Skip to main content

Additive Processes

  • Chapter
Book cover Semiconductor Lithography

Part of the book series: Microdevices ((MDPF))

  • 836 Accesses

Abstract

In additive processes, a solid or precursor is deposited through a resist mask onto a substrate. The solid is deposited from a liquid, gas, or solid state. In some cases, the solid is added to the resist and the resist is removed to deposit the solid. Metal films are most frequently deposited by lift-off or electroplating techniques. In Fig. 12-1-1, a panorama of additive processes using resists is shown. Some of the processes such as electroplating, fill and fire resists, and lift-off originated from printed circuit (mil-size) processes. By themselves, the resists find applications as light waveguides in optical information transmission and storage. For semiconductor fabrication, ionbeam implantation and the lift-off of metal interconnections have been the major uses of additive processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Smith, F. Bachner, and N. Efrenov, J. Electrochem. Soc. 118, 821 (1971).

    Google Scholar 

  2. L. Fried, J. Lechaton, P. Totta, J. Logan, J. Havas, and G. Paal, IBM J. Res. Dev. 26, 362 (1982).

    Google Scholar 

  3. T. Maple, Solid State Technol. Sept. 1966, p. 60.

    Google Scholar 

  4. P. Frasch and K. Saremski, IBM J. Res. Dev. 26, 561 (1981).

    Google Scholar 

  5. M. Hatzakis, J. Electrochem. Soc. 116, 1033 (1969).

    Google Scholar 

  6. A. Learn, J. Electron. Mater. 3, 531 (1974).

    Google Scholar 

  7. D. Widman and H. Binder, IEEE Trans. Electron. Devices ED-22, 467 (1975).

    Google Scholar 

  8. D. Davis, S. Gillespie, S. Silverman, and W. Stickel, Abstract D-2, Int. Symp. on Electron, Ion, and Photon Beams, Los Angeles, May 1983; Solid State Technol. Sept. 1983, p. 174; J. Vac. Sci. Technol. B1, 1003 (1983).

    Google Scholar 

  9. Y. Homa, A. Yajima, and S. Harada, IEEE J. Solid State Circuits SC-17, 142 (1982).

    Google Scholar 

  10. M. Feuer and D. Prober, IEEE Trans. Electron Devices ED-28, 1375 (1981).

    Google Scholar 

  11. U. S. Patent 4,154,613 (1980), Am. Hoechst.

    Google Scholar 

  12. U. S. Patent 4,224,361 (1980), IBM.

    Google Scholar 

  13. U. S. Patent 4,007,047 (1977), IBM.

    Google Scholar 

  14. U. S. Patent 4,212,935 (1980), IBM.

    Google Scholar 

  15. M. Hatzakis, B. Canavello, and J. Shaw, IBM J. Res. Dev. 24, 452 (1980).

    Google Scholar 

  16. R. Halverson, M. MacIntyre, and W. Motsiff, IBM J. Res. Dev. 26, 58 (1982).

    Google Scholar 

  17. G. Collins and C. Halstead, IBM J. Res. Dev. 26, 595 (1982).

    Google Scholar 

  18. Japanese Patent 80,008,014, Fujitsu; Chem. Abstr. 92, 224306 (1980).

    Google Scholar 

  19. J. Speidel, J. Vac. Sci. Technol. 19, 693 (1981).

    Google Scholar 

  20. W. Oldham and E. Hieke, IEEE Electron Device Lett. EDL-1, 217 (1980).

    Google Scholar 

  21. U. S. Patent 4,104,070 (1979), IBM.

    Google Scholar 

  22. T. Batchhelder, Solid State Technol. Feb. 1982, p. 111.

    Google Scholar 

  23. U. S. Patent 4,115,120 (1978), IBM.

    Google Scholar 

  24. U. S. Patent 3,622,365 (1971), Fairchild.

    Google Scholar 

  25. E. Jelks, G. Kerber, and H. Wilcox, Appl. Phys. Lett. 36, 93 (1980).

    Google Scholar 

  26. T. Serikawa and T. Yachi, J. Electrochem. Soc. 128, 918 (1981).

    Google Scholar 

  27. J. Shaw and M. Hatzakis, J. Electrochem. Soc. 126, 2029 (1979).

    Google Scholar 

  28. E. Spiller, M. Heritage, R. Feder, and T. Topalian, Solid State Technol. April 1976, p. 62.

    Google Scholar 

  29. D. Flanders, Appl. Phys. Let. 36, 93 (1980).

    Google Scholar 

  30. S. Beaumont, P. Bower, T. Tamamura, and C. Wilkinson, Appl. Phys. Lett. 38, 436 (1981).

    Google Scholar 

  31. A. Broers, J. Harper, and W. Molzen, Appl. Phys. Lett. 33, 392 (1978).

    Google Scholar 

  32. E. Roberts, Philips Tech. Rev. 35, 41 (1975).

    Google Scholar 

  33. G. Dolan and T. Fulton, IEEE Electron Device Lett. EDL-4, 178 (1983).

    Google Scholar 

  34. B. Lin, in Introduction to Microlithography, edited by L. Thompson, M. Bowden, and G. Willson, American Chemical Society, Washington, D.C., 1983, pp. 287–349.

    Google Scholar 

  35. B. Griffing and P. West, IEEE Electron Device Lett. EDL-4, 14 (1983).

    Google Scholar 

  36. U. S. Patent 4,287,289 (1981), Tokyo Ohko.

    Google Scholar 

  37. C. Hamel and E. Symula, IBM Tech. Discl. Bull. 22, 1399 (1979).

    Google Scholar 

  38. C. Hamel and J. Kristoff, IBM Tech. Discl. Bull. 24, 215 (1981).

    Google Scholar 

  39. U. S. Patent 3,961,000 (1977), RCA.

    Google Scholar 

  40. U. S. Patent 3,961,101 (1977), RCA.

    Google Scholar 

  41. Brazilian Patent 78,077666, IBM; Chem. Abstr. 93, 85225 (1981).

    Google Scholar 

  42. W. Oldham and A. Neureuther, IEEE Trans. Electron Devices ED-27, 1455 (1980).

    Google Scholar 

  43. T. Berker and D. Casey, IEEE Trans. Electron Devices ED-29, 524 (1982).

    Google Scholar 

  44. Japanese Patent 81,92,536, Fujitsu; Chem. Abstr. 96, 60866 (1982).

    Google Scholar 

  45. Japanese Patent 80,32,088, Fuji; Chem. Abstr. 93, 195530 (1980).

    Google Scholar 

  46. U. S. Patent 4,104,070 (1979), IBM.

    Google Scholar 

  47. S. MacDonald, R. Miller, G Willson, G. Feinberg, R. Gleason, R. Halverson, M. Macintyre, and W. Motsiff, Interface 82, Kodak Proceedings of Microelectronics Seminar, 1982, p. 114.

