Postbake

  • Wayne M. Moreau
Part of the Microdevices book series (MDPF)

Abstract

Postbake or hardbake, initially used to harden printing plate resists, is the process of applying heat to enhance the performance of a developed resist image. Later the procedure was applied to deswell developed images in negative rubber azide resists. More recently, the process has been applied to improve the performance of DQN resists.

Keywords

Formaldehyde Ozone Epoxy Rubber Shrinkage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Fried, J. Havas, G. Paal, J. Lechaton, J. Logan, and P. Totta, IBM J. Res. Dev. 26, 362 (1982), U. S. Patent 4,201,800 (1981), IBM.CrossRefGoogle Scholar
  2. 2.
    U. S. Patent 3,976,524 (1975), IBM.Google Scholar
  3. 3.
    L. White, J. Electrochem. Soc. 130, 1543 (1983).CrossRefGoogle Scholar
  4. 4.
    K. Jinno, Y. Matsumoto, and T. Shinozaki, Photogr. Sci. Eng. 21, 290 (1977).Google Scholar
  5. 5.
    A. Knob and W. Scheib, Chemistry and Applications of Phenolic Resins, Springer-Verlag, Berlin, 1979, p. 28.Google Scholar
  6. 6.
    W. Moreau, Opt. Eng. 22, 181 (1983).Google Scholar
  7. 7.
    A. Ouano, in Macromolecular Solutions, edited by R. Seymour and G. Stahl, Pergamon Press, Elmsford, N.Y., 1982, p. 208.Google Scholar
  8. 8.
    T. Batchelder and J. Piatt, Solid State Technol. Aug. 1983, p. 211.Google Scholar
  9. 9.
    G. Parisi, S. Hazko, and G. Rozgoni, J. Electrochem. Soc. 124, 917 (1977).CrossRefGoogle Scholar
  10. 10.
    M. Andrasi, Thin Solid Films 67, 229 (1980).CrossRefGoogle Scholar
  11. 11.
    R. Brandes and R. Dudley, J. Electrochem. Soc. 120, 140 (1973).CrossRefGoogle Scholar
  12. 12.
    F. Dill and J. Shaw, IBM J. Res. Dev. 21, 210 (1977).CrossRefGoogle Scholar
  13. 13.
    J. Shaw, M. Frisch, and F. Dill, IBM J. Res. Dev. 21, 219 (1977).CrossRefGoogle Scholar
  14. 14.
    C. Deckert, Kodak Microelectronics Seminar Proceedings, 1977.Google Scholar
  15. 15.
    A. Morinaka and Y. Asano, J. Appl. Polym. Sci. 27, 2139 (1982).CrossRefGoogle Scholar
  16. 16.
    S. Croll, J. Appl. Polym. Sci. 23, 847 (1979).CrossRefGoogle Scholar
  17. 17.
    Japanese Patent 76,120,712, Chem. Abstr. 86, 13177 (1976).Google Scholar
  18. 18.
    German Patent 2,631,535; U. S. Patent 3,868,254 (1975), GAF; U. S. Patent 4,339,521 (1981), Siemens.Google Scholar
  19. 19.
    Japanese Patent 78,135,621, Chem. Abstr. 90, 130686 (1978).Google Scholar
  20. 20.
    U. S. Patent 4,139,384 (1981), Fuji.Google Scholar
  21. 21.
    U. S. Patent 4,311,533 (1981), Thompson CSF.Google Scholar
  22. 22.
    K. Kodota, Y. Taki, and O. S. Shimzu, SPIE Proc. 275, 1373 (1981).Google Scholar
  23. 23.
    J. Bieron and R. Conley, J. Appl. Polym. Sci. 1, 171 (1963).Google Scholar
  24. 24.
    R. Allen, M. Foster, and Y. Yen, J. Electrochem. Soc. 129, 1379 (1982).CrossRefGoogle Scholar
  25. 25.
    M. Bowden, L. Thompson, S. Farenholtz, and E. Doerries, J. Electrochem. Soc. 128, 1304 (1981).CrossRefGoogle Scholar
  26. 26.
    C. Ting, I. Avigal, and B. Lu, Kodak Microelectronics Seminar, 1982, G-136, p. 139.Google Scholar
  27. 27.
    J. Pacansky and H. Hiroaka, J. Vac. Sci. Technol. 19, 1132 (1981).CrossRefGoogle Scholar
  28. 28.
    A. Martynenko, B. Strizhov, and V. Nikoisku, Russ. J. Phys. Chem. 49, 1310 (1975).Google Scholar
  29. 29.
    W. Oldham, IEEE Trans. Electron Devices ED-29, 554 (1982).Google Scholar
  30. 30.
    T. Berker and D. Casey, IEEE Trans. Electron Devices ED-29, 524 (1982).CrossRefGoogle Scholar
  31. 31.
    W. Moreau, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1984, p. 327.Google Scholar
  32. 32.
    R. Mattox and C. Tracy, Solid State Technol. June 1982, p. 83.Google Scholar
  33. 33.
    B. Cantos and D. Dobkin, IEEE Electron Device Lett. EDL-2, 222 (1981).Google Scholar
  34. 34.
    R. Morgan and C. Pollard, Electron Lett. 18, 1038 (1982).CrossRefGoogle Scholar
  35. 35.
    K. Mochiyi, H. Obayashki, and K. Wasa, J. Electrochem. Soc. 130, 187 (1983).CrossRefGoogle Scholar
  36. 36.
    U. S. Patent 4,187,331 (1980), IBM.Google Scholar
  37. 37.
    J. Moran and G. Taylor, J. Vac. Sci. Technol. 19, 1127 (1981).CrossRefGoogle Scholar
  38. 38.
    U. S. Patent 3,920,483 (1975), IBM.Google Scholar
  39. 39.
    U. S. Patent 4,253,888 (1981), Hitachi.Google Scholar
  40. 40.
    U. S. Patent 4,259,369 (1981), IBM.Google Scholar
  41. 41.
    U. S. Patent 4,125,650 (1978), IBM.Google Scholar
  42. 42.
    German Patent 2,447,225 (1978), IBM.Google Scholar
  43. 43.
    U. S. Patent 4,289,573 (1981), IBM.Google Scholar
  44. 44.
    U. S. Patent 4,007,047 (1979), IBM.Google Scholar
  45. 45.
    W. Moreau and P. Schmidt, Electrochem. Soc. Ext. Abstr. 1970, p. 459.Google Scholar
  46. 46.
    U. S. Patent 3,506,440 (1970), Mitsui.Google Scholar
  47. 47.
    J. Lyerla and J. Pacansky, IBM J. Res. Dev. 23, 42 (1979).CrossRefGoogle Scholar
  48. 48.
    H. Adabbo and R. Williams, J. Appl. Polym. Sci. 27, 893 (1982).CrossRefGoogle Scholar
  49. 49.
    U. S. Patent 4,289,573 (1981), IBM.Google Scholar
  50. 50.
    E. Egerton, A. Nef, W. Milkinsun, W. Cook, and D. Barr, Solid State Technol. Aug. 1982, p. 84.Google Scholar
  51. 51.
    H. Kleinecht and H. Meir, J. Electrochem. Soc. 125, 799 (1978).Google Scholar
  52. 52.
    I. Calder, R. Sue, and H. Naguib, J. Electrochem. Soc. 130, 1390 (1983).CrossRefGoogle Scholar
  53. 53.
    E. Hryhorenko, Kodak Microelectronics Seminar, 1979, p. 18.Google Scholar
  54. 54.
    U. S. Patent 4,439,518 (1984), Shipley.Google Scholar
  55. 55.
    D. Johnson, SPIE Proc. 469, 72 (1984).Google Scholar
  56. 56.
    V. Marriott, Y. Lin, and G. Fuller, SPIE Proc. 469, 65 (1984).Google Scholar
  57. 57.
    M. Long, SPIE Proc. 469, 189 (1984).Google Scholar
  58. 58.
    J. Matthews and J. Wilmott, SPIE Proc. 470, 194 (1984).Google Scholar
  59. 59.
    U. S. Patent 4,476,216 (1984), Amdahl.Google Scholar
  60. 60.
    J. Koyler, F. Custode, and R. Rudell, Kodak Microelectron. Semin. Proc. 140, 150 (1979).Google Scholar
  61. 61.
    S. Wu, Polymer Interfaces and Adhesion, Dekker, New York, 1982, p. 69.Google Scholar
  62. 62.
    W. Moreau, Opt. Eng. 22, 181 (1983).Google Scholar
  63. 63.
    H. Hiroaka, Am. Chem. Soc. Symp. Ser. 266, 358 (1984).Google Scholar
  64. 64.
    H. Yanazawa, N. Hasegawa, and K. Douta, J. Appl. Polym. Sci. 30, 547 (1985).CrossRefGoogle Scholar
  65. 65.
    German Patent 3,337,315, Chem. Abstr. 101, 181207 (1984).Google Scholar
  66. 66.
    U. S. Patent 4,435,533 (1984), Xenon.Google Scholar
  67. 67.
    U. S. Patent 4,487,652 (1984), Motorola.Google Scholar
  68. 68.
    Res. Discl. 242 (1984), Chem. Abstr. 101, 60461 (1984).Google Scholar
  69. 69.
    W. Feely, J. Imhof, and C. Stein, SPE RETEC Photopolymers, 1985, p. 49.Google Scholar
  70. 70.
    B. Lin, V. Chao, K. Petrillo, and B. Yang, SPE RETEC Photopolymers, 1985, p. 75.Google Scholar
  71. 71.
    Japanese Patent 85,4365, Chem. Abstr. 103, 1485 (1985).Google Scholar
  72. 72.
    R. Bond, S. Szioba, and H. Naguib, Electrochem. Soc. Ext. Abstr. 81-1, 729 (1981).Google Scholar
  73. 73.
    U. S. Patent 3,976,524 (1975), IBM.Google Scholar
  74. 74.
    L. White, J. Electrochem. Soc. 130, 1543 (1983).Google Scholar
  75. 75.
    S. Turner, R. Arcus, C. Houle, and W. Schleigh, SPE RETEC Photopolymers, 1985, p. 35.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Wayne M. Moreau
    • 1
  1. 1.General Technology DivisionInternational Business Machines CorporationNew YorkUSA

Personalised recommendations