Advertisement

Additive Processes

  • Wayne M. Moreau
Part of the Microdevices book series (MDPF)

Abstract

In additive processes, a solid or precursor is deposited through a resist mask onto a substrate. The solid is deposited from a liquid, gas, or solid state. In some cases, the solid is added to the resist and the resist is removed to deposit the solid. Metal films are most frequently deposited by lift-off or electroplating techniques. In Fig. 12-1-1, a panorama of additive processes using resists is shown. Some of the processes such as electroplating, fill and fire resists, and lift-off originated from printed circuit (mil-size) processes. By themselves, the resists find applications as light waveguides in optical information transmission and storage. For semiconductor fabrication, ionbeam implantation and the lift-off of metal interconnections have been the major uses of additive processing.

Keywords

Barrier Layer Additive Process Plasma Etching Japanese Patent IEEE Electron Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Smith, F. Bachner, and N. Efrenov, J. Electrochem. Soc. 118, 821 (1971).Google Scholar
  2. 2.
    L. Fried, J. Lechaton, P. Totta, J. Logan, J. Havas, and G. Paal, IBM J. Res. Dev. 26, 362 (1982).Google Scholar
  3. 3.
    T. Maple, Solid State Technol. Sept. 1966, p. 60.Google Scholar
  4. 4.
    P. Frasch and K. Saremski, IBM J. Res. Dev. 26, 561 (1981).Google Scholar
  5. 5.
    M. Hatzakis, J. Electrochem. Soc. 116, 1033 (1969).Google Scholar
  6. 6.
    A. Learn, J. Electron. Mater. 3, 531 (1974).Google Scholar
  7. 7.
    D. Widman and H. Binder, IEEE Trans. Electron. Devices ED-22, 467 (1975).Google Scholar
  8. 8.
    D. Davis, S. Gillespie, S. Silverman, and W. Stickel, Abstract D-2, Int. Symp. on Electron, Ion, and Photon Beams, Los Angeles, May 1983; Solid State Technol. Sept. 1983, p. 174; J. Vac. Sci. Technol. B1, 1003 (1983).Google Scholar
  9. 9.
    Y. Homa, A. Yajima, and S. Harada, IEEE J. Solid State Circuits SC-17, 142 (1982).Google Scholar
  10. 10.
    M. Feuer and D. Prober, IEEE Trans. Electron Devices ED-28, 1375 (1981).Google Scholar
  11. 11.
    U. S. Patent 4,154,613 (1980), Am. Hoechst.Google Scholar
  12. 12.
    U. S. Patent 4,224,361 (1980), IBM.Google Scholar
  13. 13.
    U. S. Patent 4,007,047 (1977), IBM.Google Scholar
  14. 14.
    U. S. Patent 4,212,935 (1980), IBM.Google Scholar
  15. 15.
    M. Hatzakis, B. Canavello, and J. Shaw, IBM J. Res. Dev. 24, 452 (1980).Google Scholar
  16. 16.
    R. Halverson, M. MacIntyre, and W. Motsiff, IBM J. Res. Dev. 26, 58 (1982).Google Scholar
  17. 17.
    G. Collins and C. Halstead, IBM J. Res. Dev. 26, 595 (1982).Google Scholar
  18. 18.
    Japanese Patent 80,008,014, Fujitsu; Chem. Abstr. 92, 224306 (1980).Google Scholar
  19. 19.
    J. Speidel, J. Vac. Sci. Technol. 19, 693 (1981).Google Scholar
  20. 20.
    W. Oldham and E. Hieke, IEEE Electron Device Lett. EDL-1, 217 (1980).Google Scholar
  21. 21.
    U. S. Patent 4,104,070 (1979), IBM.Google Scholar
  22. 22.
    T. Batchhelder, Solid State Technol. Feb. 1982, p. 111.Google Scholar
  23. 23.
    U. S. Patent 4,115,120 (1978), IBM.Google Scholar
  24. 24.
    U. S. Patent 3,622,365 (1971), Fairchild.Google Scholar
  25. 25.
    E. Jelks, G. Kerber, and H. Wilcox, Appl. Phys. Lett. 36, 93 (1980).Google Scholar
  26. 26.
    T. Serikawa and T. Yachi, J. Electrochem. Soc. 128, 918 (1981).Google Scholar
  27. 27.
    J. Shaw and M. Hatzakis, J. Electrochem. Soc. 126, 2029 (1979).Google Scholar
  28. 28.
    E. Spiller, M. Heritage, R. Feder, and T. Topalian, Solid State Technol. April 1976, p. 62.Google Scholar
  29. 29.
    D. Flanders, Appl. Phys. Let. 36, 93 (1980).Google Scholar
  30. 30.
    S. Beaumont, P. Bower, T. Tamamura, and C. Wilkinson, Appl. Phys. Lett. 38, 436 (1981).Google Scholar
  31. 31.
    A. Broers, J. Harper, and W. Molzen, Appl. Phys. Lett. 33, 392 (1978).Google Scholar
  32. 32.
    E. Roberts, Philips Tech. Rev. 35, 41 (1975).Google Scholar
  33. 33.
    G. Dolan and T. Fulton, IEEE Electron Device Lett. EDL-4, 178 (1983).Google Scholar
  34. 34.
    B. Lin, in Introduction to Microlithography, edited by L. Thompson, M. Bowden, and G. Willson, American Chemical Society, Washington, D.C., 1983, pp. 287–349.Google Scholar
  35. 35.
    B. Griffing and P. West, IEEE Electron Device Lett. EDL-4, 14 (1983).Google Scholar
  36. 36.
    U. S. Patent 4,287,289 (1981), Tokyo Ohko.Google Scholar
  37. 37.
    C. Hamel and E. Symula, IBM Tech. Discl. Bull. 22, 1399 (1979).Google Scholar
  38. 38.
    C. Hamel and J. Kristoff, IBM Tech. Discl. Bull. 24, 215 (1981).Google Scholar
  39. 39.
    U. S. Patent 3,961,000 (1977), RCA.Google Scholar
  40. 40.
    U. S. Patent 3,961,101 (1977), RCA.Google Scholar
  41. 41.
    Brazilian Patent 78,077666, IBM; Chem. Abstr. 93, 85225 (1981).Google Scholar
  42. 42.
    W. Oldham and A. Neureuther, IEEE Trans. Electron Devices ED-27, 1455 (1980).Google Scholar
  43. 43.
    T. Berker and D. Casey, IEEE Trans. Electron Devices ED-29, 524 (1982).Google Scholar
  44. 44.
    Japanese Patent 81,92,536, Fujitsu; Chem. Abstr. 96, 60866 (1982).Google Scholar
  45. 45.
    Japanese Patent 80,32,088, Fuji; Chem. Abstr. 93, 195530 (1980).Google Scholar
  46. 46.
    U. S. Patent 4,104,070 (1979), IBM.Google Scholar
  47. 47.
    S. MacDonald, R. Miller, G Willson, G. Feinberg, R. Gleason, R. Halverson, M. Macintyre, and W. Motsiff, Interface 82, Kodak Proceedings of Microelectronics Seminar, 1982, p. 114.Google Scholar
  48. 48.
    T. Matsuzawa and H. Tomika, IEEE Trans. Electron Devices ED-28, 1284 (1981).Google Scholar
  49. 49.
    N. Veno, S. Konishi, K. Tanimoto, and K. Sugita, Jpn. J. Appl. Phys. 20, L709 (1981).Google Scholar
  50. 50.
    Y. Kawamura, K. Toyoda, and S. Namba, J. Appl. Phys. 53, 6489 (1982).Google Scholar
  51. 51.
    U. S. Patent 4,339,522 (1980), IBM.Google Scholar
  52. 52.
    G. Willson, N. Clecak, B. Grant, and R. Twieg, Electrochem. Soc. Ext. Abstr. 80-1, 696 (1980).Google Scholar
  53. 53.
    U. S. Patent 4,339,521 (1981), Siemens.Google Scholar
  54. 54.
    German Patent 2,631,535, GAF; Chem. Abstr. 86, 198007 (1978).Google Scholar
  55. 55.
    D. Kyser and C. Ting, J. Vac. Sci. Technol. 16, 1759 (1979); M. Yoshimi, Electron. Lett. 78, 880 (1982).Google Scholar
  56. 56.
    J. Greeneich, Electrochem. Soc. Ext. Abstr. 80, 261 (1980).Google Scholar
  57. 57.
    U. S. Patent 4,061,832 (1980), Milliard; Y. Mimura, J. Electrochem. Soc. 126, 1881 (1979).Google Scholar
  58. 58.
    A. Miura and S. Hideyama, J. Vac. Sci. Technol. 16, 1996 (1979).Google Scholar
  59. 59.
    U. S. Patent 4,276,365 (1981), Fujitsu.Google Scholar
  60. 60.
    W. Moreau and R. Lange, IBM Tech. Discl. Bull. 25, 2725 (1982).Google Scholar
  61. 61.
    D. Widmann, IEEE J. Solid State Circuits SC-11, 466 (1976).Google Scholar
  62. 62.
    T. Serikawa and T. Yachi, J. Electrochem. Soc. 128, 918 (1981); N. Yamauchi, Jpn. J. Appl. Phys. 22, L595 (1983).Google Scholar
  63. 63.
    U. S. Patent 4,214,966 (1980), Bell.Google Scholar
  64. 64.
    W. Curry, G. Galyon, J. Giddings, and A. Lee, IBM Tech. Discl. Bull. 22, 4511 (1980).Google Scholar
  65. 65.
    R. Burkhart, IBM Tech. Discl. Bull. 24, 2081 (1981).Google Scholar
  66. 66.
    T. Sakurai and T. Serikawa, J. Electrochem. Soc. 126, 1257 (1979).Google Scholar
  67. 67.
    E. Walker, IEEE Trans. Electron Devices ED-22, 64 (1975).Google Scholar
  68. 68.
    T. Venkatesan, G. Taylor, A. Wagner, C. Wilkens, and D. Barr, J. Vac. Sci. Technol. 19, 1379 (1981).Google Scholar
  69. 69.
    I. Aesida, J. Chinn, L. Rathbun, and E. Wolf, J. Vac. Sci. Technol. 21, 666 (1982).Google Scholar
  70. 70.
    D. Follett, K. Weiss, J. Moore, A. Steckl, and W. Lu, Electrochem. Soc. Ext. Abstr. 82-2, 321 (1982).Google Scholar
  71. 71.
    M. Gazard, C. Duchesne, J. Dubas, and A. Chapiro, Polym. Eng. Sci. 20, 1069 (1980).Google Scholar
  72. 72.
    J. Pacansky and J. Lyerla, IBM J. Res. Dev. 23, 42 (1979).Google Scholar
  73. 73.
    A. Martyneko, B. Stizhov, and V. Nikolskii, Russ. J. Phys. Chem. 49, 1310 (1975).Google Scholar
  74. 74.
    B. Lin, Solid State Technol. May 1983, p. 105.Google Scholar
  75. 75.
    K. Tai, R. Vadimsky, C. Kemmerer, J. Wagner, V. Lamberti, and A. Timko, J. Vac. Sci. Technol. 17, 1169 (1980).Google Scholar
  76. 76.
    S. Middelhoek, IBM J. Res. Dev. March 1970, p. 117.Google Scholar
  77. 77.
    T. Brewer, J. Appl. Photogr. Eng. 1, 184 (1981).Google Scholar
  78. 78.
    C. Ting, I. Avigal, and B. Lu, Proceedings of Kodak Microelectronics Seminar, Oct. 1982, G-136, p. 139; J. Vac. Sci. Technol. B1, 1225 (1983).Google Scholar
  79. 79.
    U. S. Patent 3,934,057 (1976), IBM.Google Scholar
  80. 80.
    B. Lin, E. Bassous, V. Chao, and K. Petrillo, J. Vac. Sci. Technol. 19, 1313 (1981).Google Scholar
  81. 81.
    H. Namatsu, Y. Ozaki, and K. Hirata, J. Vac. Sci. Technol. 21, 672 (1982).Google Scholar
  82. 82.
    U. S. Patent 3,996,393 (1978), IBM.Google Scholar
  83. 83.
    U. S. Patent 3,987,215 (1977), IBM.Google Scholar
  84. 84.
    U. S. Patent 3,934,057 (1976), IBM.Google Scholar
  85. 85.
    U. S. Patent 4,024,293 (1978), IBM.Google Scholar
  86. 86.
    M. Hatzakis, J. Vac. Sci. Technol. 16, 1984 (1979).Google Scholar
  87. 87.
    D. Webb, IBM J. Res. Dev. 24, 554 (1980).Google Scholar
  88. 88.
    W. Moreau, W. Moyer, D. Merritt, M. Hatzakis, L. Pederson, and D. Johnson, J. Vac. Sci. Technol. 16, 1990 (1979).Google Scholar
  89. 89.
    Y. Todokora, IEEE Trans. Electron Devices ED-27, 1443 (1980).Google Scholar
  90. 90.
    Japanese Patent 80,140,836, Fujitsu; Chem. Abstr. 94, 183462 (1980).Google Scholar
  91. 91.
    H. Hiroaka, SPIE Proc. 469, 127 (1984).Google Scholar
  92. 92.
    R. Howard, E. Hu, and L. Jackel, IEEE Trans. Electron Devices ED-28, 1378 (1981).Google Scholar
  93. 93.
    R. Howard, E. Hu, and L. Jackel, Appl. Phys. Lett. 36, 141 (1980).Google Scholar
  94. 94.
    P. Hammel and R. Richardson, Physics 107B, 611 (1981).Google Scholar
  95. 95.
    M. Yamada, J. Tamano, K. Yoneda, S. Monta, and S. Hattori, Jpn. J. Appl. Phys. 21, 768 (1982).Google Scholar
  96. 96.
    British Patent 2,064,152, Bell; Chem. Abstr. 96, 13668f (1982).Google Scholar
  97. 97.
    U. S. Patent 3,898,350 (1975), IBM.Google Scholar
  98. 98.
    W. Moreau and P. Schmidt, Electrochem. Soc. Ext. Abstr. No. 187 (1970).Google Scholar
  99. 99.
    T. Venkatesan, J. Vac. Sci. Technol. 19, 1368 (1981).Google Scholar
  100. 100.
    E. Bassous, L. Ephrath, G. Pepper, and D. Mikalsen, J. Electrochem. Soc. 130, 478 (1983).Google Scholar
  101. 101.
    U. S. Patent 4,214,966 (1980), Bell.Google Scholar
  102. 102.
    B. Lin, J. Electrochem. Soc. 127, 202 (1980).Google Scholar
  103. 103.
    U. S. Patent 3,873,313 (1974), IBM.Google Scholar
  104. 104.
    U. S. Patent 4,238,559 (1981), IBM.Google Scholar
  105. 105.
    Y. Todokoro, Trans. IEEE Jpn. E-65, 23 (1982).Google Scholar
  106. 106.
    German Patent 3,036,710, Siemens; Chem. Abstr. 97, 48247 (1982).Google Scholar
  107. 107.
    U. S. Patent 3,982,943 (1976), IBM.Google Scholar
  108. 108.
    U. S. Patent 4,092,442 (1980), IBM.Google Scholar
  109. 109.
    A. McCullough and E. Pavelche, Symp. Electron, Ion, Laser Beam Technol., San Francisco, 1983, Abstr. K-5; J. Vac. Sci Technol. B1, 1241 (1983).Google Scholar
  110. 110.
    E. Ong, Ref. 109, Abstr. K-6; J. Vac. Sci. Technol. B1, 1247 (1983).Google Scholar
  111. 111.
    B. Lin, V. Chao, F. Kaufman, and S. Kramer, Electrochem. Ext. Abstr. 82-1, 450 (1982).Google Scholar
  112. 112.
    H. Santini and N. Viswanathan, Ref. 78, p. 47.Google Scholar
  113. 113.
    B. Griffing, J. Vac. Sci. Technol. 19, 1423 (1981).Google Scholar
  114. 114.
    T. Batchelder and C. Takemoto, Semicond. Int. July 1981, p. 7.Google Scholar
  115. 115.
    W. Moreau, Opt. Eng. 22, 181 (1983).Google Scholar
  116. 116.
    U. S. Patent 4,139,384 (1981), Fuji.Google Scholar
  117. 117.
    D. Bobkin and B. Cantos, IEEE Electron Device Lett. EDL-2, 222 (1981).Google Scholar
  118. 118.
    G. Chui and W. Ma, IBM Tech. Discl Bull. 21, 3623 (1979).Google Scholar
  119. 119.
    M. Vry, J. Matthews, and C. Wood, SPIE Proc. 334, 241 (1982).Google Scholar
  120. 120.
    K. Jain, C. Willson, and B. Lin, IBM J. Res. Dev. 26, 151 (1982).Google Scholar
  121. 121.
    C. Horwitz, Appl. Phys. Lett. 32, 803 (1978).Google Scholar
  122. 122.
    H. Namatsu, Y. Ozaki, and K. Hirata, J. Electrochem. Soc. 130, 523 (1983); H. Gokan, M. Itoh, and S. Esho, J. Vac. Sci. Technol. B2, 34 (1984); I. Watanabe, Jpn. J. Appl. Phys. 23, 487 (1984).Google Scholar
  123. 123.
    B. Lin, E. Bassous, V. Chao, and K. Petrillo, J. Vac. Sci. Technol. 19, 1313 (1981).Google Scholar
  124. 124.
    J. Lavine, J. Masters, G. Goldberg, and A. Das, IEEE Trans. Electron Devices ED-28, 1311 (1981).Google Scholar
  125. 125.
    T. Venkatesan, G. Taylor, A. Wagner, B. Wilkens, and D. Barr, J. Vac. Sci. Technol. 19, 1379 (1981).Google Scholar
  126. 126.
    K. Tai, W. Sinclair, R. Vadimsky, J. Moran, and M. Rand, J. Vac. Sci. Technol. 16, 1977 (1979).Google Scholar
  127. 127.
    A. Wagner, D. Barr, T. Venkatesan, W. Crane, V. Lamberti, K. Tai, and R. Vadimsky, J. Vac. Sci. Technol. 19, 1363 (1981).Google Scholar
  128. 128.
    G. Taylor, T. Wolf, and J. Moran, J. Vac. Sci. Technol. 19, 872 (1981).Google Scholar
  129. 129.
    I. Aesida, J. Chinn, L. Rathburn, and E. Wolf, J. Vac. Sci. Technol. 19, 875 (1981).Google Scholar
  130. 130.
    M. Hatzakis, J. Paraszczak, and J. Shaw, Microcircuit Eng., Grenoble, France, Sept. 1981, p. 396.Google Scholar
  131. 131.
    M. Hatzakis, J. Shaw, J. Paraszczak, J. Liutkus, and E. Babich, SPE RETEC Photopolymers, 1982, Ellenville, N.Y., p. 285.Google Scholar
  132. 132.
    Japanese Patent 82,50,430, Chem. Abstr. 97, 48231 (1982).Google Scholar
  133. 133.
    M. Yamada, J. Tamano, K. Yoneda, S. Monta, and S. Hattori, Jpn. J. Appl Phys. 21, 768 (1982).Google Scholar
  134. 134.
    U. S. Patent 3,782,940 (1974), Dai Nippon Print.Google Scholar
  135. 135.
    K. Beyer and J. Logan, IBM Tech. Disci Bull. 17, 1600 (1974).Google Scholar
  136. 136.
    U. S. Patent 3,622,365 (1977), Fairchild.Google Scholar
  137. 137.
    U. S. Patent 3,519,584 (1976), IBM.Google Scholar
  138. 138.
    Y. Homma, H. Nozaiva, and S. Harada, IEEE Trans. Electron Devices ED-28, 552 (1981).Google Scholar
  139. 139.
    U. S. Patent 4,224,361 (1980), IBM.Google Scholar
  140. 140.
    U. S. Patent 4,315,984 (1982), Hitachi.Google Scholar
  141. 141.
    L. Rothman, Electrochem. Soc. Plasma Processes 81-1, 192 (1981).Google Scholar
  142. 142.
    Y. Todokoro, Electron. Lett. 18, 543 (1982).Google Scholar
  143. 143.
    H. Namasu, Y. Ozaki, and K. Hirata, J. Vac. Sci. Technol. 21, 672 (1982).Google Scholar
  144. 144.
    L. Rothman, Electrochem. Soc. Ext. Abstr. 82-1, 582 (1982).Google Scholar
  145. 145.
    U. S. Patent 4,132,568 (1981), IBM.Google Scholar
  146. 146.
    U. S. Patent 3,985,597 (1976), IBM.Google Scholar
  147. 147.
    L. Gregor, W. Moreau, J. Zingerman, and L. Kaplan, IBM Tech. Disci Bull. 24, 3837, 5538 (1982).Google Scholar
  148. 148.
    H. Namatsu, Y. Ozaki, and K. Hirata, J. Vac. Sci Technol. 21, 672 (1982).Google Scholar
  149. 149.
    S. Macdonald, G. Willson, H. Ito, and R. Miller, Int. Symp. Electron, Ion, Photon Beams, Los Angeles, May 1983, Abstr. 1-4.Google Scholar
  150. 150.
    K. Tanigaki, Am. Chem. Soc. Org. Coat. Prepr. 48, 179 (1983).Google Scholar
  151. 151.
    P. Van Pelt, Soc. Photogr. Inst. Eng. Proc. 275, 150 (1981).Google Scholar
  152. 152.
    L. Karapiperis and C. Lee, Appl. Phys. Lett. 35, 395 (1979).Google Scholar
  153. 153.
    B. Hunt and R. Burhman, J. Vac. Sci Technol. 19, 1308 (1981).Google Scholar
  154. 154.
    M. Hatzakis, D. Hofer, and T. Chang, J. Vac. Sci Technol. 16, 1631 (1979); U. S. Patent 4,267,259 (1980), IBM.Google Scholar
  155. 155.
    J. Kitcher, J. Vac. Sci. Technol. 16, 2030 (1979).Google Scholar
  156. 156.
    U. S. Patent 4,283,483 (1981), Hughes.Google Scholar
  157. 157.
    B. Lin and T. Chang, J. Vac. Sci. Technol. 16, 1669 (1979).Google Scholar
  158. 158.
    J. Moran and D. Maydan, J. Vac. Sci. Technol. 16, 1620 (1979); U. S. Patent 4,244,799 (1981), Bell.Google Scholar
  159. 159.
    J. Havas, Electrochem. Soc. Ext. Abstr. 76-2, 743 (1976); U. S. Patents 3,873,361 (1973) and 4,004,044 (1977), IBM.Google Scholar
  160. 160.
    J. Kruger, P. Rissman, and M. Chang, J. Vac. Sci. Technol. 19, 1320 (1981).Google Scholar
  161. 161.
    M. OToole, E. Liu, and M. Chang, IEEE Trans. Electron Devices ED-28, 1405 (1981); U. S. Patent 4,370,405 (1983); U. S. Patent 4,102,683a (1978), RCA.Google Scholar
  162. 162.
    U. S. Patent 4,202,914 (1980), IBM.Google Scholar
  163. 163.
    G. Ray, S. Peng, D. Burriesi, M. O’Toole, and E. Liu, J. Electrochem. Soc. 129, 2153 (1982).Google Scholar
  164. 164.
    S. Lyman, J. Jackel, and P. Liu, J. Vac. Sci. Technol. 19, 1325 (1981).Google Scholar
  165. 165.
    U. S. Patent 3,873,361 (1976), IBM.Google Scholar
  166. 166.
    U. S. Patent 3,982,943 (1976), IBM.Google Scholar
  167. 167.
    U. S. Patent 4,035,276 (1977), IBM.Google Scholar
  168. 168.
    U. S. Patent 4,256,816 (1981), Bell.Google Scholar
  169. 169.
    K. Grebe, J. Ames, and A. Ginzberg, J. Vac. Sci. Technol. 11, 485 (1974); U. S. Patent 3,849,136 (1974), IBM.Google Scholar
  170. 170.
    P. Grabbe, E. Hu, and R. Howard, J. Vac. Sci. Technol. 21, 33 (1982).Google Scholar
  171. 171.
    U. S. Patent 4,367,119 (1983), IBM.Google Scholar
  172. 172.
    T. Venkatesan, J. Vac. Sci. Technol. 19, 1368 (1981).Google Scholar
  173. 173.
    D. Tenant, J. Vac. Sci. Technol. B1, 494 (1983).Google Scholar
  174. 174.
    A. Milgram, J. Vac. Sci. Technol. B1, 490 (1983).Google Scholar
  175. 175.
    L. Jackel, R. Howard, E. Hu, D. Tenant, and P. Grabbe, Appl. Phys. Lett. 39, 268 (1981).Google Scholar
  176. 176.
    M. Bowden, and G. Willson, American Chemical Society, Washington, D.C., 1983 Ref. 34, p. 335.Google Scholar
  177. 177.
    W. Arden, H. Keller, and L. Mader, Solid State Technol. July 1983, p. 143.Google Scholar
  178. 178.
    P. Burggraaf, Semicond. Int. June 1983, p. 53.Google Scholar
  179. 179.
    J. Dubois and M. Gazard, Electrochem. Soc. Ext. Abstr. 72, 332 (1972).Google Scholar
  180. 180.
    U. S. Patent 3,877,980 (1975), U. S. Phillips.Google Scholar
  181. 181.
    R. Watts, W. Fitchner, E. Fuis, L. Thilbant, and R. Johnston, IEEE Trans. Electron Devices ED–28, 1338 (1981).Google Scholar
  182. 182.
    L. Dunkelberger, J. Vac. Sci. Technol. 15, 88 (1978).Google Scholar
  183. 183.
    U. S. Patent 4,132,586 (1977).Google Scholar
  184. 184.
    M. Itoh, H. Gokan, S. Esho, and K. Asakawa, J. Vac. Sci. Technol. 20, 21 (1982).Google Scholar
  185. 185.
    British Patent 1,450,509 (1976), IBM.Google Scholar
  186. 186.
    U. S. Patent 4,144,101 (1979), IBM.Google Scholar
  187. 187.
    W. Grobman, H. Luhn, T. Donohue, A. Speth, A. Wilson, M. Hatzakis, and T. Chang, IEEE Trans. Electron Devices ED–26, 360 (1979).Google Scholar
  188. 188.
    T. C. Patton, Paint Flow and Pigment Dispersion, Wiley, New York, 1979, p. 356.Google Scholar
  189. 189.
    S. Croll, J. Appl. Polym. Sci. 23, 847 (1979).Google Scholar
  190. 190.
    D. Tenant, J. Vac. Sci. Technol. B1, 494 (1983).Google Scholar
  191. 191.
    L. White, J. Electrochem. Soc. 130, 1543 (1983).Google Scholar
  192. 192.
    L. Rothman, J. Electrochem. Soc. 127, 2216 (1980).Google Scholar
  193. 193.
    L. Rothman, J. Electrochem. Soc. 130, 1131 (1983); U. S. Patent 3,985,597 (1975), IBM.Google Scholar
  194. 194.
    W. Daughton and F. Givens, J. Electrochem. Soc. 129, 173 (1982).Google Scholar
  195. 195.
    A. Adams and C. Caparo, J. Electrochem. Soc. 128, 423 (1981).Google Scholar
  196. 196.
    S. Yamamoto, K. Kobayashi, and Y. Toyama, Fujitsu Sci. Tech. J. 14, 143 (1978).Google Scholar
  197. 197.
    E. Mondou and P. Schmidt, IBM Tech. Discl. Bull. 18, 391 (1975).Google Scholar
  198. 198.
    U. S. Patent 3,982,943 (1976), IBM.Google Scholar
  199. 199.
    B. Kuang and C. Chang, J. Vac. Sci. Technol. 16, 2025 (1979).Google Scholar
  200. 200.
    U. S. Patent 4,210,579 (1980), Motorola.Google Scholar
  201. 201.
    S. Irving, Solid State Technol. June 1971, p. 47.Google Scholar
  202. 202.
    O. Wada, S. Yamamoto, K. Kobayashi, A. Taguchi, and Y. Toyama, J. Electrochem. Soc. 124, 959 (1977).Google Scholar
  203. 203.
    U. S. Patent 4,042,387 (1979), Rockwell.Google Scholar
  204. 204.
    I. Blech, D. Fraser, and S. Maszko, J. Vac. Sci. Technol. 15, 13 (1978).Google Scholar
  205. 205.
    I. Blech, Thin Solid Films 6, 113 (1970).Google Scholar
  206. 206.
    C. Wasik and J. Gneiwik, J. Vac. Sci. Technol. 8, 441 (1971).Google Scholar
  207. 207.
    A. Neureuther, C. Ting, and C. Luv, IEEE Treats. Electron Devices ED–27, 1449 (1980).Google Scholar
  208. 208.
    W. Oldham, A. Neureuther, C. Sung, J. Reynolds, and S. Nandgoankar, IEEE Trans. Electron Devices ED–27, 1455 (1980).Google Scholar
  209. 209.
    D. Widmann, IEEE J. Solid State Circuits SC–11, 446 (1976).Google Scholar
  210. 210.
    Y. Homma, A. Yajima, and S. Harada, IEEE Trans. Electron Devices ED–29, 512 (1982).Google Scholar
  211. 211.
    A. Learn, J. Electron. Mater. 3, 531 (1974).Google Scholar
  212. 212.
    R. Ryan, T. McCurdy, and L. Wolff, RCA Rev. Dec. 1968, p. 582.Google Scholar
  213. 213.
    D. Keleman, Solid State Technol. Aug. 1976, p. 37.Google Scholar
  214. 214.
    S. Spitz, Circuit Manuf. Jan 1981, p. 69.Google Scholar
  215. 215.
    U. S. Patent 3,993,802 (1976), Photocircuits.Google Scholar
  216. 216.
    N. Feldstein and T. Lancsek, RCA Rev. 32, 306 (1971).Google Scholar
  217. 217.
    J. Maes, A. Van Nie, and G. Hut, Microelectron. Reliab. 17, 325 (1978).Google Scholar
  218. 218.
    L. Romankiw, IEEE Trans, on Magn. MAG–10, 828 (1974).Google Scholar
  219. 219.
    R. Feder, M. Heritage, E. Spiller, and J. Topolian, Solid State Technol. April 1976, p. 62.Google Scholar
  220. 220.
    U. S. Patent 4,224,361 (1980), IBM.Google Scholar
  221. 221.
    L. Romankiw, M. Hatzakis, and E. Castellani, Electrochem. Soc. Ext. Abstr. 74–1, 489 (1974).Google Scholar
  222. 222.
    L. Romankiw, in Proc. Symp. Etching Pattern Definition, edited by H. Hughes and M. Rand, Electrochemical Society, 1976, p. 161.Google Scholar
  223. 223.
    A. Sugita, M. Morita, and A. Tamamura, Extended Abstracts, 16th International Conference on Solid State Devices, pp. 19–22 (1984).Google Scholar
  224. 224.
    Y. Irda, Jpn. J. Appl. Phys. 16, 1313 (1977).Google Scholar
  225. 225.
    D. Lee, Proc. IEEE 62, 1241 (1974).Google Scholar
  226. 226.
    Y. Okuyama, T. Hashimoto, and T. Koguich, J. Electrochem. Soc. 125, 1293 (1978).Google Scholar
  227. 227.
    M. Gazard, J. Dubois, and C. Dubois, Am. Chem. Soc. Org. Coat. Abstr. 33, 372 (1973).Google Scholar
  228. 228.
    U. S. Patent 4,315,984 (1982), Hitachi.Google Scholar
  229. 229.
    U. S. Patent 4,367,119 (1983), IBM.Google Scholar
  230. 230.
    U. S. Patent 3,962,004 (1976), RCA.Google Scholar
  231. 231.
    U. S. Patent 4,030,942 (1977), IBM.Google Scholar
  232. 232.
    U. S. Patent 4,093,942 (1977), IBM.Google Scholar
  233. 233.
    T. Matsuzawa and H. Tomioka, IEEE Electron Device Lett. EDL–2, 90 (1981).Google Scholar
  234. 234.
    H. Shirashi, Y. Tanaiguchi, S. Horigime, and S. Nonogaki, Polym. Eng. Sci. 20, 1954 (1980).Google Scholar
  235. 235.
    D. Dobkin and B. Cantos, IEEE Electron Device Lett. EDL–2, 222 (1981).Google Scholar
  236. 236.
    B. Lin, IBM J. Res. Dev. May 1976, p. 213; U. S. Patent 4,211,834 (1980).Google Scholar
  237. 237.
    U. S. Patent 4,387,145 (1983), Fairchild.Google Scholar
  238. 238.
    R. Howard, Appl. Phys. Lett. 33, 1934 (1978).Google Scholar
  239. 239.
    K. Pickar, Solid State Electron. 15, 239 (1977).Google Scholar
  240. 240.
    U. S. Patent 4,456,675 (1984), IBM; K. Jain, C. Wilson, and B. Lin, IBM J. Res. Dev. 26, 155 (1982).Google Scholar
  241. 241.
    N. Clecak, B. Grant, C. Wilson, and R. Twieg, IEEE Trans. Electron Devices ED–28, 1300 (1981).Google Scholar
  242. 242.
    J. Andrew, P. Dryer, D. Foster, and P. Key, Appl. Phys. Lett. 43, 717 (1983).Google Scholar
  243. 243.
    K. Sugita, N. Ueno, S. Konishi, and Y. Suzuki, Photogr. Sci. Eng. 27, 146 (1983).Google Scholar
  244. 244.
    S. Matsui and N. Endo, Microelectron. Eng. 1, 51 (1983).Google Scholar
  245. 245.
    W. Meyer, B. Curtis, and H. Brunner, Microelectron. Eng. 1, 29 (1983).Google Scholar
  246. 246.
    U. S. Patent 4,427,713 (1984), RCA.Google Scholar
  247. 247.
    Japanese Patent 57,141,642, Chem. Abstr. 99, 222415 (1983).Google Scholar
  248. 248.
    B. Singh, Appl. Phys. Lett. 45, 74 (1984).Google Scholar
  249. 249.
    F. Jones, J. Paraszczak, and A. Speth, J. Appl. Phys. 55, 3092 (1984).Google Scholar
  250. 250.
    B. Soller, R. Shuman, and R. Ross, J. Electrochem. Soc. 131, 1353 (1984).Google Scholar
  251. 251.
    F. Robb, J. Electrochem. Soc. 131, 1670 (1984).Google Scholar
  252. 252.
    M. Shimaya, O. Nakajima, C. Hashimoto, and Y. Sokakibara, J. Electrochem. Soc. 131, 1391 (1984).Google Scholar
  253. 253.
    U. S. Patent 4,464,460 (1984), IBM.Google Scholar
  254. 254.
    K. Ehara, T. Morimoto, S. Muramoto, and S. Matsuo, J. Electrochem. Soc. 131, 419 (1984).Google Scholar
  255. 255.
    S. Gillespie, IBM J. Res. Dev. 28, 454 (1984).Google Scholar
  256. 256.
    S. Macdonald, C. Wilson, R. Miller, and H. Ito, Polym. Mater. Sci. Eng. 49, 104 (1983).Google Scholar
  257. 257.
    European Patent Application 98,992 (1984), IBM (dual layer positive or negative resist based on dyeing the developed top layer and exposing bottom layer).Google Scholar
  258. 258.
    U. S. Patent 4,448,800 (1984), Nippon Tel. (refractory metal in lift-off).Google Scholar
  259. 259.
    U. S. Patent Application 524,828 (1984), U. S. Navy (trilevel of resist/metal/polyimide for lithography on ceramic substrates).Google Scholar
  260. 260.
    Anon, Res. Disci 239, 106 (1984); Chem. Abstr. 100, 148411 (1984) (deposit blanket metal film before lift-off).Google Scholar
  261. 261.
    M. Morita, S. Imamura, T. Tamamura, O. Kogure, and K. Murase, J. Electrochem. Soc. 131, 653 (1984).Google Scholar
  262. 262.
    S. Gupta and C. Audain, SPIE Proc. 469, 179 (1984).Google Scholar
  263. 263.
    European Patent Application 98,318, Chem. Abstr. 100, 18347 (1984).Google Scholar
  264. 264.
    D. Hofer, R. Miller, and C. Willson, SPIE Proc. 469, 16 (1984).Google Scholar
  265. 265.
    M. Watts, SPIE Proc. 469, 1 (1984).MathSciNetGoogle Scholar
  266. 266.
    D. Meyerhofer and L. White, SPIE Proc. 469, 11 (1984).Google Scholar
  267. 267.
    C. Ting and K. Liauw, SPIE Proc. 469, 24 (1984).Google Scholar
  268. 268.
    R. Castellano, J. Electrochem. Soc. 131, 2340 (1984).Google Scholar
  269. 269.
    M. Morita, S. Imamura, A. Tanaka, and T. Tamamura, J. Electrochem. Soc. 131, 2402 (1984).Google Scholar
  270. 270.
    C. Rosilio, A. Rosilio, and F. Buiguez, Microelectron. Eng. 1, 197 (1983).Google Scholar
  271. 271.
    T. Bril, R. de Wert, and P. Willemse, Electrochem. Soc. Ext. Abstr. 80–1, 203 (1980).Google Scholar
  272. 272.
    R. Verhaar and W. Hoek, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1983, p. 405.Google Scholar
  273. 273.
    J. Reekstin and R. Kowalchuck, IEEE Trans. Magn. MAG–9, 485 (1973).Google Scholar
  274. 274.
    P. Hugget and H. Lehman, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1983, p. 363.Google Scholar
  275. 275.
    K. Harada, K. Myoshi, H. Namatsu, and S. Moriya, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1983, p. 313.Google Scholar
  276. 276.
    S. Uoya, D. Stephani, and M. Bolsen, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1983, p. 199.Google Scholar
  277. 277.
    East German Patent 205,287, Chem. Abstr. 101, 161264 (1983).Google Scholar
  278. 278.
    Japanese Patent 59,84,428, Chem. Abstr. 101, 161267 (1983).Google Scholar
  279. 279.
    J. Kruger, M. O’Toole, and P. Rissman, in VLSI Electronic Microstructure Science, Vol. 8, edited by N. Einspruch, Academic Press, New York, 1984, p. 91.Google Scholar
  280. 280.
    Japanese Patent 58,169,910, Chem. Abstr. 101, 120498 (1983).Google Scholar
  281. 281.
    H. Gozdz, H. Craighead, and M. Bowden, J. Electrochem. Soc. 132, 2809 (1985).Google Scholar
  282. 282.
    Japanese Patent 58,105,140, Chem. Abstr. 101, 120489 (1983).Google Scholar
  283. 283.
    Japanese Patent 59,84,426, Chem. Abstr. 101, 161274 (1983).Google Scholar
  284. 284.
    Y. Todokoro, Electron. Lett. 15, 543 (1982).Google Scholar
  285. 285.
    H. Nanamasu, Y. Ozaki, and K. Hirata, J. Vac. Sci. Technol. 21, 672 (1982).Google Scholar
  286. 286.
    J. Paraszczak, E. Babich, J. Shaw, M. Hatzakis, and J. Liutkis, SPIE Proc. 393, 8 (1983).Google Scholar
  287. 287.
    J. Yeh, K. Grebe, and M. Palmer, J. Vac. Sci. Technol. A2, 1292 (1984).Google Scholar
  288. 288.
    P. Degraff and D. Flanders, J. Vac. Sci. Technol. 16, 1906 (1979).Google Scholar
  289. 289.
    U. S. Patents 4,378,383 and 4,377,633 (1983), IBM.Google Scholar
  290. 290.
    U. S. Patent 4,373,018 (1983), Bell.Google Scholar
  291. 291.
    U. S. Patent 4,430,153 (1984), IBM.Google Scholar
  292. 292.
    U. S. Patent 4,396,702 (1983), RCA.Google Scholar
  293. 293.
    U. S. Patent 4,452,65 (1984), IBM; H. Hiroaka, J. Electrochem. Soc. 131, 2938 (1984).Google Scholar
  294. 294.
    P. Vettiger, K. Daetwyler, and D. Webb, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1983, p. 295.Google Scholar
  295. 295.
    U. S. Patent 4,489,146 (1984), IBM.Google Scholar
  296. 296.
    U. S. Patent 4,489,101 (1984), Hitachi.Google Scholar
  297. 297.
    Y. Takasu and Y. Todokoro, Electron. Lett. 20, 1013 (1984).Google Scholar
  298. 298.
    K. Tsuji, M. Sasgo, and K. Kugimiya, IEEE Trans. Electron Devices ED–31, 1861 (1984).Google Scholar
  299. 299.
    I. Aesida, M. Zhang, and E. Wolfe, J. Electron. Mater. 13, 689 (1984).Google Scholar
  300. 300.
    U. S. Patent 4,289,573 (1981), IBM.Google Scholar
  301. 301.
    U. S. Patent 3,964,908 (1976), IBM.Google Scholar
  302. 302.
    U. S. Patent 4,357,369 (1982), RCA.Google Scholar
  303. 303.
    M. Suzuki, H. Namatsu, and A. Yoshikawa, J. Vac. Sci. Technol. B2, 665 (1984).Google Scholar
  304. 304.
    K. Arai, F. Yanagawa, and S. Kurosawa, J. Vac. Sci. Technol. B2, 669 (1984).Google Scholar
  305. 305.
    I. Lauks, Appl. Phys. Lett. 45, 74 (1984).Google Scholar
  306. 306.
    Y. Lin, V. Marriott, K. Orvek, and G. Fuller, SPIE Proc. 469, 30 (1984).Google Scholar
  307. 307.
    M. Livistan, SPIE Proc. 470, 85 (1984).Google Scholar
  308. 308.
    Y. Lin, J. Appl. Phys. 55, 1110 (1984).Google Scholar
  309. 309.
    H. Keller, Solid State Technol. June 1978, p. 45.Google Scholar
  310. 310.
    E. Fredericks, IBM Tech. Disci Bull. 20, 989 (1977); P. Carr, IBM Tech. Discl. Bull. 18, 1396 (1975).Google Scholar
  311. 311.
    D. Buckley, Microelectron. Manuf. Test. Feb. 1982, p. 19.Google Scholar
  312. 312.
    U. S. Patent 4,496,648 (1985), Sperry Rand.Google Scholar
  313. 313.
    M. Ishikawa, J. Polym. Sci. 22, 669 (1984).Google Scholar
  314. 314.
    European Patent Application 110,165, Chem. Abstr. 102, 15162 (1984).Google Scholar
  315. 315.
    U. S. Patent 4,464,460 (1984), IBM.Google Scholar
  316. 316.
    Japanese Patent 59,105,637, Chem. Abstr. 101, 238186 (1984).Google Scholar
  317. 317.
    Japanese Patent 59,135,793, Chem. Abstr. 101, 238190 (1984).Google Scholar
  318. 318.
    Japanese Patent 58,190,040, Chem. Abstr. 101, 181319 (1984).Google Scholar
  319. 319.
    Res. Disci 246, 498, Chem. Abstr. 101, 219627 (1984).Google Scholar
  320. 320.
    U. S. Patent 4,470,871 (1984), RCA.Google Scholar
  321. 321.
    N. Endo and S. Matsui, Jpn. J. Appl Phys. 22, L109 (1983).Google Scholar
  322. 322.
    K. Saigo, Y. Ohnishi, M. Suzuki, and H. Gokan, J. Vac. Sci. Technol. B3, 331 (1985).Google Scholar
  323. 323.
    A. Faithmulla, J. Vac. Sci. Technol. B3, 25 (1985).Google Scholar
  324. 324.
    R. Ono, J. Sauvageau, A. Jain, D. Schwartz, K. Springer, and J. Lukens, J. Vac. Sci. Technol. B3, 282 (1985).Google Scholar
  325. 325.
    C. Wilkins, E. Reichmanis, T. Wolf, and B. Smith, J. Vac. Sci. Technol. B3, 306 (1985).Google Scholar
  326. 326.
    N. Gellrich, H. Beneking, and W. Arden, J. Vac. Sci. Technol. B3, 335 (1985).Google Scholar
  327. 327.
    B. Singh, G. Chem, and I. Lauks, J. Vac. Sci. Technol B3, 327 (1985).Google Scholar
  328. 328.
    Y. Yamashita, R. Kawazawa, K. Kamura, S. Ohno, T. Asano, K. Kobayashi, and G. Mamagatsu, J. Vac. Sci. Technol. B3, 314 (1985).Google Scholar
  329. 329.
    U. S. Patent 4,507,384 (1985), Nippon Tel.Google Scholar
  330. 330.
    Y. Kamakami, T. Aoki, and Y. Yamashita, Macromolecules 18, 580 (1985).Google Scholar
  331. 331.
    Y. Saotome, H. Gokan, K. Sargo, M. Suzuki, and J. Ohnishi, J. Electrochem. Soc. 132, 909 (1985).Google Scholar
  332. 332.
    M. Tsuda, S. Oekawa, M. Yabuta, A. Yakota, H. Nakane, K. Yamashita, K. Ganco, and S. Namba, J. Vac. Sci. Technol. B3, 481 (1985).Google Scholar
  333. 333.
    Japanese Patent 59,119,276, Chem. Abstr. 102, 15135 (1985).Google Scholar
  334. 334.
    B. Stangl, J. Mitteraurer, F. Reudenaurer, and G. Marawsky, J. Vac. Sci. Technol. B3, 477 (1985).Google Scholar
  335. 335.
    N. Chou, C. Tang, J. Paraszczak, and E. Babich, Appl. Phys. Lett. 46, 31 (1985).Google Scholar
  336. 336.
    Japanese Patent 59,119,276, Chem. Abstr. 102, 15135 (1985).Google Scholar
  337. 337.
    D. Tenant, H. Dayem, R. Howard, and E. Westerwick, J. Vac. Sci. Technol. B3, 458 (1985).Google Scholar
  338. 338.
    Japanese Patent 59,31,976, Chem. Abstr, 102, 36770 (1985).Google Scholar
  339. 339.
    Y. Takasu and Y. Todokoro, J. Vac. Sci. Technol. B3, 869 (1985).Google Scholar
  340. 340.
    L. White and M. Miskowski, J. Vac. Sci. Technol. B3, 862 (1985).Google Scholar
  341. 341.
    T. Ueno, H. Shiraishi, T. Iwazanagi, and S. Nonogaki, J. Electrochem. Soc. 132, 1168 (1985).Google Scholar
  342. 342.
    E. Reichmanis and G. Smolinsky, J. Electrochem. Soc. 132, 1178 (1985); U. S. Patent 4,481,049 (1984).Google Scholar
  343. 343.
    European Patent Application 113,034, Chem. Abstr. 102, 140887 (1985).Google Scholar
  344. 344.
    U. S. Patent 4,497,684 (1985), Amdahl.Google Scholar
  345. 345.
    Japanese Patent 59,175,725, Chem. Abstr. 102, 140887 (1985).Google Scholar
  346. 346.
    Japanese Patent 59,126,686, Chem. Abstr. 102, 70242 (1985).Google Scholar
  347. 347.
    R. Dean and R. Matarese, IEEE Trans. Electron Devices ED–22, 358 (1975).Google Scholar
  348. 348.
    D. Prober, IEEE Trans. Electron Devices ED–28, 1368 (1981).Google Scholar
  349. 349.
    M. Feuer and D. Prober, IEEE Trans. Electron Devices ED–28, 1375 (1981).Google Scholar
  350. 350.
    G. Dolan, Appl. Phys. Lett. 31, 337 (1977).Google Scholar
  351. 351.
    R. Howard and D. Prober, in VLSI Electronics, Vol. 5, edited by N. Einspruch, Academic Press, New York, 1982, pp. 146–185.Google Scholar
  352. 352.
    A. Milligram and J. Puretz, J. Vac. Sci. Technol. B3, 879 (1985).Google Scholar
  353. 353.
    A. Tanaka, M. Morita, and K. Onose, Jpn. J. Appl Phys. 24, 1112 (1985).Google Scholar
  354. 354.
    M. Suzuki, Y. Ohnishi, and A. Furata, J. Electrochem. Soc. 132, 139 (1985).Google Scholar
  355. 355.
    D. Lavergne and D. Hoger, SPIE Proc. 539, 115 (1985).Google Scholar
  356. 356.
    B. Lin, V. Chao, K. Petrillo, and B. Yang, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 75.Google Scholar
  357. 357.
    L. Stillwagon, P. Silverman, and G. Taylor, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 87.Google Scholar
  358. 358.
    A. Gozdz, H. Craighead, and M. Bowden, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 157.Google Scholar
  359. 359.
    U. S. Patent 4,357,369 (1982), RCA.Google Scholar
  360. 360.
    M. Hartney and A. Novembre, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 211.Google Scholar
  361. 361.
    F. Vollenbroek, W. Nyssen, H. Kroon, and B. Yilmaz, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 309.Google Scholar
  362. 362.
    L. White, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 271.Google Scholar
  363. 363.
    E. Ailing and C. Stauffer, SPIE Proc. 539, 194 (1985).Google Scholar
  364. 364.
    U. S. Patent 4,306,005 (1985), GCA.Google Scholar
  365. 365.
    J. Underbill, V. Nguyen, M. Kerbaugh, and D. Sundlez, SPIE Proc. 539, 83 (1985).Google Scholar
  366. 366.
    M. de Grandpre, D. Vidusek, and M. Legenza, SPIE Proc. 539, 103 (1985).Google Scholar
  367. 367.
    J. Wijdenes and M. Geomini, SPIE Proc. 539, 97 (1985).Google Scholar
  368. 368.
    Y. Ohnishi, M. Suzuki, K. Saigo, Y. Saotome, and H. Gokan, SPIE Proc. 539, 621 (1985).Google Scholar
  369. 369.
    L. White, SPIE Proc. 539, 29 (1985).Google Scholar
  370. 370.
    M. Legenza, D. Vidusek, and M. de Grandpre, SPIE Proc. 539, 250 (1985).Google Scholar
  371. 371.
    J. Zeigler, L. Harrah, and A. Johnson, SPIE Proc. 539, 166 (1985).Google Scholar
  372. 372.
    J. Tomeoka, SPIE Proc. 539, 158 (1985).Google Scholar
  373. 373.
    Japanese Patent 60,84,541 (1985); Chem. Abstr. 103, 132419 (1985).Google Scholar
  374. 374.
    U. S. Patent 4,521,274 (1985).Google Scholar
  375. 375.
    S. MacDonald, H. Ito, and C. Willson, Microelectron. Eng. 1, 269 (1983).Google Scholar
  376. 376.
    Japanese Patent 60,47,419 (1985); Chem. Abstr. 103, 113354 (1985).Google Scholar
  377. 377.
    E. Reichmanis, G. Smolinsky, and C. Wilkins, Solid State Technol. Aug. 1985, p. 130.Google Scholar
  378. 378.
    Japanese Patent 60,08,839 (1985); Chem. Abstr. 102, 19521 (1985).Google Scholar
  379. 379.
    U. S. Patent 4,507,331 (1985), IBM.Google Scholar
  380. 380.
    H. Miligram and J. Puretz, J. Vac. Sci. Technol. B3, 879 (1985).Google Scholar
  381. 381.
    R. Brault, R. Kubena, and R. Metzger, SPIE Proc. 539, 70 (1985).Google Scholar
  382. 382.
    Japanese Patent 60,35,727 (1985); Chem. Abstr. 102, 229481 (1985).Google Scholar
  383. 383.
    T. Matsuda, T. Ishii, and K. Harada, Appl. Phys. Lett. 47, 123 (1985).Google Scholar
  384. 384.
    U. S. Patent 4,552,833 (1985), IBM.Google Scholar
  385. 385.
    European Patent 136,130 (1985), AT & T; Chem. Abstr. 103, 79509 (1985).Google Scholar
  386. 386.
    F. Buiguez, J. Gilbert, C. Rosilio, A. Rosilio, F. Schue, R. Gagnes, B. Sevres, L. Gerai, W. Abou-Madi, and C. Montgenoul, in Microcircuit Engineering, edited by H. Beneking and H. Heuberger, Academic Press, New York, 1985, p. 471.Google Scholar
  387. 387.
    J. Enerva, K. Skarbova, and S. Kitora, J. Imag. Technol. 11, 174 (1985).Google Scholar
  388. 388.
    U. S. Patent 4,521,274 (1985), AT & T.Google Scholar
  389. 389.
    U. S. Patent 4,481,049 (1984), AT & T.Google Scholar
  390. 390.
    A. Tanaka, M. Monta, and K. Onose, Jpn. J. Appl Phys. 24, L112 (1985).Google Scholar
  391. 391.
    Japanese Patent 60,45,246 (1985); Chem. Abstr. 103, 62591 (1985).Google Scholar
  392. 392.
    Japanese Patent 60,32,047 (1985); Chem. Abstr. 103, 212712 (1985).Google Scholar
  393. 393.
    H. Moritz, IEEE Trans. Electron Devices ED–32, 672 (1985).Google Scholar
  394. 394.
    European Patent 124,265 (Oki); Chem. Abstr. 102, 229486 (1985).Google Scholar
  395. 395.
    Japanese Patent 60,59,734 (1985); Chem. Abstr. 103, 113366 (1985).Google Scholar
  396. 396.
    U. S. Patent 4,507,384 (1985), Nippon Tel.Google Scholar
  397. 397.
    B. Lin, K. Petrillo, and V. Chao, in Microcircuit Engineering, edited by H. Beneking and H. Heuberger, Academic Press, New York, 1985, p. 32.Google Scholar
  398. 398.
    H. Moritz, in Microcircuit Engineering, edited by H. Beneking and H. Heuberger, Academic Press, New York, 1985, p. 45.Google Scholar
  399. 399.
    H. Lehman and R. Widmer, in Microcircuit Engineering, edited by H. Beneking and H. Heuberger, Academic Press, New York, 1985, p. 493.Google Scholar
  400. 400.
    F. Vollenbroek, H. Kroon, J. Bartsen, and J. Dil, in Microcircuit Engineering, edited by H. Beneking and H. Heuberger, Academic Press, New York, 1985, p. 555.Google Scholar
  401. 401.
    H. Umezaki, N. Koyama, Y. Maruyama, Y. Sugita, and R. Suzuki, J. Electrochem. Soc. 132, 2440 (1985).Google Scholar
  402. 402.
    V. Nguyen, J. Underbill, S. Fredmann, and P. Pan, J. Electrochem. Soc. 132, 1925 (1985).Google Scholar
  403. 403.
    European Patent 132,585 (1985), IBM; Chem. Abstr. 103, 4584 (1985).Google Scholar
  404. 404.
    J. Gobrecht and M. Rossinelli, Proc. Electrochem. Soc. 85–1, 235 (1985).Google Scholar
  405. 405.
    P. Poppert, S. Novak, and P. Wright, SPIE Proc. 538, 461 (1985).Google Scholar
  406. 406.
    Y. Usuzi, A. Yoshikawa, and T. Kitayama, Microelectron. Eng. 2, 281 (1984).Google Scholar
  407. 407.
    European Patent 98,992 (1984), IBM; Chem. Abstr. 100, 219054 (1984).Google Scholar
  408. 408.
    M. O’Toole, IEEE Electron Device Leu. EDL–6, 282 (1985).Google Scholar
  409. 409.
    U. S. Patent 4,524,121 (1985), Rohm & Haas.Google Scholar
  410. 410.
    U. S. Patent 4,535,053 (1985).Google Scholar
  411. 411.
    P. Sheldon, J. Dick, and R. Hayes, J. Vac. Sci. Technol. A3, 883 (1985).Google Scholar
  412. 412.
    F. Buiguez, J. Giubert, M. Tacussel, C. Rosilio, and A. Rosilio, in Microcircuit Engineering, edited by H. Beneking and H. Heuberger, Academic Press, New York, 1985, p. 485.Google Scholar
  413. 413.
    K. Li and M. Oprysko, Appl. Phys. Lett. 46, 997 (1985).Google Scholar
  414. 414.
    M. Kaplan, D. Meyerhofer, and L. White, RCA Rev. 44, 135 (1983).Google Scholar
  415. 415.
    B. Lin, F. Lai, and Y. Vladimirsky, J. Vac. Sci. Technol. B4, 426 (1980).Google Scholar
  416. 416.
    Y. Mimura, J. Vac. Sci. Technol. B4, 15 (1986).Google Scholar
  417. 417.
    R. Kawazu, Y. Yamashita, T. Ito, K. Kawamura, S. Ohno, T. Asano, K. Kobayashi, and G. Nagamatsu, J. Vac. Sci. Technol. B4, 409 (1986).Google Scholar
  418. 418.
    M. Monta, A. Tanaka, and K. Onose, Jpn. J. Appl. Phys. 24, L112 (1985).Google Scholar
  419. 419.
    R. Morgan, Plasma Etching, in Semiconductor Fabrication, Elsevier, 1985, p. 302; British Patent 2,154,330 (1985); Chem. Abstr. 104, 43197 (1986).Google Scholar
  420. 420.
    M. Hayashi, T. Ueno, H. Shiraishi, T. Nishida, M. Trumi, and S. Nonogaki, Polym. Mater. Sci. Eng. 55, 611 (1986).Google Scholar
  421. 421.
    S. MacDonald, H. Ito, H. Hiroaka, and C. Willson, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 177.Google Scholar
  422. 422.
    S. MacDonald, L. Pederson, A. Patlach, and C. Willson, Polym. Mater. Sci. Eng. 55, 611 (1986).Google Scholar
  423. 423.
    R. Allen, S. MacDonald, and C. Willson, Polym. Mater. Sci. Eng. 55, 290 (1986).Google Scholar
  424. 424.
    F. Watanabe and Y. Ohnishi, J. Vac. Sci. Technol. B4, 422 (1986).Google Scholar
  425. 425.
    M. Kakuchi, M. Hikita, A. Sugita, K. Onose, and T. Tamamura, J. Electrochem. Soc. 133, 1755 (1986).Google Scholar
  426. 426.
    E. Babich, J. Shaw, M. Hatzakis, J. Paraszczak, D. Witman, and B. Grenon, Microelectron. Eng. 5, 299 (1986).Google Scholar
  427. 427.
    F. Koopmans and R. Bruno, SPIE Proc. 633, 262 (1986).Google Scholar
  428. 428.
    L. Myers and M. Spencer, J. Vac. Sci. Technol. B4, 1259 (1986).Google Scholar
  429. 429.
    U. S. Patent 4,609,614 (1986), RCA.Google Scholar
  430. 430.
    U. S. Patent 4,599,137 (1986), Nippon Telephone.Google Scholar
  431. 431.
    L. Bushnell, L. Gregor, and C. Lyons, Solid State Technol. June 1986, p. 133.Google Scholar
  432. 432.
    H. Namatsu and T. Shibata, Jpn. J. Appl. Phys. 24, L790 (1985).Google Scholar
  433. 433.
    U. S. Patent 4,524,121 (1985), Rohm & Haas.Google Scholar
  434. 434.
    A. McCullough, D. Vidusek, M. Legenza, M. de Grandpre, and J. Imhof, SPIE Proc. 631, 316 (1986).Google Scholar
  435. 435.
    K. Kilichowski and L. White, RCA Tech. Notes, No. 136, January 23, 1985, p. 1.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Wayne M. Moreau
    • 1
  1. 1.General Technology DivisionInternational Business Machines CorporationNew YorkUSA

Personalised recommendations