Skip to main content

Nonresist Processes

  • Chapter
  • 826 Accesses

Part of the book series: Microdevices ((MDPF))

Abstract

Since organic-based resists and etching processes were introduced into semiconductor lithography, there has always been a motivation to replace them with “resistless” processes that directly form circuit components. The direct deposition of metal lines and the direct doping of silicon eliminates all of the resist process steps, some process equipment and the associated organic chemical operations. If we expend 100 mJ/cm2 to expose an organic resist, can the same energy be used to decompose metal or silicon precursors into useful circuit patterns? For specialized applications, we would like to deposit conformal coatings at different thicknesses on the same layer and we desire the capability of repairing defects in a circuit or photomask such as a metal short or a missing image. Another cost motivation would be the elimination of wet chemical processes and the ensuing waste disposal. The successful elimination of wet development can be analogous to the success of the instant developing “Polaroid” process (over aqueous processing in photographic chemistry).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Nehmiz, H. Bohlen, and J. Greschner, J. Vac. Sci. Technol 19, 971, 1291 (1981)

    Google Scholar 

  2. J. Calvert and J. Pitts, Photochemistry, Wiley, New York, 1966, p. 226.

    Google Scholar 

  3. J. Steinfeld, Laser-Induced Chemical Processes, Plenum Press, New York, 1981.

    Google Scholar 

  4. D. Flamm and V. Donnelly, Plasma Chem. Plasma Proc. 1, 317 (1981).

    Google Scholar 

  5. Z. Liau, B. Tsaur, and J. Mayer, Appl. Phys. Lett. 34, 221 (1979).

    Google Scholar 

  6. G. Basile and A. Moisan, Electron Beam and Ion Beam Science and Technology, Eighth International Conferences, Electrochemical Society, 1978, p. 618.

