, Publication PB171027, U. S. Department of Commerce Office of Technical Service, Sept. 1960.Google Scholar
  117. 117.
    W. Nixon, Microelectron. Reliab. 3, 153 (1964).Google Scholar
  118. 118.
    R. Christy, J. Appl. Phys. 33, 1884 (1962).Google Scholar
  119. 119.
    G. Hill, Microelectron. Reliab. 4, 109 (1965).Google Scholar
  120. 120.
    U. S. Patent 3,113,896 (1962).Google Scholar
  121. 121.
    T. Woodman, Br. J. Appl. Phys. 16, 359 (1965).Google Scholar
  122. 122.
    U. S. Patent 3,378,401 (1968), 3M.Google Scholar
  123. 123.
    M. Lepselter, U. S. Patent 3,442,701 (1969), Bell.Google Scholar
  124. 124.
    J. Ballantyne and W. Nixon, J. Vac. Sci. Technol. 10, 1094 (1973).Google Scholar
  125. 125.
    U. S. Patent 3,585,091 (1971), Bell.Google Scholar
  126. 126.
    U. S. Patent 3,615,935 (1971).Google Scholar
  127. 127.
    U. S. Patent 3,580,749 (1971), Westinghouse.Google Scholar
  128. 128.
    U. S. Patent 3,615,953 (1971).Google Scholar
  129. 129.
    U. S. Patent 3,799,77 (1974), Westinghouse.Google Scholar
  130. 130.
    U. S. Patent 3,833,396 (1974), Bell.Google Scholar
  131. 131.
    U. S. Patent 3,867,148 (1975), Westinghouse.Google Scholar
  132. 132.
    B. Chin and G. Ehrlich, Appl. Phys. Lett. 38, 253 (1981).Google Scholar
  133. 133.
    U. S. Patent 3,436,468 (1969), TI.Google Scholar
  134. 134.
    H. Smith, E. Ligeon, and A. Bontemp, Appl. Phys. Lett. 37, 1036 (1980).Google Scholar
  135. 135.
    T. O’Keefe and R. Handy, Solid State Electron. 11, 261 (1968).Google Scholar
  136. 136.
    U. S. Patents 3,585,433 (1971), 3,588,570 (1972), 3,686,020 (1973), 3,672,987 (1974), Westinghouse.Google Scholar
  137. 137.
    G. Kammlott and W. Sinclair, J. Electrochem. Soc. 121, 929 (1974).Google Scholar
  138. 138.
    U. S. Patent 3,355,568 (1967), Hitachi.Google Scholar
  139. 139.
    J. Bartelt, C. Slayman, J. Wood, J. Chen, C. McKenna, C. Minning, J. Coakley, R. Holman, and C. Perrigo, J. Vac. Sci. Technol. 19, 1166 (1981).Google Scholar
  140. 140.
    V. Wang, J. Ward, and R. Seliger, J. Vac. Sci Technol. 19, 916, 1158 (1981).Google Scholar
  141. 141.
    T. O’Keefe, J. Electrochem. Soc. 112, 149C (1965).Google Scholar
  142. 142.
    U. S. Patent 3,563,809 (1970), Hughes.Google Scholar
  143. 143.
    R. Kubens, C. Anderson, R. Seliger, R. Juliens, E. Stevens, and I. Lagando, J. Vac. Sci. Technol. 19, 916 (1981).Google Scholar
  144. 144.
    U. S. Patent 3,516,855 (1970), IBM.Google Scholar
  145. 145.
    R. Barker, T. Mayer, and R. Burton, Appl. Phys. Lett. 40, 583 (1982).Google Scholar
  146. 146.
    U. S. Patent 3,551,213 (1970).Google Scholar
  147. 147.
    G. Stengl, R. Kartna, H. Loschner, R. Rieder, P. Wolf, and R. Sacher, J. Vac. Sci. Technol. 19, 1164 (1981).Google Scholar
  148. 148.
    U. S. Patent 3,801,390 (1974), Bell.Google Scholar
  149. 149.
    G. Bell and J. Hoepfner, Proc. Electrochem. Soc., 1976, p. 47.Google Scholar
  150. 150.
    J. Gotzlich and H. Ryssel, J. Electrochem. Soc. 128, 617 (1981).Google Scholar
  151. 151.
    D. Day, IEEE Electron Device Lett. EDL–5, 32 (1984).Google Scholar
  152. 152.
    European Patent Application EP 97,819 (1984), Chem. Abstr. 100, 201856 (1984).Google Scholar
  153. 153.
    Japanese Patent 58,209,123 (1983), Chem. Abstr. 101, 31145 (1984).Google Scholar
  154. 154.
    K. Gamo, Jpn. J. Appl Phys. 23, L293 (1984).Google Scholar
  155. 155.
    P. Brewer, S. Halle, and R. Osgood, Appl Phys. Lett. 45, 475 (1984).Google Scholar
  156. 156.
    H. Hiroaka, SPIE Proc. 469, 127 (1984).Google Scholar
  157. 157.
    T. Kanayama, Ext. Abstr. 1984 Int. Conf. Solid State Dev., p. 27.Google Scholar
  158. 158.
    D. Ehrlich and J. Tsao, J. Vac. Sci. Technol. B1, 979 (1983).Google Scholar
  159. 159.
    S. Allen, SPIE Proc. 459, 42 (1984).Google Scholar
  160. 160.
    J. Tsao and D. Ehrlich, SPIE Proc. 459, 2 (1984).Google Scholar
  161. 161.
    R. Jan and S. Allen, SPIE Proc. 459, 75 (1984).Google Scholar
  162. 162.
    K. Emery, L. Thompson, J. Rocca, and G. Collins, SPIE Proc. 459, 75 (1984).Google Scholar
  163. 163.
    F. Houle, J. Chem. Phys. 79, 4237 (1984), SPIE Proc. 459, 110 (1984).Google Scholar
  164. 164.
    G. Loper and M. Tabat, SPIE Proc. 459, 121 (1984).Google Scholar
  165. 165.
    J. Gee and P. Hargis, SPIE Proc. 459, 132 (1984).Google Scholar
  166. 166.
    F. Houle, SPIE Proc. 385, 127 (1984).Google Scholar
  167. 167.
    P. Mankewich, H. Craighead, T. Harrison, and A. Daymen, Appl Phys. Lett. 44, 468 (1984).Google Scholar
  168. 168.
    A. Muray, M. Issacson, and I. Aesida, Appl Phys. Lett. 45, 589 (1984).Google Scholar
  169. 169.
    J. Tsao and D. Ehrlich, Appl Phys. Lett. 45, 617 (1984).Google Scholar
  170. 170.
    R. Krchnavek, H. Giligen, and R. Osgood, J. Vac. Sci. Technol. B2, 641 (1984).Google Scholar
  171. 171.
    J. Maes, A. Van Nu, and G. Hut, Reliab. 17, 325 (1978).Google Scholar
  172. 172.
    F. Houle, C. Jones, T. Baum, C. Pico, and G. Kovac, Appl Phys. Lett. 46, 204 (1985).Google Scholar
  173. 173.
    W. Holber, G. Retsken, and R. Osgood, Appl Phys. Lett. 46, 201 (1985).Google Scholar
  174. 174.
    T. Yamazaki, Y. Suzuki, and H. Nakata, J. Vac. Sci. Technol. 17, 1384 (1980).Google Scholar
  175. 175.
    Japanese Patent 59,145,528, Chem. Abstr. 102, 70256 (1985).Google Scholar
  176. 176.
    D. Tennant, J. Vac. Sci. Technol. B3, 458 (1985).Google Scholar
  177. 177.
    P. Singer, Semicond. Int. April 1985, p. 66.Google Scholar
  178. 178.
    H. Yamaguchi, A. Shisame, S. Haraichi, and T. Miyauchi, J. Vac. Sci. Technol. B3, 71 (1985).Google Scholar
  179. 179.
    M. Takai, J. Tsuchimoto, N. Junuchi, N. Hiroyuki, K. Gamo, and S. Namba, Jpn. J. Appl., Phys. Part 2, 23, L852 (1984).Google Scholar
  180. 180.
    P. Heard, J. Cleaver, and H. Ahmed, J. Vac. Sci. Technol. B3, 87 (1985).Google Scholar
  181. 181.
    Japanese Patent 59,155,935, Chem. Abstr. 102, 88669 (1984).Google Scholar
  182. 182.
    J. Randall, D. Ehrlich, and J. Tsao, J. Vac. Sci. Technol. B3, 87 (1985).Google Scholar
  183. 183.
    U. S. Patent 4,496,449 (1985), Colromm.Google Scholar
  184. 184.
    M. Green, C. Aidinis, and O. Fakulujo, J. Appl Phys. 57, 631 (1985).Google Scholar
  185. 185.
    R. Osgood and T. Deutsch, Science 227, 709 (1985).Google Scholar
  186. 186.
    G. Koren, F. Ho, and J. Ritsko, Appl Phys. Lett. 46, 1006 (1985).Google Scholar
  187. 187.
    K. Li and M. Oprysko, Appl Phys. Lett. 46, 997 (1985).Google Scholar
  188. 188.
    G. Fisnanick, M. Gross, J. Hopkins, M. Fennell, K. Schnoes, and A. Katzer, J. Appl Phys. 57, 1139 (1985).Google Scholar
  189. 189.
    S. Yokoyama, Y. Yamakazi, and M. Hirose, Appl Phys. Lett. 47, 389 (1985).Google Scholar
  190. 190.
    D. Ehrlich, Solid State Technol. Dec. 1985, p. 81.Google Scholar
  191. 191.
    J. Bjorkholm, L. Eichner, J. White, R. Howard, and H. Craighead, J. AppL Phys. 58, 2098 (1985).Google Scholar
  192. 192.
    R. Tenne, V. Marcu, and Y. Prior, Appl Phys. A37, 205 (1985).Google Scholar
  193. 193.
    T. Baum and C Jones, Appl Phys. Lett. 47, 538 (1985).Google Scholar
  194. 194.
    C. Fiori and R. Devine, Appl Phys. Lett. 47, 361 (1985).Google Scholar
  195. 195.
    F. Ostermayer, P. Kohl, and R. Lum, J. AppL Phys. 58, 4390 (1985).Google Scholar
  196. 196.
    J. Brannon, J. Lankard, A. Baise, F. Burns, and J. Kaufman, J. AppL Phys. 58, 2036 (1985).Google Scholar
  197. 197.
    C. Ashby and R. Biefeld, Appl Phys. Lett. 47, 62 (1985).Google Scholar
  198. 198.
    M. Gross, G. Fissnick, P. Gallager, K. Schnols, and M. Fennell, Appl Phys. Lett. 47, 923 (1985).Google Scholar
  199. 199.
    D. Day, G. Middleton, T. James, J. White, and V. Mifsud, J. Electrochem. Soc. 131, 407 (1985).Google Scholar
  200. 200.
    R. Gutfeld and D. Vigliotti, Appl Phys. Lett. 46, 1003 (1985).Google Scholar
  201. 201.
    T. Mottoka, S. Gorbathsen, D. Lubben, and J. Greene, J. Appl Phys. 58, 4397 (1985).Google Scholar
  202. 202.
    D. Ehrlich, J. Tsao, D. Silversmith, J. Sedlackik, R. Mountain, and U. Grabber, IEEE Electron Device Lett. EDL–5, 32 (1984).Google Scholar
  203. 203.
    S. Stensey, S. Eskeldsen, and G. Sorensen, Appl. Phys. Lett. 46, 1101 (1985).Google Scholar
  204. 204.
    U. S. Patent 4,523,971 (1985), IBM.Google Scholar
  205. 205.
    U. S. Patent 4,530,734 (1985).Google Scholar
  206. 206.
    G. Stengl, H. Loeschner, W. Maurer, and P. Wold, SPIE Opt. Eng. 537, 138 (1985).Google Scholar
  207. 207.
    B. Ward, D. Shaver, and M. Ward, SPIE Opt. Eng. 537, 110 (1985).Google Scholar
  208. 208.
    K. Orvek and C. Huffman, Nucl. Instrum. Methods Phys. Res. B7–8, 501 (1985).Google Scholar
  209. 209.
    German Patent 3,420,353 (1984), Chem. Abstr. 102, 158083 (1985).Google Scholar
  210. 210.
    R. Spiedel and Y. Benzhang, Optik (Stuttgart) 68, 363 (1984).Google Scholar
  211. 211.
    C. Fisanck, J. Hopkins, M. Gross, M. Fennel, and K. Schnoes, Appl. Phys. Lett. 46, 1184 (1985).Google Scholar
  212. 212.
    J. Kosar, Light Sensitive Systems, Wiley, New York, 1965, pp. 1–49.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Wayne M. Moreau
    • 1
  1. 1.General Technology DivisionInternational Business Machines CorporationNew YorkUSA

Personalised recommendations