    Google Scholar 

  48. T. Matsuzawa and H. Tomika, IEEE Trans. Electron Devices ED-28, 1284 (1981).

    Google Scholar 

  49. N. Veno, S. Konishi, K. Tanimoto, and K. Sugita, Jpn. J. Appl. Phys. 20, L709 (1981).

    Google Scholar 

  50. Y. Kawamura, K. Toyoda, and S. Namba, J. Appl. Phys. 53, 6489 (1982).

    Google Scholar 

  51. U. S. Patent 4,339,522 (1980), IBM.

    Google Scholar 

  52. G. Willson, N. Clecak, B. Grant, and R. Twieg, Electrochem. Soc. Ext. Abstr. 80-1, 696 (1980).

    Google Scholar 

  53. U. S. Patent 4,339,521 (1981), Siemens.

    Google Scholar 

  54. German Patent 2,631,535, GAF; Chem. Abstr. 86, 198007 (1978).

    Google Scholar 

  55. D. Kyser and C. Ting, J. Vac. Sci. Technol. 16, 1759 (1979); M. Yoshimi, Electron. Lett. 78, 880 (1982).

    Google Scholar 

  56. J. Greeneich, Electrochem. Soc. Ext. Abstr. 80, 261 (1980).

    Google Scholar 

  57. U. S. Patent 4,061,832 (1980), Milliard; Y. Mimura, J. Electrochem. Soc. 126, 1881 (1979).

    Google Scholar 

  58. A. Miura and S. Hideyama, J. Vac. Sci. Technol. 16, 1996 (1979).

    Google Scholar 

  59. U. S. Patent 4,276,365 (1981), Fujitsu.

    Google Scholar 

  60. W. Moreau and R. Lange, IBM Tech. Discl. Bull. 25, 2725 (1982).

    Google Scholar 

  61. D. Widmann, IEEE J. Solid State Circuits SC-11, 466 (1976).

    Google Scholar 

  62. T. Serikawa and T. Yachi, J. Electrochem. Soc. 128, 918 (1981); N. Yamauchi, Jpn. J. Appl. Phys. 22, L595 (1983).

    Google Scholar 

  63. U. S. Patent 4,214,966 (1980), Bell.

    Google Scholar 

  64. W. Curry, G. Galyon, J. Giddings, and A. Lee, IBM Tech. Discl. Bull. 22, 4511 (1980).

    Google Scholar 

  65. R. Burkhart, IBM Tech. Discl. Bull. 24, 2081 (1981).

    Google Scholar 

  66. T. Sakurai and T. Serikawa, J. Electrochem. Soc. 126, 1257 (1979).

    Google Scholar 

  67. E. Walker, IEEE Trans. Electron Devices ED-22, 64 (1975).

    Google Scholar 

  68. T. Venkatesan, G. Taylor, A. Wagner, C. Wilkens, and D. Barr, J. Vac. Sci. Technol. 19, 1379 (1981).

    Google Scholar 

  69. I. Aesida, J. Chinn, L. Rathbun, and E. Wolf, J. Vac. Sci. Technol. 21, 666 (1982).

    Google Scholar 

  70. D. Follett, K. Weiss, J. Moore, A. Steckl, and W. Lu, Electrochem. Soc. Ext. Abstr. 82-2, 321 (1982).

    Google Scholar 

  71. M. Gazard, C. Duchesne, J. Dubas, and A. Chapiro, Polym. Eng. Sci. 20, 1069 (1980).

    Google Scholar 

  72. J. Pacansky and J. Lyerla, IBM J. Res. Dev. 23, 42 (1979).

    Google Scholar 

  73. A. Martyneko, B. Stizhov, and V. Nikolskii, Russ. J. Phys. Chem. 49, 1310 (1975).

    Google Scholar 

  74. B. Lin, Solid State Technol. May 1983, p. 105.

    Google Scholar 

  75. K. Tai, R. Vadimsky, C. Kemmerer, J. Wagner, V. Lamberti, and A. Timko, J. Vac. Sci. Technol. 17, 1169 (1980).

    Google Scholar 

  76. S. Middelhoek, IBM J. Res. Dev. March 1970, p. 117.

    Google Scholar 

  77. T. Brewer, J. Appl. Photogr. Eng. 1, 184 (1981).

    Google Scholar 

  78. C. Ting, I. Avigal, and B. Lu, Proceedings of Kodak Microelectronics Seminar, Oct. 1982, G-136, p. 139; J. Vac. Sci. Technol. B1, 1225 (1983).

    Google Scholar 

  79. U. S. Patent 3,934,057 (1976), IBM.

    Google Scholar 

  80. B. Lin, E. Bassous, V. Chao, and K. Petrillo, J. Vac. Sci. Technol. 19, 1313 (1981).

    Google Scholar 

  81. H. Namatsu, Y. Ozaki, and K. Hirata, J. Vac. Sci. Technol. 21, 672 (1982).

    Google Scholar 

  82. U. S. Patent 3,996,393 (1978), IBM.

    Google Scholar 

  83. U. S. Patent 3,987,215 (1977), IBM.

    Google Scholar 

  84. U. S. Patent 3,934,057 (1976), IBM.

    Google Scholar 

  85. U. S. Patent 4,024,293 (1978), IBM.

    Google Scholar 

  86. M. Hatzakis, J. Vac. Sci. Technol. 16, 1984 (1979).

    Google Scholar 

  87. D. Webb, IBM J. Res. Dev. 24, 554 (1980).

    Google Scholar 

  88. W. Moreau, W. Moyer, D. Merritt, M. Hatzakis, L. Pederson, and D. Johnson, J. Vac. Sci. Technol. 16, 1990 (1979).

    Google Scholar 

  89. Y. Todokora, IEEE Trans. Electron Devices ED-27, 1443 (1980).

    Google Scholar 

  90. Japanese Patent 80,140,836, Fujitsu; Chem. Abstr. 94, 183462 (1980).

    Google Scholar 

  91. H. Hiroaka, SPIE Proc. 469, 127 (1984).

    Google Scholar 

  92. R. Howard, E. Hu, and L. Jackel, IEEE Trans. Electron Devices ED-28, 1378 (1981).

    Google Scholar 

  93. R. Howard, E. Hu, and L. Jackel, Appl. Phys. Lett. 36, 141 (1980).

    Google Scholar 

  94. P. Hammel and R. Richardson, Physics 107B, 611 (1981).

    Google Scholar 

  95. M. Yamada, J. Tamano, K. Yoneda, S. Monta, and S. Hattori, Jpn. J. Appl. Phys. 21, 768 (1982).

    Google Scholar 

  96. British Patent 2,064,152, Bell; Chem. Abstr. 96, 13668f (1982).

    Google Scholar 

  97. U. S. Patent 3,898,350 (1975), IBM.

    Google Scholar 

  98. W. Moreau and P. Schmidt, Electrochem. Soc. Ext. Abstr. No. 187 (1970).

    Google Scholar 

  99. T. Venkatesan, J. Vac. Sci. Technol. 19, 1368 (1981).

    Google Scholar 

  100. E. Bassous, L. Ephrath, G. Pepper, and D. Mikalsen, J. Electrochem. Soc. 130, 478 (1983).

    Google Scholar 

  101. U. S. Patent 4,214,966 (1980), Bell.

    Google Scholar 

  102. B. Lin, J. Electrochem. Soc. 127, 202 (1980).

    Google Scholar 

  103. U. S. Patent 3,873,313 (1974), IBM.

    Google Scholar 

  104. U. S. Patent 4,238,559 (1981), IBM.

    Google Scholar 

  105. Y. Todokoro, Trans. IEEE Jpn. E-65, 23 (1982).

    Google Scholar 

  106. German Patent 3,036,710, Siemens; Chem. Abstr. 97, 48247 (1982).

    Google Scholar 

  107. U. S. Patent 3,982,943 (1976), IBM.

    Google Scholar 

  108. U. S. Patent 4,092,442 (1980), IBM.

    Google Scholar 

  109. A. McCullough and E. Pavelche, Symp. Electron, Ion, Laser Beam Technol., San Francisco, 1983, Abstr. K-5; J. Vac. Sci Technol. B1, 1241 (1983).

    Google Scholar 

  110. E. Ong, Ref. 109, Abstr. K-6; J. Vac. Sci. Technol. B1, 1247 (1983).

    Google Scholar 

  111. B. Lin, V. Chao, F. Kaufman, and S. Kramer, Electrochem. Ext. Abstr. 82-1, 450 (1982).

    Google Scholar 

  112. H. Santini and N. Viswanathan, Ref. 78, p. 47.

    Google Scholar 

  113. B. Griffing, J. Vac. Sci. Technol. 19, 1423 (1981).

    Google Scholar 

  114. T. Batchelder and C. Takemoto, Semicond. Int. July 1981, p. 7.

    Google Scholar 

  115. W. Moreau, Opt. Eng. 22, 181 (1983).

    Google Scholar 

  116. U. S. Patent 4,139,384 (1981), Fuji.

    Google Scholar 

  117. D. Bobkin and B. Cantos, IEEE Electron Device Lett. EDL-2, 222 (1981).

    Google Scholar 

  118. G. Chui and W. Ma, IBM Tech. Discl Bull. 21, 3623 (1979).

    Google Scholar 

  119. M. Vry, J. Matthews, and C. Wood, SPIE Proc. 334, 241 (1982).

    Google Scholar 

  120. K. Jain, C. Willson, and B. Lin, IBM J. Res. Dev. 26, 151 (1982).

    Google Scholar 

  121. C. Horwitz, Appl. Phys. Lett. 32, 803 (1978).

    Google Scholar 

  122. H. Namatsu, Y. Ozaki, and K. Hirata, J. Electrochem. Soc. 130, 523 (1983); H. Gokan, M. Itoh, and S. Esho, J. Vac. Sci. Technol. B2, 34 (1984); I. Watanabe, Jpn. J. Appl. Phys. 23, 487 (1984).

    Google Scholar 

  123. B. Lin, E. Bassous, V. Chao, and K. Petrillo, J. Vac. Sci. Technol. 19, 1313 (1981).

    Google Scholar 

  124. J. Lavine, J. Masters, G. Goldberg, and A. Das, IEEE Trans. Electron Devices ED-28, 1311 (1981).

    Google Scholar 

  125. T. Venkatesan, G. Taylor, A. Wagner, B. Wilkens, and D. Barr, J. Vac. Sci. Technol. 19, 1379 (1981).

    Google Scholar 

  126. K. Tai, W. Sinclair, R. Vadimsky, J. Moran, and M. Rand, J. Vac. Sci. Technol. 16, 1977 (1979).

    Google Scholar 

  127. A. Wagner, D. Barr, T. Venkatesan, W. Crane, V. Lamberti, K. Tai, and R. Vadimsky, J. Vac. Sci. Technol. 19, 1363 (1981).

    Google Scholar 

  128. G. Taylor, T. Wolf, and J. Moran, J. Vac. Sci. Technol. 19, 872 (1981).

    Google Scholar 

  129. I. Aesida, J. Chinn, L. Rathburn, and E. Wolf, J. Vac. Sci. Technol. 19, 875 (1981).

    Google Scholar 

  130. M. Hatzakis, J. Paraszczak, and J. Shaw, Microcircuit Eng., Grenoble, France, Sept. 1981, p. 396.

    Google Scholar 

  131. M. Hatzakis, J. Shaw, J. Paraszczak, J. Liutkus, and E. Babich, SPE RETEC Photopolymers, 1982, Ellenville, N.Y., p. 285.

    Google Scholar 

  132. Japanese Patent 82,50,430, Chem. Abstr. 97, 48231 (1982).

    Google Scholar 

  133. M. Yamada, J. Tamano, K. Yoneda, S. Monta, and S. Hattori, Jpn. J. Appl Phys. 21, 768 (1982).

    Google Scholar 

  134. U. S. Patent 3,782,940 (1974), Dai Nippon Print.

    Google Scholar 

  135. K. Beyer and J. Logan, IBM Tech. Disci Bull. 17, 1600 (1974).

    Google Scholar 

  136. U. S. Patent 3,622,365 (1977), Fairchild.

    Google Scholar 

  137. U. S. Patent 3,519,584 (1976), IBM.

    Google Scholar 

  138. Y. Homma, H. Nozaiva, and S. Harada, IEEE Trans. Electron Devices ED-28, 552 (1981).

    Google Scholar 

  139. U. S. Patent 4,224,361 (1980), IBM.

    Google Scholar 

  140. U. S. Patent 4,315,984 (1982), Hitachi.

    Google Scholar 

  141. L. Rothman, Electrochem. Soc. Plasma Processes 81-1, 192 (1981).

    Google Scholar 

  142. Y. Todokoro, Electron. Lett. 18, 543 (1982).

    Google Scholar 

  143. H. Namasu, Y. Ozaki, and K. Hirata, J. Vac. Sci. Technol. 21, 672 (1982).

    Google Scholar 

  144. L. Rothman, Electrochem. Soc. Ext. Abstr. 82-1, 582 (1982).

    Google Scholar 

  145. U. S. Patent 4,132,568 (1981), IBM.

    Google Scholar 

  146. U. S. Patent 3,985,597 (1976), IBM.

    Google Scholar 

  147. L. Gregor, W. Moreau, J. Zingerman, and L. Kaplan, IBM Tech. Disci Bull. 24, 3837, 5538 (1982).

    Google Scholar 

  148. H. Namatsu, Y. Ozaki, and K. Hirata, J. Vac. Sci Technol. 21, 672 (1982).

    Google Scholar 

  149. S. Macdonald, G. Willson, H. Ito, and R. Miller, Int. Symp. Electron, Ion, Photon Beams, Los Angeles, May 1983, Abstr. 1-4.

    Google Scholar 

  150. K. Tanigaki, Am. Chem. Soc. Org. Coat. Prepr. 48, 179 (1983).

    Google Scholar 

  151. P. Van Pelt, Soc. Photogr. Inst. Eng. Proc. 275, 150 (1981).

    Google Scholar 

  152. L. Karapiperis and C. Lee, Appl. Phys. Lett. 35, 395 (1979).

    Google Scholar 

  153. B. Hunt and R. Burhman, J. Vac. Sci Technol. 19, 1308 (1981).

    Google Scholar 

  154. M. Hatzakis, D. Hofer, and T. Chang, J. Vac. Sci Technol. 16, 1631 (1979); U. S. Patent 4,267,259 (1980), IBM.

    Google Scholar 

  155. J. Kitcher, J. Vac. Sci. Technol. 16, 2030 (1979).

    Google Scholar 

  156. U. S. Patent 4,283,483 (1981), Hughes.

    Google Scholar 

  157. B. Lin and T. Chang, J. Vac. Sci. Technol. 16, 1669 (1979).

    Google Scholar 

  158. J. Moran and D. Maydan, J. Vac. Sci. Technol. 16, 1620 (1979); U. S. Patent 4,244,799 (1981), Bell.

    Google Scholar 

  159. J. Havas, Electrochem. Soc. Ext. Abstr. 76-2, 743 (1976); U. S. Patents 3,873,361 (1973) and 4,004,044 (1977), IBM.

    Google Scholar 

  160. J. Kruger, P. Rissman, and M. Chang, J. Vac. Sci. Technol. 19, 1320 (1981).

    Google Scholar 

  161. M. OToole, E. Liu, and M. Chang, IEEE Trans. Electron Devices ED-28, 1405 (1981); U. S. Patent 4,370,405 (1983); U. S. Patent 4,102,683a (1978), RCA.