    Google Scholar 

  7. R. Moore, G. Caccoma, H. Pfeiffer, E. Weber, and O. Woodard, J. Vac. Sci. Technol 19, 950 (1981).

    Google Scholar 

  8. G. Stengl, R. Kaitna, H. Loschner, R. Rieder, P. Wolf, and R. Sacher, J. Vac. Sci. Technol 19, 1164 (1981).

    Google Scholar 

  9. U. S. Patent 3,378,401 (1968), 3M.

    Google Scholar 

  10. J. Edison, IEEE Spectrum July 1981, p. 27.

    Google Scholar 

  11. M. Lacombat, J. Massin, G. Dubroeucq, and M. Brevignon, Solid State Technol Aug. 1980, p. 115.

    Google Scholar 

  12. J. Braun, J. Electrochem. Soc. 108, 588 (1961).

    Google Scholar 

  13. W. Moreau and P. Schmidt, Electrochem. Soc. Ext. Abstr. Fall 1970, p. 455.

    Google Scholar 

  14. R. Solanki, P. Boyer, J. Mahan, and G. Collins, Appl. Phys. Lett. 38, 572 (1981).

    Google Scholar 

  15. D. Ehrlich, R. Osgood, and T. Deutsch, IEEE J. Quantum Electron. QE–16, 1233 (1980).

    Google Scholar 

  16. D. Ehrlich, R. Osgood, and T. Deutsch, J. Vac. Sci. Technol 21, 23 (1982).

    Google Scholar 

  17. J. Ameen and A. Tencza, IBM Tech. Disci. Bull. 12, 1286 (1970).

    Google Scholar 

  18. T. Deutsch, D. Ehrlich, and R. Osgood, Appl. Phys. Lett. 35, 175 (1979).

    Google Scholar 

  19. D. Ehrlich, R. Osgood, and T. Deutsch, Appl. Phys. Lett. 36, 916 (1980).

    Google Scholar 

  20. R. Coombe and F. Wodarczk, Appl. Phys. Lett. 37, 846 (1980).

    Google Scholar 

  21. W. Johnson and L. Schlie, Appl. Phys. Lett. 41, 798 (1982).

    Google Scholar 

  22. C. Christensen and K. Laben, Appl. Phys. Lett. 32, 254 (1978).

    Google Scholar 

  23. V. Baranauskas, C. Mammana, R. Klinger, and J. Greene, Appl. Phys. Lett. 36, 930 (1980).

    Google Scholar 

  24. D. Ehrlich, R. Osgood, and T. Deutsch, Appl. Phys. Lett. 39, 957 (1981).

    Google Scholar 

  25. R. Andreatta, C. Abele, J. Osmunden, D. Lubben, and J. Greene, Appl. Phys. Lett. 40, 183 (1982).

    Google Scholar 

  26. V. Daneu, R. Osgood, and T. Deutsch, Opt. Lett. 6, 563 (1981).

    Google Scholar 

  27. G. Pannetier and P. Souchay, Chemical Kinetics, Elsevier, Amsterdam, 1967, p. 304.

    Google Scholar 

  28. R. Christy, J. Appl. Phys. 31, 1680 (1980).

    Google Scholar 

  29. P. Genequand, Surf. Sci. 25, 643 (1971).

    Google Scholar 

  30. S. Allen, J. Porteus, and W. Faith, Appl. Phys. Lett. 41, 416 (1982).

    Google Scholar 

  31. L. Maissel, in Handbook of Thin Film Technology, edited by L. Maissel and R. Glang, McGraw-Hill, New York, 1970, pp. 13–28.

    Google Scholar 

  32. D. Ehrlich, R. Osgood, D. Silversmith, and T. Deutsch, IEEE Electron Device Lett. EDL–1, 101 (1980).

    Google Scholar 

  33. Tylan Co., Solid State Technol Dec. 1982, p. 29.

    Google Scholar 

  34. J. Pitts, Photochemistry, Wiley, New York, 1966 Ref. 2, p. 31.

    Google Scholar 

  35. P. Boyer, G. Roehe, W. Ritchie, and G. Collins, Appl. Phys. Lett. 40, 716 (1982).

    Google Scholar 

  36. G. Leyendecker, D. Bauerle, P. Geittner, and H. Lydtes, Appl. Phys. Lett. 39, 921 (1981).

    Google Scholar 

  37. K. Hoh, H. Koyama, K. Uda, and Y. Muira, Jpn. J. Appl. Phys. 19, L375 (1980).

    Google Scholar 

  38. I. Boyd, J. Wilson, and J. West, Thin Solid Films 83, L173 (1981).

    Google Scholar 

  39. Y. Liu, S. Chiang, and F. Bacon, Appl. Phys. Lett. 38, 1005 (1981).

    Google Scholar 

  40. S. Chiang, Y. Liu, and R. Riehl, Appl. Phys. Lett. 39, 752 (1981).

    Google Scholar 

  41. M. Matsuura, M. Oshida, A. Suzuki, and K. Hara, Jpn. J. Appl Phys. 20, L726 (1981).

    Google Scholar 

  42. I. Boyd and J. Wilson, AppL Phys. Lett. 41, 162 (1982).

    Google Scholar 

  43. U. S. Patent 4,183,780 (1980), IBM.

    Google Scholar 

  44. U. S. Patent 3,551,213 (1970), Bell.

    Google Scholar 

  45. J. Ligenza, J. Appl Phys. 31, 5940 (1960).

    Google Scholar 

  46. U. S. Patent 3,122,463 (1961), Bell.

    Google Scholar 

  47. J. Steinfeld, T. Anderson, C. Reiser, D. Denison, L. Hartsough, and J. Hollahan, J. Electrochem. Soc. 127, 514 (1980).

    Google Scholar 

  48. Y. Horike, Jpn. J. Appl Phys. 20, L817 (1981).

    Google Scholar 

  49. J. Coburn, Plasma Chem. Plasma Process 2, 1 (1982).

    Google Scholar 

  50. D. Ehrlich, R. Osgood, and T. Deutsch, Appl Phys. Lett. 38, 1018 (1981).

    Google Scholar 

  51. T. Chuang, J. Vac. Sci Technol. 19, 638 (1981).

    Google Scholar 

  52. K. Daree and W. Kaiser, Glass Technol 18, 19 (1977).

    Google Scholar 

  53. F. Houle and T. Chuang, J. Vac. Sci. Technol 20, 734 (1982).

    Google Scholar 

  54. T. Chuang, IBM J. Res. Dev. 26, 144 (1982).

    Google Scholar 

  55. R. Srinivasan, Appl Phys. Lett. 40, 582 (1982).

    Google Scholar 

  56. N. Feldstein and T. Lancsek, RCA Rev. 32, 306 (1971).

    Google Scholar 

  57. U. S. Patent 3,672,975 (1972), RCA.

    Google Scholar 

  58. J. D’Amico, M. DeAngelo, J. Henrickson, J. Kenney, and D. Sharp, J. Electrochem. Soc. 118, 1695 (1971), 120, 1469 (1973).

    Google Scholar 

  59. C. Janssen, H. Jonker, and A. Molenaar, Plating (East Orange, NJ.) Jan. 1971, p. 42.

    Google Scholar 

  60. U. S. Patent 3,907,621 (1975), Photocircuits.

    Google Scholar 

  61. S. Ohno and K. Maryujama, Am. Chem. Soc. Org. Coat. Abstr. 43, 268 (1980).

    Google Scholar 

  62. U. S. Patent 4,259,435 (1981).

    Google Scholar 

  63. R. Micheels, A. Darrow, and R. Rauk, Appl Phys. Lett. 39, 418 (1981).

    Google Scholar 

  64. R. von Gutfeld, R. Acosta, and L. Romankiw, IBM J. Res. Dev. 26, 136 (1982), U. S. Patent 4,217,183 (1980).

    Google Scholar 

  65. J. Puippe, R. Acosta, and R. von Gutfeld, J. Electrochem. Soc. 128, 2540 (1982).

    Google Scholar 

  66. M. Aboelfotoh and R. von Gutfeld, J. Appl Phys. 43, 3792 (1972).

    Google Scholar 

  67. U. S. Patent 3,345,275 (1967), Westinghouse.

    Google Scholar 

  68. U. S. Patent 3,345,274 (1967), Westinghouse.

    Google Scholar 

  69. P. Schmidt, J. Oroshnik, and C. Hardman, Solid State Electron. 7, 631 (1964).

    Google Scholar 

  70. D. Turner, J. Electrochem. Soc. 105, 402 (1958).

    Google Scholar 

  71. P. Magill and C. Speicher, J. Electrochem. Soc. 118, 1000 (1971).

    Google Scholar 

  72. R. Wales, J. Electrochem. Soc. 483 (1969).

    Google Scholar 

  73. J. Deines, J. Philbrick, M. Poponiak, and D. Dove, Appl Phys. Lett. 34, 746 (1979).

    Google Scholar 

  74. U. S. Patent 3,482,974 (1969), GE.

    Google Scholar 

  75. U. S. Patent 3,482,975 (1969), GE.

    Google Scholar 

  76. U. S. Patent 3,494,768 (1970), GE.

    Google Scholar 

  77. A. Dalisa, W. Zwicker, D. Debitteto, and P. Harneck, Appl Phys. Lett. 17, 208 (1970).

    Google Scholar 

  78. F. Kuhn-Kuhnenfeld, J. Electrochem. Soc. 119, 1063 (1972).

    Google Scholar 

  79. U. S. Patent 3,935,117 (1976), Fuji.

    Google Scholar 

  80. H. Hoffman, J. Woodall, and T. Chappell, Appl Phys. Lett. 38, 564 (1981).

    Google Scholar 

  81. F. Ostenmayer and P. Kohl, Appl Phys. Lett. 39, 76 (1981).

    Google Scholar 

  82. U. S. Patent 4,283,259 (1981) and Ref. 64.

    Google Scholar 

  83. W. Moreau and P. Schmidt, Electrochem. Soc. Ext. Abstr. Fall 1970, p. 455.

    Google Scholar 

  84. U. S. Patent 3,547,629 (1970), American Screen.

    Google Scholar 

  85. U. S. Patent 3,502,871 (1978), Print Arts Res. Lab.

    Google Scholar 

  86. T. C. Patton, Paint Flow and Pigment Dispersion, Wiley, New York, 1979.

    Google Scholar 

  87. H. Naguib, K. Kavanagh, and L. Hobbs, Solid State Technol. Oct. 1980, p. 109.

    Google Scholar 

  88. U. S. Patent 2,914,404.

    Google Scholar 

  89. U. S. Patent 3,622,322 (1971), RCA.

    Google Scholar 

  90. U. S. Patent 3,779,758 (1973), Photocircuits.

    Google Scholar 

  91. U. S. Patent 3,542,550 (1970), IBM.

    Google Scholar 

  92. U. S. Patent 3,355,291 (1967), TI.

    Google Scholar 

  93. U. S. Patent 3,474,718 (1969), Sperry Rand.

    Google Scholar 

  94. U. S. Patent 3,387,975 (1968), Sony.

    Google Scholar 

  95. A. Pastor, G. Tanogooniami, R. Pastor, S. Wong, and R. Chew, Thin Solid Films 67, 9 (1980).

    Google Scholar 

  96. U. S. Patent 3,390,992 (1968), Rockwell.

    Google Scholar 

  97. U. S. Patent 3,551,176 (1970), Hughes.

    Google Scholar 

  98. G. Bomchil, O. Benashel, A. Golanski, F. Ferrieu, G. Auvert, A. Perio, and J. Pfister, Appl. Phys. Lett. 41, 46 (1982).

    Google Scholar 

  99. Z. Liau, B. Tsau, and J. Mayer, Appl. Phys. Lett. 34, 221 (1979).

    Google Scholar 

  100. M. Bosch, A. Dayem, T. Harrison, and A. Lemons, Appl. Phys. Lett. 41, 363 (1982).

    Google Scholar 

  101. S. Sastoh, H. Iswara, and S. Furikawa, Appl. Phys. Lett. 37, 203 (1980).

    Google Scholar 

  102. T. Shibata, A. Wakita, T. Sigmon, and J. Gibbons, Appl. Phys. Lett. 38, 399 (1981).

    Google Scholar 

  103. D. Ehrlich, R. Osgood, and T. Deutsch, Appl. Phys. Lett. 38, 399 (1981).

    Google Scholar 

  104. H. Taber, S. Nara, and K. Matsuyama, J. Electrochem. Soc. 121, 69 (1974).

    Google Scholar 

  105. U. S. Patents 3,346,384 (1967), 3,482,975 (1969), 3,485,630 (1969), 3,489,563 (1970), 3.494,768 (1970), 3,520,685 (1970), 3,520,687 (1970), GE.

    Google Scholar 

  106. J. Burgess and D. Schaefer, J. Vac. Sci. Technol. 6, 143 (1969).

    Google Scholar 

  107. U. S. Patent 3,992,208 (1976), Fuji.

    Google Scholar 

  108. D. Maydan, Bell Syst. Tech. J. 30, 1761 (1971).

    Google Scholar 

  109. V. Zaleckas and J. Koo, Appl. Phys. Lett. 31, 616 (1977).

    Google Scholar 

  110. Z. Liau, B. Tsaur, and J. Mayer, Appl. Phys. Lett. 34, 24 (1979).

    Google Scholar 

  111. R. Kaplan, SPIE Advances in Laser Engineering and Applications 247, 2 (1980).

    Google Scholar 

  112. J. Narayan and F. Young, Appl. Phys. Lett. 35, 330 (1979).

    Google Scholar 

  113. P. Baeri, S. Campiasano, G. Fati, and E. Rimini, J. Appl. Phys. 50, 788 (1979).

    Google Scholar 

  114. W. Brown, J. Vac. Sci. Technol. 20, 734 (1982).

    Google Scholar 

  115. C. Goodridge, Circuits Manuf. July 1981, p. 59.

    Google Scholar 

  116. K. Shoulders, Publication PB171027, U. S. Department of Commerce Office of Technical Service, Sept. 1960.

    Google Scholar 

  117. W. Nixon, Microelectron. Reliab. 3, 153 (1964).

    Google Scholar 

  118. R. Christy, J. Appl. Phys. 33, 1884 (1962).

    Google Scholar 

  119. G. Hill, Microelectron. Reliab. 4, 109 (1965).

    Google Scholar 

  120. U. S. Patent 3,113,896 (1962).

    Google Scholar 

  121. T. Woodman, Br. J. Appl. Phys. 16, 359 (1965).

    Google Scholar 

  122. U. S. Patent 3,378,401 (1968), 3M.

    Google Scholar 

  123. M. Lepselter, U. S. Patent 3,442,701 (1969), Bell.

    Google Scholar 

  124. J. Ballantyne and W. Nixon, J. Vac. Sci. Technol. 10, 1094 (1973).

    Google Scholar 

  125. U. S. Patent 3,585,091 (1971), Bell.

    Google Scholar 

  126. U. S. Patent 3,615,935 (1971).

    Google Scholar 

  127. U. S. Patent 3,580,749 (1971), Westinghouse.

    Google Scholar 

  128. U. S. Patent 3,615,953 (1971).

    Google Scholar 

  129. U. S. Patent 3,799,77 (1974), Westinghouse.

    Google Scholar 

  130. U. S. Patent 3,833,396 (1974), Bell.

    Google Scholar 

  131. U. S. Patent 3,867,148 (1975), Westinghouse.

    Google Scholar 

  132. B. Chin and G. Ehrlich, Appl. Phys. Lett. 38, 253 (1981).

    Google Scholar 

  133. U. S. Patent 3,436,468 (1969), TI.

    Google Scholar 

  134. H. Smith, E. Ligeon, and A. Bontemp, Appl. Phys. Lett. 37, 1036 (1980).

    Google Scholar 

  135. T. O’Keefe and R. Handy, Solid State Electron. 11, 261 (1968).

    Google Scholar 

  136. U. S. Patents 3,585,433 (1971), 3,588,570 (1972), 3,686,020 (1973), 3,672,987 (1974), Westinghouse.

    Google Scholar 

  137. G. Kammlott and W. Sinclair, J. Electrochem. Soc. 121, 929 (1974).

    Google Scholar 

  138. U. S. Patent 3,355,568 (1967), Hitachi.

    Google Scholar 

  139. J. Bartelt, C. Slayman, J. Wood, J. Chen, C. McKenna, C. Minning, J. Coakley, R. Holman, and C. Perrigo, J. Vac. Sci. Technol. 19, 1166 (1981).

    Google Scholar 

  140. V. Wang, J. Ward, and R. Seliger, J. Vac. Sci Technol. 19, 916, 1158 (1981).

    Google Scholar 

  141. T. O’Keefe, J. Electrochem. Soc. 112, 149C (1965).

    Google Scholar 

  142. U. S. Patent 3,563,809 (1970), Hughes.

    Google Scholar 

  143. R. Kubens, C. Anderson, R. Seliger, R. Juliens, E. Stevens, and I. Lagando, J. Vac. Sci. Technol. 19, 916 (1981).

    Google Scholar 

  144. U. S. Patent 3,516,855 (1970), IBM.

    Google Scholar 

  145. R. Barker, T. Mayer, and R. Burton, Appl. Phys. Lett. 40, 583 (1982).

    Google Scholar 

  146. U. S. Patent 3,551,213 (1970).

    Google Scholar 

  147. G. Stengl, R. Kartna, H. Loschner, R. Rieder, P. Wolf, and R. Sacher, J. Vac. Sci. Technol. 19, 1164 (1981).

    Google Scholar 

  148. U. S. Patent 3,801,390 (1974), Bell.

    Google Scholar 

  149. G. Bell and J. Hoepfner, Proc. Electrochem. Soc., 1976, p. 47.

    Google Scholar 

  150. J. Gotzlich and H. Ryssel, J. Electrochem. Soc. 128, 617 (1981).

    Google Scholar 

  151. D. Day, IEEE Electron Device Lett. EDL–5, 32 (1984).

    Google Scholar 

  152. European Patent Application EP 97,819 (1984), Chem. Abstr. 100, 201856 (1984).

    Google Scholar 

  153. Japanese Patent 58,209,123 (1983), Chem. Abstr. 101, 31145 (1984).

    Google Scholar 

  154. K. Gamo, Jpn. J. Appl Phys. 23, L293 (1984).

    Google Scholar 

  155. P. Brewer, S. Halle, and R. Osgood, Appl Phys. Lett. 45, 475 (1984).

    Google Scholar 

  156. H. Hiroaka, SPIE Proc. 469, 127 (1984).

    Google Scholar 

  157. T. Kanayama, Ext. Abstr. 1984 Int. Conf. Solid State Dev., p. 27.

    Google Scholar 

  158. D. Ehrlich and J. Tsao, J. Vac. Sci. Technol. B1, 979 (1983).

    Google Scholar 

  159. S. Allen, SPIE Proc. 459, 42 (1984).

    Google Scholar 

  160. J. Tsao and D. Ehrlich, SPIE Proc. 459, 2 (1984).

    Google Scholar 

  161. R. Jan and S. Allen, SPIE Proc. 459, 75 (1984).

    Google Scholar 

  162. K. Emery, L. Thompson, J. Rocca, and G. Collins, SPIE Proc. 459, 75 (1984).

    Google Scholar 

  163. F. Houle, J. Chem. Phys. 79, 4237 (1984), SPIE Proc. 459, 110 (1984).

    Google Scholar 

  164. G. Loper and M. Tabat, SPIE Proc. 459, 121 (1984).

    Google Scholar 

  165. J. Gee and P. Hargis, SPIE Proc. 459, 132 (1984).

    Google Scholar 

  166. F. Houle, SPIE Proc. 385, 127 (1984).

    Google Scholar 

  167. P. Mankewich, H. Craighead, T. Harrison, and A. Daymen, Appl Phys. Lett. 44, 468 (1984).

    Google Scholar 

  168. A. Muray, M. Issacson, and I. Aesida, Appl Phys. Lett. 45, 589 (1984).

    Google Scholar 

  169. J. Tsao and D. Ehrlich, Appl Phys. Lett. 45, 617 (1984).

    Google Scholar 

  170. R. Krchnavek, H. Giligen, and R. Osgood, J. Vac. Sci. Technol. B2, 641 (1984).

    Google Scholar 

  171. J. Maes, A. Van Nu, and G. Hut, Reliab. 17, 325 (1978).

    Google Scholar 

  172. F. Houle, C. Jones, T. Baum, C. Pico, and G. Kovac, Appl Phys. Lett. 46, 204 (1985).

    Google Scholar 

  173. W. Holber, G. Retsken, and R. Osgood, Appl Phys. Lett. 46, 201 (1985).

    Google Scholar 

  174. T. Yamazaki, Y. Suzuki, and H. Nakata, J. Vac. Sci. Technol. 17, 1384 (1980).

    Google Scholar 

  175. Japanese Patent 59,145,528, Chem. Abstr. 102, 70256 (1985).

    Google Scholar 

  176. D. Tennant, J. Vac. Sci. Technol. B3, 458 (1985).

    Google Scholar 

  177. P. Singer, Semicond. Int. April 1985, p. 66.

    Google Scholar 

  178. H. Yamaguchi, A. Shisame, S. Haraichi, and T. Miyauchi, J. Vac. Sci. Technol. B3, 71 (1985).

    Google Scholar 

  179. M. Takai, J. Tsuchimoto, N. Junuchi, N. Hiroyuki, K. Gamo, and S. Namba, Jpn. J. Appl., Phys. Part 2, 23, L852 (1984).

    Google Scholar 

  180. P. Heard, J. Cleaver, and H. Ahmed, J. Vac. Sci. Technol. B3, 87 (1985).

    Google Scholar 

  181. Japanese Patent 59,155,935, Chem. Abstr. 102, 88669 (1984).

    Google Scholar 

  182. J. Randall, D. Ehrlich, and J. Tsao, J. Vac. Sci. Technol. B3, 87 (1985).

    Google Scholar 

  183. U. S. Patent 4,496,449 (1985), Colromm.

    Google Scholar 

  184. M. Green, C. Aidinis, and O. Fakulujo, J. Appl Phys. 57, 631 (1985).

    Google Scholar 

  185. R. Osgood and T. Deutsch, Science 227, 709 (1985).

    Google Scholar 

  186. G. Koren, F. Ho, and J. Ritsko, Appl Phys. Lett. 46, 1006 (1985).

    Google Scholar 

  187. K. Li and M. Oprysko, Appl Phys. Lett. 46, 997 (1985).

    Google Scholar 

  188. G. Fisnanick, M. Gross, J. Hopkins, M. Fennell, K. Schnoes, and A. Katzer, J. Appl Phys. 57, 1139 (1985).

    Google Scholar 

  189. S. Yokoyama, Y. Yamakazi, and M. Hirose, Appl Phys. Lett. 47, 389 (1985).

    Google Scholar 

  190. D. Ehrlich, Solid State Technol. Dec. 1985, p. 81.

    Google Scholar 

  191. J. Bjorkholm, L. Eichner, J. White, R. Howard, and H. Craighead, J. AppL Phys. 58, 2098 (1985).

    Google Scholar 

  192. R. Tenne, V. Marcu, and Y. Prior, Appl Phys. A37, 205 (1985).

    Google Scholar 

  193. T. Baum and C Jones, Appl Phys. Lett. 47, 538 (1985).

    Google Scholar 

  194. C. Fiori and R. Devine, Appl Phys. Lett. 47, 361 (1985).

    Google Scholar 

  195. F. Ostermayer, P. Kohl, and R. Lum, J. AppL Phys. 58, 4390 (1985).

    Google Scholar 

  196. J. Brannon, J. Lankard, A. Baise, F. Burns, and J. Kaufman, J. AppL Phys. 58, 2036 (1985).

    Google Scholar 

  197. C. Ashby and R. Biefeld, Appl Phys. Lett. 47, 62 (1985).

    Google Scholar 

  198. M. Gross, G. Fissnick, P. Gallager, K. Schnols, and M. Fennell, Appl Phys. Lett. 47, 923 (1985).

    Google Scholar 

  199. D. Day, G. Middleton, T. James, J. White, and V. Mifsud, J. Electrochem. Soc. 131, 407 (1985).

    Google Scholar 

  200. R. Gutfeld and D. Vigliotti, Appl Phys. Lett. 46, 1003 (1985).

    Google Scholar 

  201. T. Mottoka, S. Gorbathsen, D. Lubben, and J. Greene, J. Appl Phys. 58, 4397 (1985).

    Google Scholar 

  202. D. Ehrlich, J. Tsao, D. Silversmith, J. Sedlackik, R. Mountain, and U. Grabber, IEEE Electron Device Lett. EDL–5, 32 (1984).

    Google Scholar 

  203. S. Stensey, S. Eskeldsen, and G. Sorensen, Appl. Phys. Lett. 46, 1101 (1985).

    Google Scholar 

  204. U. S. Patent 4,523,971 (1985), IBM.

    Google Scholar 

  205. U. S. Patent 4,530,734 (1985).

    Google Scholar 

  206. G. Stengl, H. Loeschner, W. Maurer, and P. Wold, SPIE Opt. Eng. 537, 138 (1985).

    Google Scholar 

  207. B. Ward, D. Shaver, and M. Ward, SPIE Opt. Eng. 537, 110 (1985).

    Google Scholar 

  208. K. Orvek and C. Huffman, Nucl. Instrum. Methods Phys. Res. B7–8, 501 (1985).

    Google Scholar 

  209. German Patent 3,420,353 (1984), Chem. Abstr. 102, 158083 (1985).

    Google Scholar 

  210. R. Spiedel and Y. Benzhang, Optik (Stuttgart) 68, 363 (1984).

    Google Scholar 

  211. C. Fisanck, J. Hopkins, M. Gross, M. Fennel, and K. Schnoes, Appl. Phys. Lett. 46, 1184 (1985).

    Google Scholar 

  212. J. Kosar, Light Sensitive Systems, Wiley, New York, 1965, pp. 1–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Moreau, W.M. (1988). Nonresist Processes. In: Semiconductor Lithography. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0885-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0885-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8228-0

  • Online ISBN: 978-1-4613-0885-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics