Advertisement

Process Controls

  • Wayne M. Moreau
Part of the Microdevices book series (MDPF)

Abstract

Lithographic process controls are vital to the cost-effective production of highquality semiconductor circuits. In semiconductor lithography, good yields, reproducible processing,(1) and high productivity(2–4) are production objectives that offset the high cost of clean rooms and lithography process equipment. In semiconductor device fabrication, the final electrical yields of good chips versus the total number of fabricated chips can be as low as a few percent. For yield considerations, the factors (Table 15-1-1) include the density of circuits, the number of lithography operations, the circuit complexity, batch versus single wafer process controls, and the degree of contamination in processing.

Keywords

Process Control Etch Rate Edge Width Wafer Size Edge Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Hryhorenko, Kodak Microelectron. Semin. Proc. 1979 G–102, 18 (1980).Google Scholar
  2. 2.
    G. Solvendy, Editor, Handbook of Industrial Engineering, Wiley, New York, 1982, Section 8.3.5.Google Scholar
  3. 3.
    R. Reichelderfer, Solid State Technol April 1982, p. 160.Google Scholar
  4. 4.
    T. Chang, D. Kyser, and C. Ting, Solid State Technol May 1982, p. 60.Google Scholar
  5. 5.
    A. Wat and K. Chen, SPIE Proc. 394, 58 (1983).Google Scholar
  6. 6.
    M. Nakase and T. Shinozaki, IEEE Trans. Electron Devices ED–28, 1416 (1981).CrossRefGoogle Scholar
  7. 7.
    C. Ausschnett, T. Bruner, and D. Cronin, SPIE Proc. 394, 64 (1983).Google Scholar
  8. 8.
    D. Yen, L. Linholm, and M. Buehler, J. Electrochem. Soc. 129, 2313 (1982).CrossRefGoogle Scholar
  9. 9.
    I. Stemp, K. Nicholas, and H. Brockman, IEEE Trans. Electron Devices ED–26, 729 (1979).CrossRefGoogle Scholar
  10. 10.
    D. Angel, Semicond. Int. April 1983, p. 72.Google Scholar
  11. 11.
    N. Armstrong and J. Maleham, Vacuum 33, 291 (1983).CrossRefGoogle Scholar
  12. 12.
    W. Oldham, A. Neureuther, and D. Kim, IEEE Trans. Electron Devices ED–26, 717 (1979), ED–27, 1455 (1980), ED–28, 1410 (1981).CrossRefGoogle Scholar
  13. 13.
    N. Viswanathan, J. Vac. Sci. Technol. 16, 388 (1979).MathSciNetCrossRefGoogle Scholar
  14. 14.
    T. Chang, C. Codella, and R. Lange, IEEE Trans. Electron Devices ED–28, 1427 (1981).Google Scholar
  15. 15.
    M. Eib and F. Jones, J. Vac. Sci. Tech. B1, 1327 (1983).Google Scholar
  16. 16.
    W. Loveless, Solid State Technol. Sept. 1977, p. 47.Google Scholar
  17. 17.
    K. Harris, P. Sanland, and R. Singleton, Solid State Technol. Feb. 1984, p. 159.Google Scholar
  18. 18.
    D. Awamura, Jpn. Electron. Eng. Sept. 1983, p. 64.Google Scholar
  19. 19.
    M. Furuchi and N. Kimura, Jpn. Semicond. Technol. News 2(5), 25 (1983).Google Scholar
  20. 20.
    W. Bayless, Solid State Technol. Feb. 1981, p. 132.Google Scholar
  21. 21.
    C. Ting and K. Liauw, J. Vac. Sci. Technol. B1, 1225 (1983).Google Scholar
  22. 22.
    C. Mogab, J. Electrochem. Soc. 124, 1262 (1977).CrossRefGoogle Scholar
  23. 23.
    V. Marriott, SPIE Proc. 394, 144 (1983).Google Scholar
  24. 24.
    W. Arden, H. Keller, and L. Mader, Solid State Technol. July 1983, p. 143.Google Scholar
  25. 25.
    T. Shankoff, J. Bruning, and R. Johnston, Polym. Eng. Sci. 20, 1102 (1980).CrossRefGoogle Scholar
  26. 26.
    P. Frasch and K. Saremski, IBM J. Res. Dev. 26, 561 (1982).CrossRefGoogle Scholar
  27. 27.
    H. Rottmann, J. Appl. Photogr. Eng. 8, 101 (1982).Google Scholar
  28. 28.
    D. Widmann and H. Binder, IEEE Trans. Electron. Devices ED–22, 467 (1975).CrossRefGoogle Scholar
  29. 29.
    M. Nakase and Y. Matsumoto, Photogr. Sci. Eng. 23, 215 (1979).Google Scholar
  30. 30.
    M. Cowan, Solid State Technol. May 1982, p. 57.Google Scholar
  31. 31.
    M. Borovicka, SPE RETEC Photopolymers, Ellenville, N.Y., 1979, p. 20.Google Scholar
  32. 32.
    A. Broers, IEEE Trans. Electron Devices ED–28, 1268 (1981).CrossRefGoogle Scholar
  33. 33.
    J. Levine and H. Schick, SPIE Proc. 221, 142 (1980).Google Scholar
  34. 34.
    H. Naguib, Vacuum 33, 285 (1983).CrossRefGoogle Scholar
  35. 35.
    D. Elliott, Integrated Circuit Fabrication Technology, McGraw-Hill, New York, 1982, p. 340.Google Scholar
  36. 36.
    H. Kleinknecht and H. Meir, J. Electrochem. Soc. 125, 798 (1978).CrossRefGoogle Scholar
  37. 37.
    P. Heiman and R. Schutz, Electrochem. Soc. Ext. Abstr. 83–1, 257 (1983).Google Scholar
  38. 38.
    B. Lin, IEEE Trans. Electron Devices 25, 419 (1978), U. S. Patent 4,142,107 (1979), IBM.CrossRefGoogle Scholar
  39. 39.
    M. Sternheim, W. van Gelder, and A. Hartman, J. Electrochem. Soc. 130, 655 (1983).CrossRefGoogle Scholar
  40. 40.
    H. Moritz, Solid State Technol. Aug. 1975, p. 54.Google Scholar
  41. 41.
    B. James, Proc. Semicond. Processes Prod., June 15, 1971, p. 111.Google Scholar
  42. 42.
    N. Armstrong and J. Maleham, Vacuum 33, 291 (1983).CrossRefGoogle Scholar
  43. 43.
    U. Winkler, Solid State Technol. April 1983, p. 169.Google Scholar
  44. 44.
    C. Korman, Solid State Technol. April 1982, p. 115.Google Scholar
  45. 45.
    H. Itakura, H. Komiya, and K. Ukai, Solid State Technol. April 1982, p. 209.Google Scholar
  46. 46.
    J. Hayes and T. Pandhumsoporn, Solid State Technol. Nov. 1980, p. 71.Google Scholar
  47. 47.
    T. O’Neill, Semicond. Int. April 1981, p. 67.Google Scholar
  48. 48.
    S. Bergeron and B. Duncan, Solid State Technol. Aug. 1982, p. 98.Google Scholar
  49. 49.
    P. Parry and A. Rodde, Solid State Technol. April 1979, p. 125.Google Scholar
  50. 50.
    E. Egerton, A. Nef, W. Milkinsun, W. Cook, and D. Bard, Solid State Technol. Aug. 1982, p. 84.Google Scholar
  51. 51.
    R. Bond, S. Dzioba, and H. Naguib, J. Vac. Sci. Technol. 18, 335 (1981).CrossRefGoogle Scholar
  52. 52.
    S. Chung, Solid State Technol. April 1978, p. 114.Google Scholar
  53. 53.
    P. Kolodner and J. Tyson, Appl. Phys. Lett. 40, 782 (1982).CrossRefGoogle Scholar
  54. 54.
    R. Bersin, Kodak Microelectronics Seminar, 1981, p. 127.Google Scholar
  55. 55.
    R. Fink and W. Giles, Solid State Technol. Nov. 1982, p. 107.Google Scholar
  56. 56.
    A. Weiss, Semicond. Int. Dec. 1982, p. 61.Google Scholar
  57. 57.
    A. Weiss, Semicond. Int. Sept. 1983, p. 98.Google Scholar
  58. 58.
    U. S. Patent 4,352,596 (1982), IBM.Google Scholar
  59. 59.
    E. Bulat, G Doyle, and B. Gerlent, Semicond. Int. Nov. 1982, p. 113.Google Scholar
  60. 60.
    U. S. Patent 4,367,044 (1983), IBM.Google Scholar
  61. 61.
    P. Singer, Semicond. Int. March 1983, p. 48.Google Scholar
  62. 62.
    D. Angel, P. Johnson, and M. Yvic, Semicond Int. Dec. 1978, p. 101.Google Scholar
  63. 63.
    K. Harris, P. Sanland, and R. Singleton, Solid State Technol Feb. 1984, p. 159.Google Scholar
  64. 64.
    C. Mallory, D. Perloff, T. Hasan, and R. Stanley, Solid State Technol Nov. 1983, p. 121.Google Scholar
  65. 65.
    K. Murray, Semicond. Int. Dec. 1982, p. 70.Google Scholar
  66. 66.
    Y. Uchiyama, D. Awamura, and K. Nakashima, SPIE Proc. 394, 232 (1983).Google Scholar
  67. 67.
    P. Burggraaf, Semicond. Int. Aug. 1981, p. 57.Google Scholar
  68. 68.
    G. Carver, T. Russell, and L. Linholm, Solid State Technol Sept. 1980, p. 85.Google Scholar
  69. 69.
    S. Lim and D. Ridley, Solid State Technol Feb. 1983, p. 99.Google Scholar
  70. 70.
    U. S. Patent 4,303,341 (1981), RCA.Google Scholar
  71. 71.
    L. Goldman, Solid State Technol June 1979, p. 74.Google Scholar
  72. 72.
    D. Elliott and M. Hockey, Solid State Technol June 1979, p. 53.Google Scholar
  73. 73.
    J. Shaw and M. Hatzakis, J. Electrochem. Soc. 126, 2026 (1979).CrossRefGoogle Scholar
  74. 74.
    J. Greeneich, J. Electrochem. Soc. 122, 970 (1975).CrossRefGoogle Scholar
  75. 75.
    A. Neureuther, Y. Sakai, and J. Reynolds, J. Electrochem. Soc. 131, 623 (1984).CrossRefGoogle Scholar
  76. 76.
    B. Soller, P. Shuman, and R. Ross, J. Electrochem. Soc. 131, 1353 (1984).CrossRefGoogle Scholar
  77. 77.
    M. Johnson and K. Lee, Solid State Technol Sept. 1984, p. 281.Google Scholar
  78. 78.
    I. Hawakaya, Jpn. Semicond. Technol News 3(4), 15 (1984).Google Scholar
  79. 79.
    U. S. Patent 4,384,139 (1982), IBM.Google Scholar
  80. 80.
    T. Pampolone, M. Hannifan, S. Jain, and C. Krieger, J. Electrochem. Soc. 131, 2670 (1984).CrossRefGoogle Scholar
  81. 81.
    H. Rottmann, IBM J. Res. Dev. 26, 553 (1982).CrossRefGoogle Scholar
  82. 82.
    P. Singer, Semicond. Int. March 1980, p. 39.Google Scholar
  83. 83.
    D. Nyyssonen, Appl. Opt. 16, 2223 (1977).CrossRefGoogle Scholar
  84. 84.
    D. Nyyssonen, Semicond. Int. March 1980, p. 39.Google Scholar
  85. 85.
    K. Nakasawa, S. Yoshida, A. Tanimoto, S. Murakami, and T. Yamaguchi, Proc. Kodak Microelectron. Semin. G–130, 69 (1980).Google Scholar
  86. 86.
    G. Tora-Lira and R. Melen, Microelectron. Manuf. Feb. 1985, p. 19.Google Scholar
  87. 87.
    G. Mathad, Solid Slate Technol April 1985, p. 221.Google Scholar
  88. 88.
    L. Lauchlan, K. Sautter, and T. Batchhelder, Solid State Technol April 1985, p. 33.Google Scholar
  89. 89.
    A. Baudrant, A. Passerat, and D. Bollinger, Solid State Technol Sept. 1983, p. 183.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Wayne M. Moreau
    • 1
  1. 1.General Technology DivisionInternational Business Machines CorporationNew YorkUSA

Personalised recommendations