    Google Scholar 

  162. U. S. Patent 4,202,914 (1980), IBM.

    Google Scholar 

  163. G. Ray, S. Peng, D. Burriesi, M. O’Toole, and E. Liu, J. Electrochem. Soc. 129, 2153 (1982).

    Google Scholar 

  164. S. Lyman, J. Jackel, and P. Liu, J. Vac. Sci. Technol. 19, 1325 (1981).

    Google Scholar 

  165. U. S. Patent 3,873,361 (1976), IBM.

    Google Scholar 

  166. U. S. Patent 3,982,943 (1976), IBM.

    Google Scholar 

  167. U. S. Patent 4,035,276 (1977), IBM.

    Google Scholar 

  168. U. S. Patent 4,256,816 (1981), Bell.

    Google Scholar 

  169. K. Grebe, J. Ames, and A. Ginzberg, J. Vac. Sci. Technol. 11, 485 (1974); U. S. Patent 3,849,136 (1974), IBM.

    Google Scholar 

  170. P. Grabbe, E. Hu, and R. Howard, J. Vac. Sci. Technol. 21, 33 (1982).

    Google Scholar 

  171. U. S. Patent 4,367,119 (1983), IBM.

    Google Scholar 

  172. T. Venkatesan, J. Vac. Sci. Technol. 19, 1368 (1981).

    Google Scholar 

  173. D. Tenant, J. Vac. Sci. Technol. B1, 494 (1983).

    Google Scholar 

  174. A. Milgram, J. Vac. Sci. Technol. B1, 490 (1983).

    Google Scholar 

  175. L. Jackel, R. Howard, E. Hu, D. Tenant, and P. Grabbe, Appl. Phys. Lett. 39, 268 (1981).

    Google Scholar 

  176. M. Bowden, and G. Willson, American Chemical Society, Washington, D.C., 1983 Ref. 34, p. 335.

    Google Scholar 

  177. W. Arden, H. Keller, and L. Mader, Solid State Technol. July 1983, p. 143.

    Google Scholar 

  178. P. Burggraaf, Semicond. Int. June 1983, p. 53.

    Google Scholar 

  179. J. Dubois and M. Gazard, Electrochem. Soc. Ext. Abstr. 72, 332 (1972).

    Google Scholar 

  180. U. S. Patent 3,877,980 (1975), U. S. Phillips.

    Google Scholar 

  181. R. Watts, W. Fitchner, E. Fuis, L. Thilbant, and R. Johnston, IEEE Trans. Electron Devices ED–28, 1338 (1981).

    Google Scholar 

  182. L. Dunkelberger, J. Vac. Sci. Technol. 15, 88 (1978).

    Google Scholar 

  183. U. S. Patent 4,132,586 (1977).

    Google Scholar 

  184. M. Itoh, H. Gokan, S. Esho, and K. Asakawa, J. Vac. Sci. Technol. 20, 21 (1982).

    Google Scholar 

  185. British Patent 1,450,509 (1976), IBM.

    Google Scholar 

  186. U. S. Patent 4,144,101 (1979), IBM.

    Google Scholar 

  187. W. Grobman, H. Luhn, T. Donohue, A. Speth, A. Wilson, M. Hatzakis, and T. Chang, IEEE Trans. Electron Devices ED–26, 360 (1979).

    Google Scholar 

  188. T. C. Patton, Paint Flow and Pigment Dispersion, Wiley, New York, 1979, p. 356.

    Google Scholar 

  189. S. Croll, J. Appl. Polym. Sci. 23, 847 (1979).

    Google Scholar 

  190. D. Tenant, J. Vac. Sci. Technol. B1, 494 (1983).

    Google Scholar 

  191. L. White, J. Electrochem. Soc. 130, 1543 (1983).

    Google Scholar 

  192. L. Rothman, J. Electrochem. Soc. 127, 2216 (1980).

    Google Scholar 

  193. L. Rothman, J. Electrochem. Soc. 130, 1131 (1983); U. S. Patent 3,985,597 (1975), IBM.

    Google Scholar 

  194. W. Daughton and F. Givens, J. Electrochem. Soc. 129, 173 (1982).

    Google Scholar 

  195. A. Adams and C. Caparo, J. Electrochem. Soc. 128, 423 (1981).

    Google Scholar 

  196. S. Yamamoto, K. Kobayashi, and Y. Toyama, Fujitsu Sci. Tech. J. 14, 143 (1978).

    Google Scholar 

  197. E. Mondou and P. Schmidt, IBM Tech. Discl. Bull. 18, 391 (1975).

    Google Scholar 

  198. U. S. Patent 3,982,943 (1976), IBM.

    Google Scholar 

  199. B. Kuang and C. Chang, J. Vac. Sci. Technol. 16, 2025 (1979).

    Google Scholar 

  200. U. S. Patent 4,210,579 (1980), Motorola.

    Google Scholar 

  201. S. Irving, Solid State Technol. June 1971, p. 47.

    Google Scholar 

  202. O. Wada, S. Yamamoto, K. Kobayashi, A. Taguchi, and Y. Toyama, J. Electrochem. Soc. 124, 959 (1977).

    Google Scholar 

  203. U. S. Patent 4,042,387 (1979), Rockwell.

    Google Scholar 

  204. I. Blech, D. Fraser, and S. Maszko, J. Vac. Sci. Technol. 15, 13 (1978).

    Google Scholar 

  205. I. Blech, Thin Solid Films 6, 113 (1970).

    Google Scholar 

  206. C. Wasik and J. Gneiwik, J. Vac. Sci. Technol. 8, 441 (1971).

    Google Scholar 

  207. A. Neureuther, C. Ting, and C. Luv, IEEE Treats. Electron Devices ED–27, 1449 (1980).

    Google Scholar 

  208. W. Oldham, A. Neureuther, C. Sung, J. Reynolds, and S. Nandgoankar, IEEE Trans. Electron Devices ED–27, 1455 (1980).

    Google Scholar 

  209. D. Widmann, IEEE J. Solid State Circuits SC–11, 446 (1976).

    Google Scholar 

  210. Y. Homma, A. Yajima, and S. Harada, IEEE Trans. Electron Devices ED–29, 512 (1982).

    Google Scholar 

  211. A. Learn, J. Electron. Mater. 3, 531 (1974).

    Google Scholar 

  212. R. Ryan, T. McCurdy, and L. Wolff, RCA Rev. Dec. 1968, p. 582.

    Google Scholar 

  213. D. Keleman, Solid State Technol. Aug. 1976, p. 37.

    Google Scholar 

  214. S. Spitz, Circuit Manuf. Jan 1981, p. 69.

    Google Scholar 

  215. U. S. Patent 3,993,802 (1976), Photocircuits.

    Google Scholar 

  216. N. Feldstein and T. Lancsek, RCA Rev. 32, 306 (1971).

    Google Scholar 

  217. J. Maes, A. Van Nie, and G. Hut, Microelectron. Reliab. 17, 325 (1978).

    Google Scholar 

  218. L. Romankiw, IEEE Trans, on Magn. MAG–10, 828 (1974).

    Google Scholar 

  219. R. Feder, M. Heritage, E. Spiller, and J. Topolian, Solid State Technol. April 1976, p. 62.

    Google Scholar 

  220. U. S. Patent 4,224,361 (1980), IBM.

    Google Scholar 

  221. L. Romankiw, M. Hatzakis, and E. Castellani, Electrochem. Soc. Ext. Abstr. 74–1, 489 (1974).

    Google Scholar 

  222. L. Romankiw, in Proc. Symp. Etching Pattern Definition, edited by H. Hughes and M. Rand, Electrochemical Society, 1976, p. 161.

    Google Scholar 

  223. A. Sugita, M. Morita, and A. Tamamura, Extended Abstracts, 16th International Conference on Solid State Devices, pp. 19–22 (1984).

    Google Scholar 

  224. Y. Irda, Jpn. J. Appl. Phys. 16, 1313 (1977).

    Google Scholar 

  225. D. Lee, Proc. IEEE 62, 1241 (1974).

    Google Scholar 

  226. Y. Okuyama, T. Hashimoto, and T. Koguich, J. Electrochem. Soc. 125, 1293 (1978).

    Google Scholar 

  227. M. Gazard, J. Dubois, and C. Dubois, Am. Chem. Soc. Org. Coat. Abstr. 33, 372 (1973).

    Google Scholar 

  228. U. S. Patent 4,315,984 (1982), Hitachi.

    Google Scholar 

  229. U. S. Patent 4,367,119 (1983), IBM.

    Google Scholar 

  230. U. S. Patent 3,962,004 (1976), RCA.

    Google Scholar 

  231. U. S. Patent 4,030,942 (1977), IBM.

    Google Scholar 

  232. U. S. Patent 4,093,942 (1977), IBM.

    Google Scholar 

  233. T. Matsuzawa and H. Tomioka, IEEE Electron Device Lett. EDL–2, 90 (1981).

    Google Scholar 

  234. H. Shirashi, Y. Tanaiguchi, S. Horigime, and S. Nonogaki, Polym. Eng. Sci. 20, 1954 (1980).

    Google Scholar 

  235. D. Dobkin and B. Cantos, IEEE Electron Device Lett. EDL–2, 222 (1981).

    Google Scholar 

  236. B. Lin, IBM J. Res. Dev. May 1976, p. 213; U. S. Patent 4,211,834 (1980).

    Google Scholar 

  237. U. S. Patent 4,387,145 (1983), Fairchild.

    Google Scholar 

  238. R. Howard, Appl. Phys. Lett. 33, 1934 (1978).

    Google Scholar 

  239. K. Pickar, Solid State Electron. 15, 239 (1977).

    Google Scholar 

  240. U. S. Patent 4,456,675 (1984), IBM; K. Jain, C. Wilson, and B. Lin, IBM J. Res. Dev. 26, 155 (1982).

    Google Scholar 

  241. N. Clecak, B. Grant, C. Wilson, and R. Twieg, IEEE Trans. Electron Devices ED–28, 1300 (1981).

    Google Scholar 

  242. J. Andrew, P. Dryer, D. Foster, and P. Key, Appl. Phys. Lett. 43, 717 (1983).

    Google Scholar 

  243. K. Sugita, N. Ueno, S. Konishi, and Y. Suzuki, Photogr. Sci. Eng. 27, 146 (1983).

    Google Scholar 

  244. S. Matsui and N. Endo, Microelectron. Eng. 1, 51 (1983).

    Google Scholar 

  245. W. Meyer, B. Curtis, and H. Brunner, Microelectron. Eng. 1, 29 (1983).

    Google Scholar 

  246. U. S. Patent 4,427,713 (1984), RCA.

    Google Scholar 

  247. Japanese Patent 57,141,642, Chem. Abstr. 99, 222415 (1983).

    Google Scholar 

  248. B. Singh, Appl. Phys. Lett. 45, 74 (1984).

    Google Scholar 

  249. F. Jones, J. Paraszczak, and A. Speth, J. Appl. Phys. 55, 3092 (1984).

    Google Scholar 

  250. B. Soller, R. Shuman, and R. Ross, J. Electrochem. Soc. 131, 1353 (1984).

    Google Scholar 

  251. F. Robb, J. Electrochem. Soc. 131, 1670 (1984).

    Google Scholar 

  252. M. Shimaya, O. Nakajima, C. Hashimoto, and Y. Sokakibara, J. Electrochem. Soc. 131, 1391 (1984).

    Google Scholar 

  253. U. S. Patent 4,464,460 (1984), IBM.

    Google Scholar 

  254. K. Ehara, T. Morimoto, S. Muramoto, and S. Matsuo, J. Electrochem. Soc. 131, 419 (1984).

    Google Scholar 

  255. S. Gillespie, IBM J. Res. Dev. 28, 454 (1984).

    Google Scholar 

  256. S. Macdonald, C. Wilson, R. Miller, and H. Ito, Polym. Mater. Sci. Eng. 49, 104 (1983).

    Google Scholar 

  257. European Patent Application 98,992 (1984), IBM (dual layer positive or negative resist based on dyeing the developed top layer and exposing bottom layer).

    Google Scholar 

  258. U. S. Patent 4,448,800 (1984), Nippon Tel. (refractory metal in lift-off).

    Google Scholar 

  259. U. S. Patent Application 524,828 (1984), U. S. Navy (trilevel of resist/metal/polyimide for lithography on ceramic substrates).

    Google Scholar 

  260. Anon, Res. Disci 239, 106 (1984); Chem. Abstr. 100, 148411 (1984) (deposit blanket metal film before lift-off).

    Google Scholar 

  261. M. Morita, S. Imamura, T. Tamamura, O. Kogure, and K. Murase, J. Electrochem. Soc. 131, 653 (1984).

    Google Scholar 

  262. S. Gupta and C. Audain, SPIE Proc. 469, 179 (1984).

    Google Scholar 

  263. European Patent Application 98,318, Chem. Abstr. 100, 18347 (1984).

    Google Scholar 

  264. D. Hofer, R. Miller, and C. Willson, SPIE Proc. 469, 16 (1984).

    Google Scholar 

  265. M. Watts, SPIE Proc. 469, 1 (1984).

    MathSciNet  Google Scholar 

  266. D. Meyerhofer and L. White, SPIE Proc. 469, 11 (1984).

    Google Scholar 

  267. C. Ting and K. Liauw, SPIE Proc. 469, 24 (1984).

    Google Scholar 

  268. R. Castellano, J. Electrochem. Soc. 131, 2340 (1984).

    Google Scholar 

  269. M. Morita, S. Imamura, A. Tanaka, and T. Tamamura, J. Electrochem. Soc. 131, 2402 (1984).

    Google Scholar 

  270. C. Rosilio, A. Rosilio, and F. Buiguez, Microelectron. Eng. 1, 197 (1983).

    Google Scholar 

  271. T. Bril, R. de Wert, and P. Willemse, Electrochem. Soc. Ext. Abstr. 80–1, 203 (1980).

    Google Scholar 

  272. R. Verhaar and W. Hoek, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1983, p. 405.

    Google Scholar 

  273. J. Reekstin and R. Kowalchuck, IEEE Trans. Magn. MAG–9, 485 (1973).

    Google Scholar 

  274. P. Hugget and H. Lehman, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1983, p. 363.

    Google Scholar 

  275. K. Harada, K. Myoshi, H. Namatsu, and S. Moriya, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1983, p. 313.

    Google Scholar 

  276. S. Uoya, D. Stephani, and M. Bolsen, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1983, p. 199.

    Google Scholar 

  277. East German Patent 205,287, Chem. Abstr. 101, 161264 (1983).

    Google Scholar 

  278. Japanese Patent 59,84,428, Chem. Abstr. 101, 161267 (1983).

    Google Scholar 

  279. J. Kruger, M. O’Toole, and P. Rissman, in VLSI Electronic Microstructure Science, Vol. 8, edited by N. Einspruch, Academic Press, New York, 1984, p. 91.

    Google Scholar 

  280. Japanese Patent 58,169,910, Chem. Abstr. 101, 120498 (1983).

    Google Scholar 

  281. H. Gozdz, H. Craighead, and M. Bowden, J. Electrochem. Soc. 132, 2809 (1985).

    Google Scholar 

  282. Japanese Patent 58,105,140, Chem. Abstr. 101, 120489 (1983).

    Google Scholar 

  283. Japanese Patent 59,84,426, Chem. Abstr. 101, 161274 (1983).

    Google Scholar 

  284. Y. Todokoro, Electron. Lett. 15, 543 (1982).

    Google Scholar 

  285. H. Nanamasu, Y. Ozaki, and K. Hirata, J. Vac. Sci. Technol. 21, 672 (1982).

    Google Scholar 

  286. J. Paraszczak, E. Babich, J. Shaw, M. Hatzakis, and J. Liutkis, SPIE Proc. 393, 8 (1983).

    Google Scholar 

  287. J. Yeh, K. Grebe, and M. Palmer, J. Vac. Sci. Technol. A2, 1292 (1984).

    Google Scholar 

  288. P. Degraff and D. Flanders, J. Vac. Sci. Technol. 16, 1906 (1979).

    Google Scholar 

  289. U. S. Patents 4,378,383 and 4,377,633 (1983), IBM.

    Google Scholar 

  290. U. S. Patent 4,373,018 (1983), Bell.

    Google Scholar 

  291. U. S. Patent 4,430,153 (1984), IBM.

    Google Scholar 

  292. U. S. Patent 4,396,702 (1983), RCA.

    Google Scholar 

  293. U. S. Patent 4,452,65 (1984), IBM; H. Hiroaka, J. Electrochem. Soc. 131, 2938 (1984).

    Google Scholar 

  294. P. Vettiger, K. Daetwyler, and D. Webb, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1983, p. 295.

    Google Scholar 

  295. U. S. Patent 4,489,146 (1984), IBM.

    Google Scholar 

  296. U. S. Patent 4,489,101 (1984), Hitachi.

    Google Scholar 

  297. Y. Takasu and Y. Todokoro, Electron. Lett. 20, 1013 (1984).

    Google Scholar 

  298. K. Tsuji, M. Sasgo, and K. Kugimiya, IEEE Trans. Electron Devices ED–31, 1861 (1984).

    Google Scholar 

  299. I. Aesida, M. Zhang, and E. Wolfe, J. Electron. Mater. 13, 689 (1984).

    Google Scholar 

  300. U. S. Patent 4,289,573 (1981), IBM.

    Google Scholar 

  301. U. S. Patent 3,964,908 (1976), IBM.

    Google Scholar 

  302. U. S. Patent 4,357,369 (1982), RCA.

    Google Scholar 

  303. M. Suzuki, H. Namatsu, and A. Yoshikawa, J. Vac. Sci. Technol. B2, 665 (1984).

    Google Scholar 

  304. K. Arai, F. Yanagawa, and S. Kurosawa, J. Vac. Sci. Technol. B2, 669 (1984).

    Google Scholar 

  305. I. Lauks, Appl. Phys. Lett. 45, 74 (1984).

    Google Scholar 

  306. Y. Lin, V. Marriott, K. Orvek, and G. Fuller, SPIE Proc. 469, 30 (1984).

    Google Scholar 

  307. M. Livistan, SPIE Proc. 470, 85 (1984).

    Google Scholar 

  308. Y. Lin, J. Appl. Phys. 55, 1110 (1984).

    Google Scholar 

  309. H. Keller, Solid State Technol. June 1978, p. 45.

    Google Scholar 

  310. E. Fredericks, IBM Tech. Disci Bull. 20, 989 (1977); P. Carr, IBM Tech. Discl. Bull. 18, 1396 (1975).

    Google Scholar 

  311. D. Buckley, Microelectron. Manuf. Test. Feb. 1982, p. 19.

    Google Scholar 

  312. U. S. Patent 4,496,648 (1985), Sperry Rand.

    Google Scholar 

  313. M. Ishikawa, J. Polym. Sci. 22, 669 (1984).

    Google Scholar 

  314. European Patent Application 110,165, Chem. Abstr. 102, 15162 (1984).

    Google Scholar 

  315. U. S. Patent 4,464,460 (1984), IBM.

    Google Scholar 

  316. Japanese Patent 59,105,637, Chem. Abstr. 101, 238186 (1984).

    Google Scholar 

  317. Japanese Patent 59,135,793, Chem. Abstr. 101, 238190 (1984).

    Google Scholar 

  318. Japanese Patent 58,190,040, Chem. Abstr. 101, 181319 (1984).

    Google Scholar 

  319. Res. Disci 246, 498, Chem. Abstr. 101, 219627 (1984).

    Google Scholar 

  320. U. S. Patent 4,470,871 (1984), RCA.

    Google Scholar 

  321. N. Endo and S. Matsui, Jpn. J. Appl Phys. 22, L109 (1983).

    Google Scholar 

  322. K. Saigo, Y. Ohnishi, M. Suzuki, and H. Gokan, J. Vac. Sci. Technol. B3, 331 (1985).

    Google Scholar 

  323. A. Faithmulla, J. Vac. Sci. Technol. B3, 25 (1985).

    Google Scholar 

  324. R. Ono, J. Sauvageau, A. Jain, D. Schwartz, K. Springer, and J. Lukens, J. Vac. Sci. Technol. B3, 282 (1985).

    Google Scholar 

  325. C. Wilkins, E. Reichmanis, T. Wolf, and B. Smith, J. Vac. Sci. Technol. B3, 306 (1985).

    Google Scholar 

  326. N. Gellrich, H. Beneking, and W. Arden, J. Vac. Sci. Technol. B3, 335 (1985).

    Google Scholar 

  327. B. Singh, G. Chem, and I. Lauks, J. Vac. Sci. Technol B3, 327 (1985).

    Google Scholar 

  328. Y. Yamashita, R. Kawazawa, K. Kamura, S. Ohno, T. Asano, K. Kobayashi, and G. Mamagatsu, J. Vac. Sci. Technol. B3, 314 (1985).

    Google Scholar 

  329. U. S. Patent 4,507,384 (1985), Nippon Tel.

    Google Scholar 

  330. Y. Kamakami, T. Aoki, and Y. Yamashita, Macromolecules 18, 580 (1985).

    Google Scholar 

  331. Y. Saotome, H. Gokan, K. Sargo, M. Suzuki, and J. Ohnishi, J. Electrochem. Soc. 132, 909 (1985).

    Google Scholar 

  332. M. Tsuda, S. Oekawa, M. Yabuta, A. Yakota, H. Nakane, K. Yamashita, K. Ganco, and S. Namba, J. Vac. Sci. Technol. B3, 481 (1985).

    Google Scholar 

  333. Japanese Patent 59,119,276, Chem. Abstr. 102, 15135 (1985).

    Google Scholar 

  334. B. Stangl, J. Mitteraurer, F. Reudenaurer, and G. Marawsky, J. Vac. Sci. Technol. B3, 477 (1985).

    Google Scholar 

  335. N. Chou, C. Tang, J. Paraszczak, and E. Babich, Appl. Phys. Lett. 46, 31 (1985).

    Google Scholar 

  336. Japanese Patent 59,119,276, Chem. Abstr. 102, 15135 (1985).

    Google Scholar 

  337. D. Tenant, H. Dayem, R. Howard, and E. Westerwick, J. Vac. Sci. Technol. B3, 458 (1985).

    Google Scholar 

  338. Japanese Patent 59,31,976, Chem. Abstr, 102, 36770 (1985).

    Google Scholar 

  339. Y. Takasu and Y. Todokoro, J. Vac. Sci. Technol. B3, 869 (1985).

    Google Scholar 

  340. L. White and M. Miskowski, J. Vac. Sci. Technol. B3, 862 (1985).

    Google Scholar 

  341. T. Ueno, H. Shiraishi, T. Iwazanagi, and S. Nonogaki, J. Electrochem. Soc. 132, 1168 (1985).

    Google Scholar 

  342. E. Reichmanis and G. Smolinsky, J. Electrochem. Soc. 132, 1178 (1985); U. S. Patent 4,481,049 (1984).

    Google Scholar 

  343. European Patent Application 113,034, Chem. Abstr. 102, 140887 (1985).

    Google Scholar 

  344. U. S. Patent 4,497,684 (1985), Amdahl.

    Google Scholar 

  345. Japanese Patent 59,175,725, Chem. Abstr. 102, 140887 (1985).

    Google Scholar 

  346. Japanese Patent 59,126,686, Chem. Abstr. 102, 70242 (1985).

    Google Scholar 

  347. R. Dean and R. Matarese, IEEE Trans. Electron Devices ED–22, 358 (1975).

    Google Scholar 

  348. D. Prober, IEEE Trans. Electron Devices ED–28, 1368 (1981).

    Google Scholar 

  349. M. Feuer and D. Prober, IEEE Trans. Electron Devices ED–28, 1375 (1981).

    Google Scholar 

  350. G. Dolan, Appl. Phys. Lett. 31, 337 (1977).

    Google Scholar 

  351. R. Howard and D. Prober, in VLSI Electronics, Vol. 5, edited by N. Einspruch, Academic Press, New York, 1982, pp. 146–185.

    Google Scholar 

  352. A. Milligram and J. Puretz, J. Vac. Sci. Technol. B3, 879 (1985).

    Google Scholar 

  353. A. Tanaka, M. Morita, and K. Onose, Jpn. J. Appl Phys. 24, 1112 (1985).

    Google Scholar 

  354. M. Suzuki, Y. Ohnishi, and A. Furata, J. Electrochem. Soc. 132, 139 (1985).

    Google Scholar 

  355. D. Lavergne and D. Hoger, SPIE Proc. 539, 115 (1985).

    Google Scholar 

  356. B. Lin, V. Chao, K. Petrillo, and B. Yang, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 75.

    Google Scholar 

  357. L. Stillwagon, P. Silverman, and G. Taylor, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 87.

    Google Scholar 

  358. A. Gozdz, H. Craighead, and M. Bowden, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 157.

    Google Scholar 

  359. U. S. Patent 4,357,369 (1982), RCA.

    Google Scholar 

  360. M. Hartney and A. Novembre, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 211.

    Google Scholar 

  361. F. Vollenbroek, W. Nyssen, H. Kroon, and B. Yilmaz, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 309.

    Google Scholar 

  362. L. White, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 271.

    Google Scholar 

  363. E. Ailing and C. Stauffer, SPIE Proc. 539, 194 (1985).

    Google Scholar 

  364. U. S. Patent 4,306,005 (1985), GCA.

    Google Scholar 

  365. J. Underbill, V. Nguyen, M. Kerbaugh, and D. Sundlez, SPIE Proc. 539, 83 (1985).

    Google Scholar 

  366. M. de Grandpre, D. Vidusek, and M. Legenza, SPIE Proc. 539, 103 (1985).

    Google Scholar 

  367. J. Wijdenes and M. Geomini, SPIE Proc. 539, 97 (1985).

    Google Scholar 

  368. Y. Ohnishi, M. Suzuki, K. Saigo, Y. Saotome, and H. Gokan, SPIE Proc. 539, 621 (1985).

    Google Scholar 

  369. L. White, SPIE Proc. 539, 29 (1985).

    Google Scholar 

  370. M. Legenza, D. Vidusek, and M. de Grandpre, SPIE Proc. 539, 250 (1985).

    Google Scholar 

  371. J. Zeigler, L. Harrah, and A. Johnson, SPIE Proc. 539, 166 (1985).

    Google Scholar 

  372. J. Tomeoka, SPIE Proc. 539, 158 (1985).

    Google Scholar 

  373. Japanese Patent 60,84,541 (1985); Chem. Abstr. 103, 132419 (1985).

    Google Scholar 

  374. U. S. Patent 4,521,274 (1985).

    Google Scholar 

  375. S. MacDonald, H. Ito, and C. Willson, Microelectron. Eng. 1, 269 (1983).

    Google Scholar 

  376. Japanese Patent 60,47,419 (1985); Chem. Abstr. 103, 113354 (1985).

    Google Scholar 

  377. E. Reichmanis, G. Smolinsky, and C. Wilkins, Solid State Technol. Aug. 1985, p. 130.

    Google Scholar 

  378. Japanese Patent 60,08,839 (1985); Chem. Abstr. 102, 19521 (1985).

    Google Scholar 

  379. U. S. Patent 4,507,331 (1985), IBM.

    Google Scholar 

  380. H. Miligram and J. Puretz, J. Vac. Sci. Technol. B3, 879 (1985).

    Google Scholar 

  381. R. Brault, R. Kubena, and R. Metzger, SPIE Proc. 539, 70 (1985).

    Google Scholar 

  382. Japanese Patent 60,35,727 (1985); Chem. Abstr. 102, 229481 (1985).

    Google Scholar 

  383. T. Matsuda, T. Ishii, and K. Harada, Appl. Phys. Lett. 47, 123 (1985).

    Google Scholar 

  384. U. S. Patent 4,552,833 (1985), IBM.

    Google Scholar 

  385. European Patent 136,130 (1985), AT & T; Chem. Abstr. 103, 79509 (1985).

    Google Scholar 

  386. F. Buiguez, J. Gilbert, C. Rosilio, A. Rosilio, F. Schue, R. Gagnes, B. Sevres, L. Gerai, W. Abou-Madi, and C. Montgenoul, in Microcircuit Engineering, edited by H. Beneking and H. Heuberger, Academic Press, New York, 1985, p. 471.

    Google Scholar 

  387. J. Enerva, K. Skarbova, and S. Kitora, J. Imag. Technol. 11, 174 (1985).

    Google Scholar 

  388. U. S. Patent 4,521,274 (1985), AT & T.

    Google Scholar 

  389. U. S. Patent 4,481,049 (1984), AT & T.

    Google Scholar 

  390. A. Tanaka, M. Monta, and K. Onose, Jpn. J. Appl Phys. 24, L112 (1985).

    Google Scholar 

  391. Japanese Patent 60,45,246 (1985); Chem. Abstr. 103, 62591 (1985).

    Google Scholar 

  392. Japanese Patent 60,32,047 (1985); Chem. Abstr. 103, 212712 (1985).

    Google Scholar 

  393. H. Moritz, IEEE Trans. Electron Devices ED–32, 672 (1985).

    Google Scholar 

  394. European Patent 124,265 (Oki); Chem. Abstr. 102, 229486 (1985).

    Google Scholar 

  395. Japanese Patent 60,59,734 (1985); Chem. Abstr. 103, 113366 (1985).

    Google Scholar 

  396. U. S. Patent 4,507,384 (1985), Nippon Tel.

    Google Scholar 

  397. B. Lin, K. Petrillo, and V. Chao, in Microcircuit Engineering, edited by H. Beneking and H. Heuberger, Academic Press, New York, 1985, p. 32.

    Google Scholar 

  398. H. Moritz, in Microcircuit Engineering, edited by H. Beneking and H. Heuberger, Academic Press, New York, 1985, p. 45.

    Google Scholar 

  399. H. Lehman and R. Widmer, in Microcircuit Engineering, edited by H. Beneking and H. Heuberger, Academic Press, New York, 1985, p. 493.

    Google Scholar 

  400. F. Vollenbroek, H. Kroon, J. Bartsen, and J. Dil, in Microcircuit Engineering, edited by H. Beneking and H. Heuberger, Academic Press, New York, 1985, p. 555.

    Google Scholar 

  401. H. Umezaki, N. Koyama, Y. Maruyama, Y. Sugita, and R. Suzuki, J. Electrochem. Soc. 132, 2440 (1985).

    Google Scholar 

  402. V. Nguyen, J. Underbill, S. Fredmann, and P. Pan, J. Electrochem. Soc. 132, 1925 (1985).

    Google Scholar 

  403. European Patent 132,585 (1985), IBM; Chem. Abstr. 103, 4584 (1985).

    Google Scholar 

  404. J. Gobrecht and M. Rossinelli, Proc. Electrochem. Soc. 85–1, 235 (1985).

    Google Scholar 

  405. P. Poppert, S. Novak, and P. Wright, SPIE Proc. 538, 461 (1985).

    Google Scholar 

  406. Y. Usuzi, A. Yoshikawa, and T. Kitayama, Microelectron. Eng. 2, 281 (1984).

    Google Scholar 

  407. European Patent 98,992 (1984), IBM; Chem. Abstr. 100, 219054 (1984).

    Google Scholar 

  408. M. O’Toole, IEEE Electron Device Leu. EDL–6, 282 (1985).

    Google Scholar 

  409. U. S. Patent 4,524,121 (1985), Rohm & Haas.

    Google Scholar 

  410. U. S. Patent 4,535,053 (1985).

    Google Scholar 

  411. P. Sheldon, J. Dick, and R. Hayes, J. Vac. Sci. Technol. A3, 883 (1985).

    Google Scholar 

  412. F. Buiguez, J. Giubert, M. Tacussel, C. Rosilio, and A. Rosilio, in Microcircuit Engineering, edited by H. Beneking and H. Heuberger, Academic Press, New York, 1985, p. 485.

    Google Scholar 

  413. K. Li and M. Oprysko, Appl. Phys. Lett. 46, 997 (1985).

    Google Scholar 

  414. M. Kaplan, D. Meyerhofer, and L. White, RCA Rev. 44, 135 (1983).

    Google Scholar 

  415. B. Lin, F. Lai, and Y. Vladimirsky, J. Vac. Sci. Technol. B4, 426 (1980).

    Google Scholar 

  416. Y. Mimura, J. Vac. Sci. Technol. B4, 15 (1986).

    Google Scholar 

  417. R. Kawazu, Y. Yamashita, T. Ito, K. Kawamura, S. Ohno, T. Asano, K. Kobayashi, and G. Nagamatsu, J. Vac. Sci. Technol. B4, 409 (1986).

    Google Scholar 

  418. M. Monta, A. Tanaka, and K. Onose, Jpn. J. Appl. Phys. 24, L112 (1985).

    Google Scholar 

  419. R. Morgan, Plasma Etching, in Semiconductor Fabrication, Elsevier, 1985, p. 302; British Patent 2,154,330 (1985); Chem. Abstr. 104, 43197 (1986).

    Google Scholar 

  420. M. Hayashi, T. Ueno, H. Shiraishi, T. Nishida, M. Trumi, and S. Nonogaki, Polym. Mater. Sci. Eng. 55, 611 (1986).

    Google Scholar 

  421. S. MacDonald, H. Ito, H. Hiroaka, and C. Willson, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 177.

    Google Scholar 

  422. S. MacDonald, L. Pederson, A. Patlach, and C. Willson, Polym. Mater. Sci. Eng. 55, 611 (1986).

    Google Scholar 

  423. R. Allen, S. MacDonald, and C. Willson, Polym. Mater. Sci. Eng. 55, 290 (1986).

    Google Scholar 

  424. F. Watanabe and Y. Ohnishi, J. Vac. Sci. Technol. B4, 422 (1986).

    Google Scholar 

  425. M. Kakuchi, M. Hikita, A. Sugita, K. Onose, and T. Tamamura, J. Electrochem. Soc. 133, 1755 (1986).

    Google Scholar 

  426. E. Babich, J. Shaw, M. Hatzakis, J. Paraszczak, D. Witman, and B. Grenon, Microelectron. Eng. 5, 299 (1986).

    Google Scholar 

  427. F. Koopmans and R. Bruno, SPIE Proc. 633, 262 (1986).

    Google Scholar 

  428. L. Myers and M. Spencer, J. Vac. Sci. Technol. B4, 1259 (1986).

    Google Scholar 

  429. U. S. Patent 4,609,614 (1986), RCA.

    Google Scholar 

  430. U. S. Patent 4,599,137 (1986), Nippon Telephone.

    Google Scholar 

  431. L. Bushnell, L. Gregor, and C. Lyons, Solid State Technol. June 1986, p. 133.

    Google Scholar 

  432. H. Namatsu and T. Shibata, Jpn. J. Appl. Phys. 24, L790 (1985).

    Google Scholar 

  433. U. S. Patent 4,524,121 (1985), Rohm & Haas.

    Google Scholar 

  434. A. McCullough, D. Vidusek, M. Legenza, M. de Grandpre, and J. Imhof, SPIE Proc. 631, 316 (1986).

    Google Scholar 

  435. K. Kilichowski and L. White, RCA Tech. Notes, No. 136, January 23, 1985, p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Moreau, W.M. (1988). Additive Processes. In: Semiconductor Lithography. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0885-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0885-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8228-0

  • Online ISBN: 978-1-4613-0885-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics