Advertisement

Stripping of Resists

  • Wayne M. Moreau
Part of the Microdevices book series (MDPF)

Abstract

The stripping or removal of resists completes the total lithographic process. In a sense, resist removal is the reverse of the original coating process, since the resist and primer must be stripped to the original bare surface. Selective removal of the resist without substrate damage or residuals is necessary prior to ion implantation, metal or insulator deposition, or oxidation of silicon. In addition, the stripping of the resist is a vital step in the lift-off process (Chapter 12).

Keywords

Sulfonic Acid Oxygen Plasma Plasma Etching Limit Oxygen Index Japanese Patent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Polymer Handbook, edited by J. Brandup and E. Immergut, Wiley, New York, 1975, p. 337.Google Scholar
  2. 2.
    B. Bergin and L. Kaplan, J. Electrochem. Soc. 127, 386 (1980).CrossRefGoogle Scholar
  3. 3.
    C. Deckert and D. Peters, J. Electrochem. Soc. 126, 883 (1979).CrossRefGoogle Scholar
  4. 4.
    Technology of Paint, Varnishes and Lacquers, edited by C. Martens, Reinhold, New York, 1968, p. 613.Google Scholar
  5. 5.
    U. S. Patent 3,582,401 (1971), Mallinckrodt.Google Scholar
  6. 6.
    U. S. Patent 3,988,256 (1976), Allied.Google Scholar
  7. 7.
    Japanese Patent 80,64,233, Chem. Abstr. 93, 177312 (1980).Google Scholar
  8. 8.
    U. S. Patent 4,070,203 (1978), Merck.Google Scholar
  9. 9.
    U. S. Patent 4,165,294 (1979), Allied Chem.; Japanese Patent 59,225,323, Allied; Chem. Abstr. 103, 14572 (1985).Google Scholar
  10. 10.
    U. S. Patent 4,165,295 (1979), Allied Chem.Google Scholar
  11. 11.
    U. S. Patent 3,600,321 (1971), Air Prod.Google Scholar
  12. 12.
    U. S. Patent 4,215,005 (1980), Allied Chem.Google Scholar
  13. 13.
    U. S. Patent 4,221,674 (1980), Allied Chem.Google Scholar
  14. 14.
    F. Pintchoviski, J. Price, P. Tobin, J. Peavey, and K. Kobold, J. Electrochem. Soc. 126, 1428 (1979).CrossRefGoogle Scholar
  15. 15.
    D. Swern, Chem. Rev. 45, 1 (1949).CrossRefGoogle Scholar
  16. 16.
    W. Kern, RCA Rev. June 1970, p. 208.Google Scholar
  17. 17.
    U. S. Patent 4,078,102 (1978), IBM.Google Scholar
  18. 18.
    Japanese Patent 78,39,127, Chem. Abstr. 89, 120921 (1978).Google Scholar
  19. 19.
    H. Kleinknecht and H. Meier, J. Electrochem. Soc. 125, 798 (1978).CrossRefGoogle Scholar
  20. 20.
    R. Joshi, in Encyclopedia of Polymer Science and Technology 13, 788 (1968).Google Scholar
  21. 21.
    C. Cullis and M. Hivschler, The Combustion of Organic Polymers, Oxford University Press (Clarendon), London, 1981, p. 54.Google Scholar
  22. 22.
    E. Lawton, J. Appl. Polym. Sci. 16, 1857 (1972).Google Scholar
  23. 23.
    B. Ranby and J. Rabek, Photo-Degradation, Photo-Oxidation and Photo-Stabilization of Polymers, Wiley, New York, 1975, p. 98.Google Scholar
  24. 24.
    J. Mollahan and A. Bell, Editors, Techniques and Applications of Plasma Chemistry, Wiley, New York, 1974.Google Scholar
  25. 25.
    R. Hansen, J. Pascale, T. DeBenedictis, and P. Rentzepis, J. Polym. Sci. Part A1 3, 2205 (1965).Google Scholar
  26. 26.
    A. Charlesby, Atomic Radiation and Polymers, Pergamon Press, Elmsford, N.Y., 1960, p. 159.Google Scholar
  27. 27.
    B. McTaggart and R. Bell, Plasma Chemistry and Electrical Discharges, Elsevier, Amsterdam, 1967.Google Scholar
  28. 28.
    A. Bell and K. Kwong, AICHE J. 18, 990 (1972).CrossRefGoogle Scholar
  29. 29.
    J. Battey, J. Electrochem. Soc. 124, 437 (1977).CrossRefGoogle Scholar
  30. 30.
    J. Battey, IEEE Trans. Electron Devices ED–24, 140 (1977).CrossRefGoogle Scholar
  31. 31.
    A. Szekeres, K. Kirov, and S. Alexandrova, Phys. Status Solidi 63, 371 (1981).CrossRefGoogle Scholar
  32. 32.
    J. Rabek, Photo-Degradation, Photo-Oxidation and Photo-Stabilization of Polymers, Wiley, New York, 1975 Ref. 23, p. 362.Google Scholar
  33. 33.
    S. Irving, Electrochem. Soc. Ext. Abstr. J-6, No. 180, p. 55 (1967).Google Scholar
  34. 34.
    R. Bersin, Solid State Technol. June 1970, p. 39.Google Scholar
  35. 35.
    H. Kalter and E. Van de Ven, Philips Tech. Rev. 38, 200 (1978).Google Scholar
  36. 36.
    J. Battey, J. Electrochem. Soc. 125, 147 (1977).CrossRefGoogle Scholar
  37. 37.
    E. Degenkolb and J. Griffiths, Appl. Spectrosc. 31, 40 (1977).CrossRefGoogle Scholar
  38. 38.
    R. Bond, S. Dzioba, and H. Naguib, Electrochem. Soc. Ext. Abstr. 81–1, 729 (1981).Google Scholar
  39. 39.
    R. Bond, S. Dzioba, and H. Naguib, J. Vac. Sci. Technol. 18, 335 (1981).CrossRefGoogle Scholar
  40. 40.
    H. Hughes, W. Hunter, and K. Ritchie, J. Electrochem. Soc. 120, 99 (1973).CrossRefGoogle Scholar
  41. 41.
    S. Irving, Solid State Technol. June 1971, p. 47.Google Scholar
  42. 42.
    H. Akiya, K. Saito, and K. Kobayashi, Jpn. J. Appl. Phys. 20, 647 (1981).CrossRefGoogle Scholar
  43. 43.
    Int. Plasma Co., Solid State Technol. March 1970, p. 92.Google Scholar
  44. 44.
    S. Iwamatsu, J. Electrochem. Soc. 129, 224 (1982).CrossRefGoogle Scholar
  45. 45.
    A. Gaydon, Spectroscopy of Flame, Wiley, New York, 1957, p. 187.Google Scholar
  46. 46.
    R. Bond, S. Dizoba, and H. Naguib, Electrochem. Soc. Ext. Abstr. 81–1, 729 (1981).Google Scholar
  47. 47.
    C. Wang and B. Gelerent, Solid State Technol. Nov. 1981, p. 121.Google Scholar
  48. 48.
    American Chemical Society, Adv. Chem. Ser. 80, 232 (1969).CrossRefGoogle Scholar
  49. 49.
    H. Marsh and T. O’Hare, Trans. Faraday Soc. 61(2), 274 (1965).CrossRefGoogle Scholar
  50. 50.
    U. S. Patent 3,757,733 (1973), TI.Google Scholar
  51. 51.
    E. Egerton, A. Nef, W. Millikim, W. Cook, and D. Baril, Solid State Technol. Aug. 82, p. 84.Google Scholar
  52. 52.
    Y. Horike, Jpn. J. Appl. Phys. 20, L817 (1981).CrossRefGoogle Scholar
  53. 53.
    K. Jinno, Jpn. J. Appl. Phys. 17, 1283 (1978).CrossRefGoogle Scholar
  54. 54.
    J. MacCallum and C. Schoff, J. Chem. Soc. Faraday Trans. 67, 2372 (1971).CrossRefGoogle Scholar
  55. 55.
    K. Harada, J. Appl. Polym. Sci. 26, 1961 (1981).CrossRefGoogle Scholar
  56. 56.
    B. Stafford and G. Gorin, Solid State Technol. Sept. 1977, p. 51.Google Scholar
  57. 57.
    G. Bunyard and B. Raby, Solid State Technol. Dec. 1977, p. 53.Google Scholar
  58. 58.
    R. Reichelderfer, J. Weitz, and J. Battey, J. Electrochem. Soc. 125, 1926 (1978).Google Scholar
  59. 59.
    E. Degenkolb, C. Mogab, M. Goldrick, and J. Griffiths, Appl. Spectrosc. 30, 520 (1976).CrossRefGoogle Scholar
  60. 60.
    J. Griffiths and E. Degenkolb, Appl. Spectrosc. 31, 134 (1977).CrossRefGoogle Scholar
  61. 61.
    M. Yamada, J. Tamano, S. Morita, K. Yoneda, and S. Hattori, Plasma Chem. Plasma Proc. 1, 261 (1981).CrossRefGoogle Scholar
  62. 62.
    S. Hyman, J. Vac. Sci. Technol. 19, 1325 (1981).CrossRefGoogle Scholar
  63. 63.
    R. Cventanovic, J. Chem. Phys. 30, 19 (1959).CrossRefGoogle Scholar
  64. 64.
    R. Cventanovic, Can. J. Chem. 39, 2444 (1961).CrossRefGoogle Scholar
  65. 65.
    G. Taylor and T. Wolf, Polym. Eng. Sci. 20, 1087 (1980).CrossRefGoogle Scholar
  66. 66.
    L. Pederson, J. Electrochem. Soc. 129, 205 (1982).CrossRefGoogle Scholar
  67. 67.
    U. S. Patent 3,837,856 (1974), Signetics.Google Scholar
  68. 68.
    R. Krisher, D. McCaughan, V. Murphy, and J. Herlig, Phys. Rev. B 10, 2632 (1974).CrossRefGoogle Scholar
  69. 69.
    D. McCaughan, R. Kusher, and J. Murphy, Phys. Rev. Lett. 30, 614 (1973).CrossRefGoogle Scholar
  70. 70.
    R. Maddox and H. Parker, Solid State Technol. 21, 107 (1978).CrossRefGoogle Scholar
  71. 71.
    H. Zainiger and F. Heiman, Solid State Technol. June 1970, p. 46.Google Scholar
  72. 72.
    A. Szekeres, S. Alexandrova, and K. Kirov, Phys. Status Solidi A 62, 727 (1980).CrossRefGoogle Scholar
  73. 73.
    G. Bell and R. Stokan, Electrochem. Soc. Ext. Abstr. Fall 1977, p. 383.Google Scholar
  74. 74.
    D. Weston and J. Keller, Electrochem. Soc. Ext. Abstr. Fall 1977, p. 381.Google Scholar
  75. 75.
    H. Akuya, K. Saito, and K. Kobayashi, Jpn. J. Appl. Phys. 20, 647 (1981).CrossRefGoogle Scholar
  76. 76.
    H. Kalter and E. Van de Ven, Electrochem. Soc. Ext. Abstr. Spring 1976, p. 335.Google Scholar
  77. 77.
    T. Makino, H. Nakamura, and M. Asano, J. Electrochem. Soc. 128, 103 (1981).CrossRefGoogle Scholar
  78. 78.
    H. Yasuda, Am. Chem. Soc. Polym. Prepr. 16, 57 (1975).Google Scholar
  79. 79.
    K. Korr and J. Leslie, J. Electrochem. Soc. 121, 805 (1974).CrossRefGoogle Scholar
  80. 80.
    J. Greiner, J. Appl. Phys. 45, 32 (1974).CrossRefGoogle Scholar
  81. 81.
    K. Heiner and G. Larrabee, Solid State Technol. April 1969, p. 44.Google Scholar
  82. 82.
    D. McCaughan and J. Heilig, Int. J. Electron. 34, 737 (1973).CrossRefGoogle Scholar
  83. 83.
    K. Hirobe and S. Iwanatsu, J. Electrochem. Soc. 126, 1426 (1979).CrossRefGoogle Scholar
  84. 84.
    U. S. Patents 3,806,365 (1974), 3,867,216 (1975), 3,951,843 (1976), LFE.Google Scholar
  85. 85.
    U. S. Patent 4,201,579 (1980), Motorola.Google Scholar
  86. 86.
    G. Das and F. Montillo, IBM Tech. Discl Bull. 23, 4490 (1981).Google Scholar
  87. 87.
    U. S. Patent 4,296,146 (1981), TI.Google Scholar
  88. 88.
    T. Penn, IEEE Trans. Electron Devices ED–26, 640 (1979).CrossRefGoogle Scholar
  89. 89.
    U. S. Patent 2,443,373 (1948).Google Scholar
  90. 90.
    High Temperature Polymers, edited by C. Segal, Dekker, New York, 1967, p. 86.Google Scholar
  91. 91.
    U. S. Patent 3,664,899 (1972), GE.Google Scholar
  92. 92.
    U. S. Patent 3,890,176 (1975), GE.Google Scholar
  93. 93.
    D. Bolon and C. Kunz, Polym. Eng. Sci. 12, 109 (1972).CrossRefGoogle Scholar
  94. 94.
    Japanese Patent 8,059,458 (1980), Chem. Abstr. 93, 177309d (1980).Google Scholar
  95. 95.
    R. Sowell, R. Cuthrell, D. Mattox, and R. Bland, J. Vac. Sci. Technol. 11, 474 (1974).CrossRefGoogle Scholar
  96. 96.
    J. Vig and J. LeBus, IEEE Trans. Parts Hybrids Packag. 12, 365 (1976).CrossRefGoogle Scholar
  97. 97.
    German Patent 2,635,066, Chem. Abstr. 86, 149647 (1977).Google Scholar
  98. 98.
    P. Burrage, IBM Tech. Discl. Bull. 10, 1260 (1968).Google Scholar
  99. 99.
    U. S. Patent 4,197,126 (1980), W. Grace.Google Scholar
  100. 100.
    U. S. Patent 4,116,715 (1978).Google Scholar
  101. 101.
    U. S. Patent 4,186,032 (1980), RCA.Google Scholar
  102. 102.
    U. S. Patent 3,515,607 (1970), West. Elec.Google Scholar
  103. 103.
    W. Moreau and R. Lang, IBM Tech. Discl Bull. 24, 1615 (1982).Google Scholar
  104. 104.
    British Patent 1,419,034 (1975), Std. Tel.Google Scholar
  105. 105.
    B. Leon, Solid State Technol. April 1977, p. 71.Google Scholar
  106. 106.
    U. S. Patent 3,705,055 (1972), West. Elec.Google Scholar
  107. 107.
    H. Choong and F. Kahn, J. Vac. Sci. Technol. 19, 1348 (1981).CrossRefGoogle Scholar
  108. 108.
    Z. Tan, C. Petropoulous, and F. Rauner, J. Vac. Sci. Technol. 16, 2000 (1979).Google Scholar
  109. 109.
    G. Taylor, J. Vac. Sci. Technol 16, 2014 (1979).CrossRefGoogle Scholar
  110. 110.
    J. Chinn, I. Aesida, E. Wolf, and R. Tiberio, J. Vac. Sci. Technol. 19, 1418 (1981).CrossRefGoogle Scholar
  111. 111.
    U. S. Patent 4,183,781 (1980), IBM.Google Scholar
  112. 112.
    A. Horgan and I. Dalins, J. Vac. Sci. Technol. 10, 523 (1973).CrossRefGoogle Scholar
  113. 113.
    A. Jones, E. Jones, and E. Williams, Vacuum 23, 227 (1973).CrossRefGoogle Scholar
  114. 114.
    D. O’Kane and K. Mittal, J. Vac. Sci. Technol. 11, 530 (1974).CrossRefGoogle Scholar
  115. 115.
    R. Lambert and C. Comrie, J. Vac. Sci. Technol. 11, 530 (1974).CrossRefGoogle Scholar
  116. 116.
    M. Hudis, in Techniques and Applications of Plasma Chemistry, edited by J. Hollahan and A. Bell, Wiley, New York, 1974.Google Scholar
  117. 117.
    U. S. Patent 4,176,003 (1979), NCR.Google Scholar
  118. 118.
    U. S. Patent 4,027,052 (1978), Bell.Google Scholar
  119. 119.
    M. Yamada, J. Tamano, K. Yoneda, S. Morita, and S. Hattori, Jpn. J. Appl. Phys. 21, 768 (1982).CrossRefGoogle Scholar
  120. 120.
    G. Taylor, T. Wolf, and M. Goldrick, J. Electrochem. Soc. 128, 361 (1981), J. Vac. Sci. Technol. 19, 872 (1981).CrossRefGoogle Scholar
  121. 121.
    G. Taylor and T. Wolf, J. Electrochem. Soc. 127, 2665 (1980).CrossRefGoogle Scholar
  122. 122.
    T. Venhatesan, G. Taylor, A. Wagner, B. Wilkens, and D. Barr, J. Vac. Sci. Technol. 19, 1379 (1981).CrossRefGoogle Scholar
  123. 123.
    U. S. Patent 3,873,361 (1976), IBM.Google Scholar
  124. 124.
    J. Moran, J. Vac. Sci. Technol. 16, 1620 (1979).CrossRefGoogle Scholar
  125. 125.
    I. Goldstein and F. Kalk, J. Vac. Sci. Technol. 19, 743 (1981).CrossRefGoogle Scholar
  126. 126.
    D. Peters and C. Deckert, J. Electrochem. Soc. 126, 883 (1979).CrossRefGoogle Scholar
  127. 127.
    U. S. Patent 3,795,557 (1974), LFE.Google Scholar
  128. 128.
    U. S. Patent 4,314,873 (1982), Bell.Google Scholar
  129. 129.
    S. Dzioba, G. Este, and H. Naguib, J. Electrochem. Soc. 129, 2537 (1982).CrossRefGoogle Scholar
  130. 130.
    J. Cook and B. Benson, J. Electrochem. Soc. 130, 2459 (1983).CrossRefGoogle Scholar
  131. 131.
    J. Hannon and J. Cook, J. Electrochem. Soc. 131, 1164 (1984).CrossRefGoogle Scholar
  132. 132.
    P. Van Zant, Semicond. Int. April 1984, p. 109.Google Scholar
  133. 133.
    U. S. Patent 4,438,192 (1984), Dow.Google Scholar
  134. 134.
    U. S. Patent 4,403,029 (1983), J. T. Baker.Google Scholar
  135. 135.
    U. S. Patent 4,401,747 (1983), J. T. Baker.Google Scholar
  136. 136.
    U. S. Patent 4,395,479 (1983), J. T. Baker.Google Scholar
  137. 137.
    L. Zafonte and R. Chiu, SPIE Proc. Opt. Microlithogr. 470, 164 (1984).Google Scholar
  138. 138.
    U. S. Patent 4,346,125 (1982), Bell (anhydrous hydrazine resist stripper).Google Scholar
  139. 139.
    G. Herzberg, Spectra of Diatomic Molecules, Van Nostrand, Princeton, N.J., 1950.Google Scholar
  140. 140.
    R. Alkire and D. Economu, J. Electrochem. Soc. 132, 648 (1985).CrossRefGoogle Scholar
  141. 141.
    U. S. Patent 4,491,530 (1985), Allied (sulfonic acid stripper).Google Scholar
  142. 142.
    U. S. Patent 4,501,061 (1985), Microdevice.Google Scholar
  143. 143.
    U. S. Patent 4,500,628 (1985), AT amp; T.Google Scholar
  144. 144.
    B. Stoller, R. Shuman, and R. Ross, J. Electrochem. Soc. 131, 2285 (1985).Google Scholar
  145. 145.
    J. Vig, J. Vac. Sci. Technol. A3, 1027 (1985).Google Scholar
  146. 146.
    H. Norstrom, M. Ostling, R. Buchta, and C. Peterson, J. Electrochem. Soc. 132, 2285 (1985).CrossRefGoogle Scholar
  147. 147.
    A. Nagy, J. Electrochem. Soc. 131, 1871 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Wayne M. Moreau
    • 1
  1. 1.General Technology DivisionInternational Business Machines CorporationNew YorkUSA

Personalised recommendations