Skip to main content

Developing Resist Images

  • Chapter
Semiconductor Lithography

Part of the book series: Microdevices ((MDPF))

Abstract

The exposure process induces chemical changes in polymers such as random scission or cross-linking and molecular rearrangements in small molecules added to polymers. The chemical products are distinguished from the unexposed reactants by a developer or process of development (such as heating) which attempts to maximize the readout:

$$\textup{Developing readout} = \frac{\textup{Exposed resist properties}}{\textup{Unexposed resist properties}}$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Dill, A. Neureuther, J. Tuttle, and E. Walker, IEEE Trans. Electron Devices ED-22, 456 (1975).

    Google Scholar 

  2. C. Decken and D. Peters, Solid State Technol. Jan. 1980, p. 76.

    Google Scholar 

  3. M. Yamada, S. Mattori, and S. Monta, J. Electrochem. Soc. 129, 2598 (1982).

    Google Scholar 

  4. I. Adesida, J. Chinn, L. Rathbun, and E. Wolf, J. Vac. Sci. Technol. 21, 666 (1982).

    Google Scholar 

  5. M. Tsuda, S. Orkawa, W. Kanai, A. Yokota, I. Hijikata, A. Uehara, and H. Nakane, J. Cac. Sci. Technol. 19, 259 (1981).

    Google Scholar 

  6. G. Taylor, T. Wolf, and J. Moran, J. Vac. Sci. Technol. 19, 872 (1981).

    Google Scholar 

  7. P. Blais, Solid State Technol. August, 1977, p. 78.

    Google Scholar 

  8. U.S. Patent 4,241,165 (1980), Motorola; U.S. Patent 4,278,753 (1981), Horizons.

    Google Scholar 

  9. G. Taylor and T. Wolf, J. Electrochem. Soc. 127, 2665 (1980); U.S. Patent 4,232,110 (1980) Bell Labs.

    Google Scholar 

  10. M. Chang and J. Chen, Appl. Phys. Lett. 33, 892 (1978).

    Google Scholar 

  11. M. Bowden and L. Thompson, Polym. Eng. Sci. 14, 525 (1974).

    Google Scholar 

  12. H. Hiroaka, Appl. Phys. Lett. 31, 503 (1977).

    Google Scholar 

  13. H. Frisch, Polym. Eng. Sci. 20, 2 (1980).

    Google Scholar 

  14. S. Chen and J. Edin, Polym. Eng. Sci. 20, 40 (1980).

    Google Scholar 

  15. G. Park, in Diffusion in Polymers, edited by J. Crank and G. Park, Academic Press, New York, 1968, Chapter 5, pp. 140–162.

    Google Scholar 

  16. K. Ueberreiter, in G. Park, Academic Press, New York, 1968, Chapter 5 Ref. 15, pp. 219–257.

    Google Scholar 

  17. K. Ueberreiter and F. Asmussen, J. Polym. Sci. 52, 75 (1957); 57, 187 (1962); 57, 199 (1962).

    Google Scholar 

  18. J. Greeneich, J. Electrochem. Soc. 122, 970 (1975).

    Google Scholar 

  19. L. Lapcik and L. Valko, J. Polym. Sci. Part A-2, 9, 633 (1971).

    Google Scholar 

  20. S. Ju, H. Lu, J. Duda, and J. Vrentas, J. Appl. Polym. Sci. 26, 3735 (1981).

    Google Scholar 

  21. O. Aboul-Nasr and R. Huang, J. Appl. Polym. Sci. 23, 1819 (1979).

    Google Scholar 

  22. J. Vrentas, H. Lu, and J. Duda, J. Appl. Polym. Sci. 25, 1793 (1980).

    Google Scholar 

  23. M. Kumbar, J. Macromol. Sci. A5, 1301 (1971); L. Rebenfeld, J. macromol. sci., Rev. macromol. ehem. C15, 279-393 (1976).

    Google Scholar 

  24. Y. Tu and A. Ouano, IBM J. Res. Dev. 23, 131 (1977).

    Google Scholar 

  25. E. Gipstein, A. Ouano, D. Johnson, and O. Need, IBM J. Res. Dev. 21, 143 (1977); Polym. Eng. Sci. 17, 396 (1977).

    Google Scholar 

  26. M. Hatzakis, C. Ting, and N. Viswanathan, Proc. Electron Ion Beam Sixth Conf., San Francisco, Electrochemical Society, May 1974, p. 542.

    Google Scholar 

  27. A. Ouano, Polym. Eng. Sci. 18, 306 (1978).

    Google Scholar 

  28. J. Greeneich, J. Electrochem. Soc. 121, 1669 (1974).

    Google Scholar 

  29. U.S. Patent 3,987,215 (1977), IBM.

    Google Scholar 

  30. U.S. Patent 4,078,098 (1978), IBM.

    Google Scholar 

  31. K. Harada, T. Tamamura, and O. Kogure, J. Electrochem. Soc. 129, 2576 (1982).

    Google Scholar 

  32. D. Kyser and R. Pyle, IBM J. Res. Dev. 24, 426 (1980).

    Google Scholar 

  33. F. Billmeyer, Textbook of Polymer Science, Wiley, New York, 1971, pp. 33, 74, 84.

    Google Scholar 

  34. M. Bowden, L. Thompson, and J. Ballantyne, J. Vac. Sci. Technol. 12, 1294 (1975).

    Google Scholar 

  35. K. Murase, M. Kakuchi, and S. Sugarwara, Proc. Intl. Conf. on Microlithography, Paris, 1977, p. 265; J. Electrochem. Soc. 126, 1831 (1979); 127, 491 (1980).

    Google Scholar 

  36. G. Chui, E. Gipstein, W. Moreau, and O. Need, J. Appl. Polym. Sci. 21, 3477 (1977); U.S. Patent 3,916,036 (1976), IBM.

    Google Scholar 

  37. R. Kambour, E. Romagosa, and C. Gruner, Macromolecules, 5, 335 (1972).

    Google Scholar 

  38. W. Moreau, Opt. Eng. 22, 181 (1983).

    Google Scholar 

  39. M. Gazard, C. Duchnese, J. Dubois, and A. Chapiro, Polym. Eng. Sci. 20, 1069 (1980).

    Google Scholar 

  40. G. Geuskens, E. Hellinck, and C. David, Eur. Polym. J. 7, 87 (1971), Makromol. Chem. 160, 135 (1972), 160, 347 (1971).

    Google Scholar 

  41. E. Thompson, Polym. Lett. 3, 675 (1965).

    Google Scholar 

  42. H. Ku and L. Scala, J. Electrochem. Soc. 116, 980 (1969).

    Google Scholar 

  43. C. Ting, in Record of the 11th Symposium on Electron, Ion and Laser Beam Technology, edited by R. Thornley, San Francisco Press, 1971, p. 337.

    Google Scholar 

  44. U.S. Patent 3,996,393 (1976), IBM.

    Google Scholar 

  45. R. Harris, J. Electrochem. Soc. 120, 272 (1973).

    Google Scholar 

  46. M. Atoda, M. Komuro, and H. Kawakatsu, J. Appl Phys. 50, 3707 (1979).

    Google Scholar 

  47. French Patent 2,304,933 (1979), Thompson CSF; Chem. Abstr. 91, 220371 (1979).

    Google Scholar 

  48. Japanese Patent 79,41719 (1979), Cho LSI; Chem. Abstr. 91, 999536 (1979).

    Google Scholar 

  49. M. Bowden, J. Polym. Sci. 12, 499 (1975).

    Google Scholar 

  50. M. Kakuchi, S. Sugawara, K. Murase, and K. Matsuyama, J. Electrochem. Soc. 124, 1648 (1977).

    Google Scholar 

  51. U.S. Patent 3,898,350 (1977), IBM.

    Google Scholar 

  52. Japanese Patent 77,93493 (1977), AGIST, Chem. Abstr. 86, 198006 (1978); 88, 56981 (1979).

    Google Scholar 

  53. U.S. Patent 3,934,057 (1976), IBM.

    Google Scholar 

  54. L. Gavens, D. Hess, B. Wu, A. Bell, and D. Soong, J. Vac. Sci. Technol. B1, 481 (1983).

    Google Scholar 

  55. R. Hawryluk, J. Vac. Sci. Technol. 19, 1 (1981), and references therein.

    Google Scholar 

  56. F. Jones and J. Paraszczak, IEEE Trans. Electron Devices ED-28, 1544 (1981).

    Google Scholar 

  57. K. Heinrich, H. Betz, A. Heuberger, and S. Pongratz, J. Vac. Sci. Technol. 19, 1254 (1981).

    Google Scholar 

  58. L. Karapiperes, I. Adesida, C. Lee, and E. Wolf, J. Vac. Sci. Technol. 19, 1259 (1981).

    Google Scholar 

  59. H. Santini and N. Viswanathan, Proceedings of Microelectronics Seminar, Interface 82, Kodak Publication G-136, Eastman Kodak Co., Rochester, New York, 1982, p. 47.

    Google Scholar 

  60. SAMPLE (Simulation and Modeling Profiles in Lithography and Etching, Department of Electrical Engineering, University of California, Berkeley, California; P. Jain, A. Neureuther, and W. Oldham, IEEE Trans. Electron Devices ED-28, 1410 (1981).

    Google Scholar 

  61. M. Rosenfield, A. Neureuther, and C. Ting, J. Vac. Sci. Technol. 19, 1242 (1981).

    Google Scholar 

  62. M. Ballauf and B. Wolf, Macromolecules 14, 654 (1981).

    Google Scholar 

  63. N. Viswanathan, J. Polym. Sci., Polym. Chem. Ed. 14, 1553 (1976).

    Google Scholar 

  64. A. Ouano, D. Johnson, B. Dawson, and L. Pederson, J. of Polym. Sci. 14, 701 (1976).

    Google Scholar 

  65. Japanese Patent 80,105,244, Matsushita.

    Google Scholar 

  66. US. Patent 4,051,271 (1981), AGIST.

    Google Scholar 

  67. V. Sharma, R. Pethrick, and S. Affrossman, Polymer, 23, 1732 (1982).

    Google Scholar 

  68. Polymer Handbook, edited by J. Brandup and E. Immergut, Wiley, New York, 1975, Chapter 4.

    Google Scholar 

  69. J. Helbert, B. Wagner, P. Caplan and E. Poindexter, J. Appl. Polym. Sci. 19, 1201 (1975).

    Google Scholar 

  70. A. Ouano, Polym. Eng. Sci. 18, 306 (1978).

    Google Scholar 

  71. W. Moreau, W. Mover, I. Merritt, M. Hatzakis, L. Pederson, and D. Johnson, J. Vac. Sci. Technol. 16, 1989 (1979); U.S. Patent 4,121,935 (1981), IBM.

    Google Scholar 

  72. A. Charlesby and R. Blackburn, Nature, 210, 1036 (1966).

    Google Scholar 

  73. W. Moreau and P. Schmidt, Electrochem. Soc. Ext. Abstr. 1970, p. 459.

    Google Scholar 

  74. E. Gipstein, W. Moreau, and O. Need, J. Electrochem. Soc. 123, 1105 (1976).

    Google Scholar 

  75. I. Haller, R. Feder, M. Hatzakis, and E. Spiller, J. Electrochem. Soc. 126, 154 (1979); U.S. Patent 3,984,582 (1979).

    Google Scholar 

  76. U.S. Patent 4,193,797 (1981), DuPont.

    Google Scholar 

  77. U.S. Patent 3,931,435 (1977), IBM.

    Google Scholar 

  78. A. Chapiro, Radiation Chemistry of Polymeric Systems, Wiley, New York, 1962, p. 546.

    Google Scholar 

  79. U.S. Patent 3,934,057 (1976), IBM.

    Google Scholar 

  80. U.S. Patent 4,024,293 (1980), IBM.

    Google Scholar 

  81. M. Hatzakis, Solid State Technol. August 1981, p. 74.

    Google Scholar 

  82. Japanese Patent 80,144247; Chem. Abstr. 94, 163479, (1980).

    Google Scholar 

  83. Japanese Patent 79,143232; Chem. Abstr. 92, 155909 (1979).

    Google Scholar 

  84. U.S. Patents 3,981,985 (1977); 4,061,382 (1980), Phillips.

    Google Scholar 

  85. Japanese Patent 79,116227; Chem. Abstr. 92, 320281 (1979).

    Google Scholar 

  86. J. Greeneich, J. Appl. Phys. 45, 5264 (1974).

    Google Scholar 

  87. D. Kyser and N. Viswanathan, J. Vac. Sci. Technol. 12, 1305 (1975).

    Google Scholar 

  88. M. Kaplan and D. Meyerhofer, RCA Rev. 40, 166 (1979); Polym. Eng. Sci. 20, 1973 (1980).

    Google Scholar 

  89. M. Bowden, L. Thompson, S. Farenholtz, and E. Doerries, J. Electrochem. Soc. 128, 1304 (1981); U.S. Patent 4,289,845 (1981), Bell.

    Google Scholar 

  90. J. Shaw, M. Frisch, and F. Dill, IBM J. Res. Dev. 21, 219 (1977).

    Google Scholar 

  91. J. Lyerla and J. Pacansky, IBM J. Res. Dev. 23, 42 (1979).

    Google Scholar 

  92. W. Oldham, IEEE Electron Device Lett. EDL-1, 217 (1980).

    Google Scholar 

  93. D. Meyerhofer, IEEE Trans. Electron Devices ED-27, 921 (1980).

    Google Scholar 

  94. S. Fujimori, J. Appl. Phys. 50, 621 (1979).

    Google Scholar 

  95. F. Dill, A. Neureuther, J. Tuttle, and E. Walker, IEEE Trans. Electron Devices ED-22, 456 (1975).

    Google Scholar 

  96. F. Dill and J. Shaw, IBM J. Res. Dev. 21, 210 (1977).

    Google Scholar 

  97. D. Ilten and R. Sutton, J. Electrochem. Soc. 119, 539 (1972).

    Google Scholar 

  98. D. Ilten, J. Electrochem. Soc. 119, 537 (1972).

    Google Scholar 

  99. J. Lane, Abstracts of 1983 Conference on Ion, Electron and Photon Beams, Los Angeles, California, F-3.

    Google Scholar 

  100. Y. Wada, K. Mochiji, and N. Obayashi. J. Electrochem. Soc. 130, 187 (1983).

    Google Scholar 

  101. Japanese Patent 81,92536, Fijitsu; Chem. Abstr., 96, 60866d (1981).

    Google Scholar 

  102. H. Hiroaka and A. Gutierrez, J. Electrochem. Soc. 126, 860 (1979).

    Google Scholar 

  103. R. Morgan and C. Pollard, Electron. Lett. 1B, 1038 (1982).

    Google Scholar 

  104. S. Farenholtz, J. Vac. Sci. Technol. 19, 1111 (1981), U.S. Patent 4,173,470 (1979), Bell.

    Google Scholar 

  105. U.S. Patent 4,379,826 (1983), IBM.

    Google Scholar 

  106. F. Dill, W. Hornberger, P. Hauge, and J. Shaw, IEEE Trans. Electron Devices ED-22, 445 (1975).

    Google Scholar 

  107. J. Perez and A. Tobar, J. Photochem. 19, 133 (1982).

    Google Scholar 

  108. R. Bartolini, Appl. Opt. 11, 1275 (1972).

    Google Scholar 

  109. S. Austin and F. Stone, Appl Opt. 15, 1071 (1976).

    Google Scholar 

  110. S. Norman and M. Singh, Appl Opt. 14, 818 (1975).

    Google Scholar 

  111. K. Konnerth and F. Dill, IEEE Trans. Electron Devices ED-22, 452 (1975).

    Google Scholar 

  112. D. Novotony, Solid State Technol. March 1981, p. 83.

    Google Scholar 

  113. C. Livanos, A. Katzir, J. Shellan, and A. Yarw, Appl. Opt. 16, 1633 (1977).

    Google Scholar 

  114. R. Bartolini, Appl. Opt. 13, 129 (1974).

    Google Scholar 

  115. J. Shaw and M. Hatzakis, IEEE Trans. Electron Devices ED-25, 425 (1978).

    Google Scholar 

  116. S. Middelhoek, IBM J. Res. Dev. 14 117 (1970).

    Google Scholar 

  117. D. Windmann and H. Bender, IEEE Trans. Electron Devices ED-22, 467 (1975).

    Google Scholar 

  118. T. Chang, C. Codella, and R. Lange, IEEE Trans. Electron Devices ED-28, 1428 (1981).

    Google Scholar 

  119. P. Frasch and K. Saremski, IBM J. Res. Dev. 26, 561 (1982).

    Google Scholar 

  120. W. Moreau and W. Moyer, IBM Tech. Discl. Bull. 23, 2304 (1980).

    Google Scholar 

  121. F. Dill, IEEE Trans. Electron Devices ED-22, 440 (1975).

    Google Scholar 

  122. D. Leers, Solid State Technol. March 1981, p. 90.

    Google Scholar 

  123. T. Chang, C. Ting, and D. Kyser, Solid State Technol. May, 1982, p. 60.

    Google Scholar 

  124. M. Narasimham, IEEE Trans. Electron Devices ED-22, 478 (1975).

    Google Scholar 

  125. D. Hofer, C. Willson, A. Neureuther, and M. Halsey, SPIE Proc. 334, 196 (1982).

    Google Scholar 

  126. U.S. Patent 3,639,184 (1972), IBM.

    Google Scholar 

  127. U.S. Patent 4,173,479 (1978), Bell.

    Google Scholar 

  128. U.S. Patent 4,266,001 (1982), American Hoechst.

    Google Scholar 

  129. U.S. Patent 4,174,222 (1982), Tokyo Ohko.

    Google Scholar 

  130. U.S. Patent 4,115,129 (1978), IBM.

    Google Scholar 

  131. A. Ouano, Am. Chem. Soc. Org. Coat. Prepr. 45, 431 (1981).

    Google Scholar 

  132. Japanese Patent 80,88048; Chem. Abstr. 94, 22984 (1980).

    Google Scholar 

  133. T. Batchhelder and I. Pratt, Solid State Technol. August 983, p. 211.

    Google Scholar 

  134. R. Conley and J. Bieron, J. Appl. Polym. Sci. 1, 171 (1963).

    Google Scholar 

  135. T. Gupta, Eur. Polym. J. 17, 1127 (1981).

    Google Scholar 

  136. E. Walker, IEEE Trans. Electron Devices ED-22, 464 (1975).

    Google Scholar 

  137. W. Tsang, Appl. Opt. 16, 1918 (1977).

    Google Scholar 

  138. T. Shaughnessy and R. Ruddell, Semicond. Int. May 1980, p. 79.

    Google Scholar 

  139. W. Deforest, Photoresist Materials and Processes, McGraw Hill, New York 1975, p. 54.

    Google Scholar 

  140. M. Dinaburg, Photosensitive Diazo Compounds, Focal Press, New York, 1964, p. 77.

    Google Scholar 

  141. U.S. Patent 3,961,000 (1976), RCA.

    Google Scholar 

  142. Brazilian Patent 78,07666, IBM; Chem. Abstr. 93, 85225 (1978); U.S. Patent 4,359,520 (1982), IBM.

    Google Scholar 

  143. R. Halverson, W. MacIntyre, and W. Motsiff, IBM J. Res. Dev. 26, 590 (1981), IBM.

    Google Scholar 

  144. L. Harriman, Solid State Technol. June 1983, p. 155.

    Google Scholar 

  145. J. Barrie, in Diffusion in Polymers, edited by J. Crank and G. Park, Academic Press, New York, 1968, Chapter 8.

    Google Scholar 

  146. U.S. Patent 3,961,101 (1976), RCA.

    Google Scholar 

  147. P. Hershey, Kodak Microelectronics Seminar G-136, 33 (1982).

    Google Scholar 

  148. E. Fredericks, IBM Tech. Discl. Bull. 20, 2317 (1977).

    Google Scholar 

  149. U.S. Patent 3,402,044 (1968), Shipley.

    Google Scholar 

  150. U.S. Patent 3,649,283 (1972), Shipley.

    Google Scholar 

  151. U.S. Patent 3,859,099 (1975), Kodak.

    Google Scholar 

  152. U.S. Patent 4,379,830 (1983), Polychrome.

    Google Scholar 

  153. Japanese Patent 80,43537; Chem. Abstr. 93, 141023 (1980).

    Google Scholar 

  154. U.S. Patent 4,253,888 (1982), Kodak.

    Google Scholar 

  155. S. Grigorovich, Zh. Prikl. Khim. (Leningrad) 48, 1307 (1975); Chem. Abstr. 84, 128719t (1975).

    Google Scholar 

  156. German Patent 2,447,225 (1976), IBM; Chem. Abstr. 85, 102423m (1976).

    Google Scholar 

  157. Japanese Patent 75,158,280 Tokyo Shibaura; Chem. Abstr. 85, 12374t (1975).

    Google Scholar 

  158. Japanese Patent 81,162746, Fujitsu; Chem. Abstr. 97, 31276 (1981).

    Google Scholar 

  159. U.S. Patent 4,141,733 (1979), Kodak.

    Google Scholar 

  160. Russian Patent 608,850; Chem. Abstr. 89, 120922 (1978).

    Google Scholar 

  161. Russian patent 691,794; Chem. Abstr. 92, 102324a (1980).

    Google Scholar 

  162. U.S. Patent 3,868,254 (1975), GAF.

    Google Scholar 

  163. J. Shaw and M. Hatzakis, J. Electrochem. Soc. 126, 2026 (1979).

    Google Scholar 

  164. N. Atoda and H. Hawakatsu, J. Electrochem. Soc. 123, 1519 (1976).

    Google Scholar 

  165. Japanese Patent 78,135621, Hitachi; Chem. Abstr. 90, 130686 (1978).

    Google Scholar 

  166. A. Reiser and E. Pitts, J. Photogr. Sci. 29, 187 (1981).

    Google Scholar 

  167. T. Kobayashi and E. Arai, J. Appl. Phys. 52, 4785 (1981).

    Google Scholar 

  168. Y. Taniguchi, Y. Hatano, H. Shiraishi, S. Horigome, S. Nonogaki, and K. Naroaka, Jpn. J. Appl. Phys. 18, 1143 (1979).

    Google Scholar 

  169. A. Reiser and E. Pitts, Photogr. Sci. Eng. 20, 225 (1976).

    Google Scholar 

  170. W. Moreau, SPE RETEC, Ellenville, New York, Photopolymer Conference Proceedings, October 1970, p. 143.

    Google Scholar 

  171. Y. Ohnishi, M. Itoh, K. Mizuno, H. Gokan, and S. Fujewara, J. Vac. Sci. Technol. 19, 1141 (1981).

    Google Scholar 

  172. D. Smith, Photogr. Sci. Eng. 12, 264 (1968).

    Google Scholar 

  173. T. Tada, J. Electrochem. Soc. 129, 1070 (1982).

    Google Scholar 

  174. U.S. Patent 4,279,986 (1982), Nippon.

    Google Scholar 

  175. Japanese Patent 81,162746; Chem. Abstr. 97, 31276 (1981).

    Google Scholar 

  176. Japanese Patent 79, 17104.

    Google Scholar 

  177. T. Bullett, J. Adhes. 4, 73 (1972).

    Google Scholar 

  178. E. Davidson, SPE RETEC, Ellenville, New York Photopolymer Conference Proceedings, October, 1970, p. 141.

    Google Scholar 

  179. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York, 1953, p. 578.

    Google Scholar 

  180. Z. Rigbi, J. Appl. Polym. Sci. 12, 242 (1968).

    Google Scholar 

  181. N. Taylor and E. Bagley, J. Appl. Polym. Sci. 21, 113 (1977).

    Google Scholar 

  182. K. Gandhi and M. Williams, J. Appl. Polym. Sci. 16, 2721 (1972).

    Google Scholar 

  183. S. Imamura, T. Tamamura, K. Harada, and S. Sugawara, J. Appl. Polym. Sci. 27, 937 (1982); U.S. Patent 4,286,049 (1982), Nippon.

    Google Scholar 

  184. J. Lai, J. Electrochem. Soc. 126, 697 (1979).

    Google Scholar 

  185. E. Feit, Polym. Eng. Sci. 20, 1058 (1980); U.S. Patent 4,201,580 (1980), Bell.

    Google Scholar 

  186. B. Gong, Y. Ye, H. Gu, and Q. Chang, J. Vac. Sci. Technol. 16, 1980 (1979).

    Google Scholar 

  187. German Patent 3,041,261, JSR; Chem. Abstr. 94, 22989 (1980).

    Google Scholar 

  188. German Patent 2,817,256, Allied; Chem. Abstr. 90, 195637 (1978).

    Google Scholar 

  189. Japanese Patent 80,155353, Tokyo Ohko; Chem. Abstr. 94, 200872.

    Google Scholar 

  190. U.S. Patent 4,148,655 (1979), Oji Paper.

    Google Scholar 

  191. F. Kaufmann, A. Schroeder, E. Engler, and V. Patel, Appl. Phys. Lett. 36, 423 (1980); 37, 314 (1980), U.S. Patent 4,338,392 (1981), IBM.

    Google Scholar 

  192. Japanese Patent 79,140,535; Chem. Abstr. 92, 119732 (1979).

    Google Scholar 

  193. Japanese Patent 82,178239, Hitachi; Chem. Abstr. 98, 117127 (1982).

    Google Scholar 

  194. C. Tan and J. Rauner, J. Vac. Sci. Technol. 19, 1348 (1981); U.S. Patent 4,289,842 (1982), Kodak.

    Google Scholar 

  195. O. Kogure, Jpn. J. Appl. Phys. 21, 206 (1982).

    Google Scholar 

  196. East German Patent 179164; Chem. Abstr. 86, 81717 (1978).

    Google Scholar 

  197. A. Barraud, Thin Solid Films 85, 77 (1981).

    Google Scholar 

  198. R. Kaiser, G. Miller, D. Thomas, and L. Sperling, J. Appl. Polym. Sci. 27, 957 (1982).

    Google Scholar 

  199. W. Moreau and P. Schmidt, Electrochem. Soc. Ext. Abstr. 138, 459 (1970).

    Google Scholar 

  200. H. Sawarada, J. Macromol. Sci., Rev. Macromol. Chem. C3, 313 (1969).

    Google Scholar 

  201. M. Bowden and L. Thompson, Polym. Eng. Sci. 14, 525 (1974).

    Google Scholar 

  202. K. Hatada, Polym. Bull. 8, 469 (1982).

    Google Scholar 

  203. G. Willson, H. Ito, J. Frecht, and F. Houlihan, Proceedings of 28th IUPAC Macromolecular Symposium, July 1982, International Union of Pure and Applied Chemists, Amherst, Massachusetts, p. 448.

    Google Scholar 

  204. H. Raply, G. Duggan, and R. Elliott, Electrochem. Soc. Ext. Abstr. 82-1, 514 (1982)

    Google Scholar 

  205. N. Ueno, S. Koniski, K. Tanimoto, and K. Sugita, Jpn. J. Appl. Phys. 20, L709 (1981).

    Google Scholar 

  206. R. Srinivasan and V. Mayne-Banton, Appl. Phys. Lett. 41, 576 (1982); B. Garrison and R. Srinivasan, Appl. Phys. Lett. 44, 849 (1984).

    Google Scholar 

  207. M. Mitsuya, M. Terao, Y. Taniguchi, T. Kabu, K. Shigematsu, and M. Akayai, J. Appl Phys. 54, 3710 (1983).

    Google Scholar 

  208. T. Yamazaki, K. Tanaka, and H. Nakata, J. Electrochem. Soc. 127, 1860 (1980); Jpn. J. Appl. Phys. 21, 1518 (1982).

    Google Scholar 

  209. S. Monta, J. Tamano, S. Hattori, and M. Ieda, J. Appl Phys. 51, 3938 (1980).

    Google Scholar 

  210. J. Tamano, S. Hattori, M. Ieda, and S. Monta, Plasma Chem. Plasma Process. 1, 261 (1981).

    Google Scholar 

  211. H. Hiroaka, Appl. Phys. Lett. 31, 503 (1977).

    Google Scholar 

  212. U.S. Patent 4,241,165 (1980), Motorola.

    Google Scholar 

  213. U.S. Patent 4,278,753 (1981); 4,292,384 (1981), Horizons.

    Google Scholar 

  214. U.S. Patent 4,232,110 (1980), Bell.

    Google Scholar 

  215. G. Taylor and T. Wolf, J. Electrochem. Soc. 127, 2668 (1980): G. Taylor, and T. Wolf, Solid State Technol. Feb. 1984, p. 145.

    Google Scholar 

  216. G. Taylor, T. Wolf, and J. Moran, J. Vac. Sci. Technol. 19, 82 (1981).

    Google Scholar 

  217. G. Taylor, T. Wolf, and M. Goldrick, J. Electrochem. Soc. 128, 361 (1981).

    Google Scholar 

  218. U.S. Patent 4,386,152 (1983), Honeywell.

    Google Scholar 

  219. M. Tsuda, S. Oekawa, W. Kanai, A. Yokoto, I. Hiijita, J. Uekara, and H. Nakane, J. Vac. Sci. Technol. 19, 259 (1981).

    Google Scholar 

  220. M. Tsuda, J. Vac. Sci. Technol. 19, 1351 (1981).

    Google Scholar 

  221. M. Issacson and A. Muray, J. Vac. Sci. Technol. 19, 1117 (1981).

    Google Scholar 

  222. J. Lane, J. Maldonado, A. Cleland, R. Haelbich, J. Silverman, and J. Warlaumont, J. Vac Sci. Technol. B1, 1072 (1983).

    Google Scholar 

  223. N. Samoto, R. Shemizu, H. Hasimoto, I. Adesida, E. Wolf, and S. Namba, J. Vac. Sci. Technol. B1, 1367 (1983).

    Google Scholar 

  224. S. Gillespie, IBM J. Res. Dev. 28, 454 (1984).

    Google Scholar 

  225. V. Nagawasan and R. Carlson, J. Electrochem. Soc. 131, 1369 (1984).

    Google Scholar 

  226. U.S. Patent 4,452,880 (1984), Konishiroku Photo.

    Google Scholar 

  227. S. Imamura, T. Tamamura, and O. Kogure, Polym. J. 16, 391 (1984).

    Google Scholar 

  228. Japanese Patent 58,04143, Fujitsu; Chem. Abstr. 100, 200947 (1983).

    Google Scholar 

  229. PCT Int. Patent Appl. WO. 83,04,320 (1983), RCA; Chem. Abstr. 100, 604 (1983).

    Google Scholar 

  230. N. Turro, Modem Molecular Photochemistry, Benjamin, Reading, Massachusetts, 1978, p. 590.

    Google Scholar 

  231. R. Cox, N. Clecak, and W. Moreau, Polym. Eng. Sci. 14, 491 (1974).

    Google Scholar 

  232. H. Gokan, S. Scho, and Y. Ohnishi, J. Electrochem. Soc. 130, 143 (1983).

    Google Scholar 

  233. G. Taylor and T. Wolf, Polym. Eng. Sci. 20, 1087 (1980).

    Google Scholar 

  234. Japanese Patent 81,77844; Chem. Abstr. 96, 26852 (1981).

    Google Scholar 

  235. J. Moran and G. Taylor, J. Vac. Sci. Technol. 16, 2020 (1979).

    Google Scholar 

  236. I. Adesida, J. Chen, L. Rathburn, and E. Wolf, J. Vac. Sci. Technol. 21, 666 (1982).

    Google Scholar 

  237. T. Venkatesan, G. Taylor, A. Wagner, B. Wilkens, and D. Barr, J. Vac. Sci. Technol. 19, 1379 (1981).

    Google Scholar 

  238. B. Wu, D. Hess, D. Soong, and A. Bell, J. Appl. Phys. 54, 1725 (1983).

    Google Scholar 

  239. M. Yamada, S. Hattori, and S. Morita, J. Electrochem. Soc 129, 2598 (1982).

    Google Scholar 

  240. M. Yamada, J. Tamano, K. Yoneda, S. Morita, and S. Hattori, Jpn. J. Appl. Phys. 21, 768 (1982); J. Electrochem. Soc. 130, 1962 (1983).

    Google Scholar 

  241. H. Hiroaka, J. Electrochem. Soc. 128, 1065 (1981).

    Google Scholar 

  242. D. Follett, K. Weiss, J. Moore, A. Steckel, and W. Liu, Electrochem. Soc. Ext. Abstr. 82-2, 321 (1982).

    Google Scholar 

  243. T. Yamazaki, K. Tanaka, and H. Nakata, Jpn. J. Appl Phys. 20, 2191 (1981).

    Google Scholar 

  244. U.S. Patent 4,307,178 (1981), IBM.

    Google Scholar 

  245. Japanese Patent 82,50430; Chem. Abstr. 97, 48231 (1982).

    Google Scholar 

  246. P. Holmes and J. Snell, Microelectron. Reliab. 5, 337 (1966).

    Google Scholar 

  247. D. Weston and R. Mattox, J. Vac. Sci. Technol. 17, 466 (1980).

    Google Scholar 

  248. M. Jun-Ru, S. Kuo-Hsung, E. Wolf, and T. Everhart, J. Vac. Sci. Technol. 19, 1385 (1981).

    Google Scholar 

  249. Japanese Patent 77,2259; Chem. Abstr. 87, 193575 (1977).

    Google Scholar 

  250. Japanese Patent 77,12235; Chem. Abstr. 88, 82744 (1977).

    Google Scholar 

  251. S. Yoshikawa, O. Ochi, and Y. Mizushi, Appl. Phys. Lett. 36, 197 (1980); P. Huggett, Appl. Phys. Lett.. 42, 592 (1983).

    Google Scholar 

  252. U.S. Patent 4,307,176 (1981), Hitachi.

    Google Scholar 

  253. B. Lin, IEEE Trans. Electron Devices 25, 419 (1978); U.S. Patent 4,142,107 (1979), IBM.

    Google Scholar 

  254. U.S. Patent 4,039,379 (1977), IBM.

    Google Scholar 

  255. H. Kleinknecht and H. Meier, J. Electrochem. Soc. 125, 798 (1976); J. Electrochem. Soc. 130, 655 (1983).

    Google Scholar 

  256. D. Elliott, Solid State Technol. Sept. 1977, p. 66.

    Google Scholar 

  257. M. Borovicka, SPE RETEC Photopolymers, Ellenville, New York, 1979, p. 20.

    Google Scholar 

  258. A. Johnson, Kodak Microelectronics Seminar, G-136, 60 (1982).

    Google Scholar 

  259. D. Kim, W. Oldham, and A. Neureuther, Kodak Microelectronics Seminar, G-136, 100(1982).

    Google Scholar 

  260. U.S. Patent 3,935,331; 3,935,332 (1977), RCA.

    Google Scholar 

  261. H. Keller, Solid State Technol. June 1978, p. 45.

    Google Scholar 

  262. L. Rebenfeld, P. Makarewicz, H. Weigmann, and G. Wilkes, J. Macromol. Sci., Rev. Macromol Chem. C15, 279 (1976).

    Google Scholar 

  263. F. Sacher, J. Polym. Sci., Polym. Lett. 21, 111 (1983).

    Google Scholar 

  264. S. Bergeron and B. Duncan, Solid State Technol. August 1982, p. 98, and references therein; G. Box and J. Hunter, Ann. Math. Stat. 23, 195 (1957).

    Google Scholar 

  265. M. Geis, J. Randall, T. Deutsch, P. DeGraff, K. Krahn, and L. Stern, Appl. Phys. Lett. 43, 74 (1983).

    Google Scholar 

  266. H. Deckman and J. Dunsmuir, J. Vac. Sci. Technol. B1, 1166 (1983).

    Google Scholar 

  267. A. McCullough, SPE RETEC Photopolymers, Ellenville, New York, 1982.

    Google Scholar 

  268. U.S. Patent 4,439,516 (1984), Shipley.

    Google Scholar 

  269. G. Stevens, Microphotography, Wiley, New York 1966, p. 189.

    Google Scholar 

  270. G. Pannetier and P. Souchay, Chemical Kinetics, Elsevier, New York, 1967, p. 150.

    Google Scholar 

  271. G. Taylor, L. Stillwagon, and T. Venkatesan, J. Electrochem. Soc. 131, 1658 (1984).

    Google Scholar 

  272. U.S. Patent 4,464,455 (1984), Fujitsu Ltd.

    Google Scholar 

  273. U.S. Patents 4,414,059 and 4,417,948 (1984), IBM.

    Google Scholar 

  274. Z. Pelzbauer and R. Wagner, J. Appl. Polym. Sci. 29, 1427 (1984).

    Google Scholar 

  275. Japanese Patent 59,12,433; Chem. Abstr. 102, 165450 (1984).

    Google Scholar 

  276. Japanese Patent 57,202,536; Chem. Abstr. 100, 112257 (1982).

    Google Scholar 

  277. Japanese Patent 57,202,532; Chem. Abstr. 100, 148509 (1982).

    Google Scholar 

  278. Japanese Patent 57,211,143; Chem. Abstr. 100, 12988 (1982).

    Google Scholar 

  279. Japanese Patent 57,168,246; Chem. Abstr. 100, 430474 (1982).

    Google Scholar 

  280. Japanese Patent 59,02,042; Chem. Abstr. 102, 31147 (1984).

    Google Scholar 

  281. Japanese Patent 59,02,037; Chem. Abstr. 102, 46313 (1984).

    Google Scholar 

  282. German Patent DE 3,315,395; Chem. Abstr. 101, 129934 (1983).

    Google Scholar 

  283. W. Hinsberg and M. Guiterrez, SPIE Advances in Resist Technology, 469, 57 (1984).

    Google Scholar 

  284. U.S. Patent 4,468,447 (1984), Tokyo Ohko.

    Google Scholar 

  285. M. Watts, J. Vac. Sci. Technol. B3, 434 (1985); U.S. Patent 4,465,768 (1984).

    Google Scholar 

  286. W. Flack, J. Electrochem. Soc. 131, 2200 (1984).

    Google Scholar 

  287. V. Marriott, SPIE Advances in Resist Processing 469, 65 (1984).

    Google Scholar 

  288. M. Hori, Plasma Chem. Plasma Process. 4, 119 (1984).

    Google Scholar 

  289. D. Dimter and M. Hanson, SPIE Proc. on Optical Lithography 470, 203 (1984).

    Google Scholar 

  290. W. Bonivert, Plat. Surf. Finish. 71, 58 (1984).

    Google Scholar 

  291. M. Tsuda, S. Oekawa, M. Yabuta, A. Yakota, H. Nakane, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1984, p. 371.

    Google Scholar 

  292. D. Fauval and S. Gourrier, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1984, p. 371.

    Google Scholar 

  293. G. Koren and J. Yeh, J. Appl. Phys. 56, 2120 (1984).

    Google Scholar 

  294. U.S. Patent 4,015,986 (1977), IBM.

    Google Scholar 

  295. U.S. Patent 4,462,860 (1984), Bell.

    Google Scholar 

  296. U.S. Patent 4,464,461 (1984), Kodak.

    Google Scholar 

  297. Japanese Patent 59,84,426; Chem. Abstr. 101, 161274 (1984).

    Google Scholar 

  298. Anonymous, Circuits Manufacturing, November 1974, p. 20.

    Google Scholar 

  299. Japanese Patent 58,108,529; Chem. Abstr. 101, 141083 (1983).

    Google Scholar 

  300. R. Srinivasan and B. Braren, J. Polym. Sci. 22, 2601 (1984).

    Google Scholar 

  301. J. Andrew, J. Appl. Phys. 43, 717 (1983).

    Google Scholar 

  302. M. Tsuda, S. Oekawa, M. Yabuta, A. Yakota, and H. Nakane, Jpn. J. Appl Phys. 23, 259 (1984).

    Google Scholar 

  303. T. Pampalone, M. Hannifan, S. Jain, and C. Krieger, J. Electrochem. Soc. 131, 2670 (1984).

    Google Scholar 

  304. D. Kim, W. Oldham, and A. Neureuther, IEEE Trans. Electron Devices ED-31, 1730 (1984).

    Google Scholar 

  305. U.S. Patent 4,103,073 (1978), DIOS.

    Google Scholar 

  306. Anonymous, Indust. Chem. News. November 1985, p. 5.

    Google Scholar 

  307. V. Sharma, S. Affrossman, and R. Pethrick, Br. Polym. J. 16, 73 (1984).

    Google Scholar 

  308. Japanese Patent 59,119,276, Chem. Abstr. 102, 15135 (1984).

    Google Scholar 

  309. Japanese Patent 59,05,245: Chem. Abstr. 102, 15119 (1984).

    Google Scholar 

  310. Japanese Patent 59,05,245; Chem. Abstr. 102, 15120 (1984).

    Google Scholar 

  311. Japanese Patent 59,44,046, Chem. Abstr. 102, 201541 (1984).

    Google Scholar 

  312. Japanese Patent 58,09,143; Chem. Abstr. 101, 201527 (1983).

    Google Scholar 

  313. East German Patent 211,192 (1984), Chem. Abstr. 102, 219864 (1984).

    Google Scholar 

  314. Japanese Patent 59,24,847; Chem. Abstr. 102, 219845 (1984).

    Google Scholar 

  315. Japanese Patent 58,15,0949; Chem. Abstr. 102, 181997 (1984).

    Google Scholar 

  316. Japanese Patent 59,925,32; Chem. Abstr. 102, 238180 (1984).

    Google Scholar 

  317. B. Grant, N. Clecak, R. Twieg, and G. Wilson, IEEE Trans. Electron Devices ED-28, 1300 (1981).

    Google Scholar 

  318. U.S. Patent 4,359,820 (1982), IBM.

    Google Scholar 

  319. M. Tsuda, S. Oekawa, M. Yabuta, A. Yakota, H. Nakane, K. Yamashito, K. Gano, and S. Namba, J. Vac. Sci. Technol. B3, 481 (1985).

    Google Scholar 

  320. N. Eib, J. Vac. Sci. Technol. B3, 425 (1985).

    Google Scholar 

  321. L. Hauchlan, K. Sautter, and T. Batchelder, Solid State Technol., April 1985, p. 333.

    Google Scholar 

  322. P. Rissmann and G. Owen, J. Vac. Sci. Technol. B3, 159 (1985).

    Google Scholar 

  323. C. Dix, P. Flavin, P. Hendy, and H. Jones, J. Vac. Sci. Technol. B3, 131 (1985).

    Google Scholar 

  324. Japanese Patent 59,125,729; Chem. Abstr. 102, 15153 (1985).

    Google Scholar 

  325. Japanese Patent 59,125,729; Chem. Abstr. 102, 15153 (1985).

    Google Scholar 

  326. Japanese Patent 59,62,850; Chem. Abstr. 102, 15127 (1985).

    Google Scholar 

  327. Japanese Patent 59,155,836; Chem. Abstr. 102, 36776 (1985).

    Google Scholar 

  328. F. Rodriguez, P. Krasciky, and R. Groele, Solid State Technol. May 1985, p. 125.

    Google Scholar 

  329. D. Henderson, J. White, H. Craighead, and I. Adesida, Appl. Phys. Lett. 46, 900 (1985).

    Google Scholar 

  330. G. Gorodetsky, T. Kazyaka, R. Melcher, and R. Srinivasan, Appl. Phys. Lett. 46, 828 (1985).

    Google Scholar 

  331. Japanese Patent 59,180,545; Chem. Abstr. 102, 53980 (1985).

    Google Scholar 

  332. Japanese Patent 59,165,952; Chem. Abstr. 102, 87659 (1985).

    Google Scholar 

  333. British Patent 2,139,777; Chem. Abstr. 102, 876668 (1985).

    Google Scholar 

  334. Japanese Patent 50,176,743; Chem. Abstr. 102, 87661 (1985).

    Google Scholar 

  335. Japanese Patent 59,72,441; Chem. Abstr. 102, 123107 (1985).

    Google Scholar 

  336. Japanese Patent 59,182,444; Chem. Abstr. 102, 123112 (1985).

    Google Scholar 

  337. Japanese Patent 59,29,853; Chem. Abstr. 102, 36767 (1985).

    Google Scholar 

  338. Anonymous, Semicond. Int. May 1985, p. 30.

    Google Scholar 

  339. U.S. Patent 4,464,455 (1985), Fujitsu.

    Google Scholar 

  340. V. Marion, SPIE Proc. on Optical Microlithography 394, 194 (1983).

    Google Scholar 

  341. K. Sogo, Y. Tanaka, and K. Uchiho, Kodak Microelectronics Seminar G130, 44, (1980).

    Google Scholar 

  342. M. Bowden and L. Thompson, Polym. Eng. Sci. 14, 525 (1974).

    Google Scholar 

  343. M. Kato and H. Nakanse, Photogr. Sci. Eng. 23, 209 (1984).

    Google Scholar 

  344. U.S. Patent 4,103,073 (1985), Dion.

    Google Scholar 

  345. U.S. Patent 4,530,895 (1985), Hoechst.

    Google Scholar 

  346. C. Mack, SPIE Proc. on Optical Microlithography 538, 207 (1985).

    Google Scholar 

  347. U.S. Patent 4,535,054 (1985), Hughes.

    Google Scholar 

  348. H. Fuchs and J. Petermann, J. Appl. Phys. 58, 1056 (1985).

    Google Scholar 

  349. U.S. Patent 4,506,005 (1985), GCA.

    Google Scholar 

  350. T. Matsuzawa, T. Ito, and M. Tanuma, IEEE Trans. Electron Devices ED-32, 1781 (1985).

    Google Scholar 

  351. W. Waldo, Semicond. Int. October 1985, p. 116.

    Google Scholar 

  352. H. Yamashita and Y. Todokoro, J. Vac. Sci. Technol. B3, 1004 (1985).

    Google Scholar 

  353. J. Peterson and M. Stan, Microelectron. Manuf. Test. January 1986, p. 23.

    Google Scholar 

  354. F. Sebillote, A. Weill, and P. Paniez, Macromol. Chem. 186, 1695 (1985).

    Google Scholar 

  355. German Patent 3,346,979 (1985), Merck; Chem. Abstr. 103, 113376 (1985).

    Google Scholar 

  356. M. Watts and R. Hannifan, SPIE Opt. Eng. 539, 21 (1985).

    Google Scholar 

  357. M. Watts, J. Vac. Sci. Technol. B3, 434 (1985).

    Google Scholar 

  358. European Patent Appl. 129,106 (1985), Allied; Chem. Abstr. 102, 22949 (1985).

    Google Scholar 

  359. W. Hinsberg, C. Willson, and K. Kanazawa, SPIE Opt. Eng. 539, 6 (1985).

    Google Scholar 

  360. Japanese Patent 6028881, Sumimoto; Chem. Abstr. 103, 75809 (1985).

    Google Scholar 

  361. F. Rodriguez, R. Groele, and P. Krasicky, SPIE Opt. Eng. 539, 14 (1985).

    Google Scholar 

  362. D. Soong, SPIE Opt. Eng. 539, 2 (1985).

    Google Scholar 

  363. M. Tsuda, S. Oikawa, M. Yabuta, A. Yakota, H. Nakane, K. Yamashita, K. Gamo, and S. Namba, J. Vac. Sci. Technol. B3, 481 (1985).

    Google Scholar 

  364. A. Muray, J. Vac. Sci. Technol. B3, 1773 (1985).

    Google Scholar 

  365. U.S. Patent 4,481,279 (1984), Fujitsu.

    Google Scholar 

  366. J. Branon, J. Lankard, A. Baise, F. Bums, and J. Kaufman, J. Appl. Phys. 58, 2036 (1985).

    Google Scholar 

  367. R. Srinivasan and S. Lazare, Polymer 26, 1247 (1985).

    Google Scholar 

  368. H. Yamashita, and Y. Todokoro, Electron. Lett. 21, 646 (1985).

    Google Scholar 

  369. U.S. Patent 4,497,891 (1985), IBM.

    Google Scholar 

  370. S. Babu and V. Srinivasan, SPIE Advances in Resist Technology 539, 36 (1985).

    Google Scholar 

  371. L. Thomas and J. Windle, Polymer 23, 529 (1982).

    Google Scholar 

  372. U.S. Patent 4,552,833 (1985), IBM.

    Google Scholar 

  373. S. MacDonald, H. Ito, H. Hiroaka, and C. Willson, SPE RETEC Photopolymers, Ellenville, New York, 1985, p. 177.

    Google Scholar 

  374. L. Stillwagon, P. Silverman, and G. Taylor, SPE RETEC Photopolymers, Ellenville, New York, 1985, p. 87.

    Google Scholar 

  375. U.S. Patent 4,500,628 (1985), AT&T.

    Google Scholar 

  376. M. Flannagan and R. Wake, SPIE Resist Technol. 539, 45 (1985).

    Google Scholar 

  377. G. Bendikt, SPIE Resist Technol. 539, 242 (1985).

    Google Scholar 

  378. U.S. Patent 4,587,205 (1986), USA.

    Google Scholar 

  379. V. Starov, J. Imag. Technol. 30, 74 (1986).

    Google Scholar 

  380. U. S. Patent 4,587,203 (1986), Hughes.

    Google Scholar 

  381. U.S. Patent 4,551,418 (1985), IBM.

    Google Scholar 

  382. T. Ishu, Appl. Phys. Lett. 47, 123 (1985).

    Google Scholar 

  383. E. Weber and R. Moore, Solid State Technol. May 1979, p. 61.

    Google Scholar 

  384. M. Hatzakis, J. Vac. Sci. Technol. 12, 1276 (1975).

    Google Scholar 

  385. A. Barraud, C. Rosilio, and A. Ruandel-Texier, J. Vac. Sci. Technol. 16, 2003 (1979).

    Google Scholar 

  386. S. Grindle and E. Pavelchek, Test Meas. World May 1986, p. 102.

    Google Scholar 

  387. J. Freenet, F. Bouchard, F. Houlihan, B. Kryczka, E. Eichler, N. Clecak, and C. Willson, J. Imag. Sci., 30, 59 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Moreau, W.M. (1988). Developing Resist Images. In: Semiconductor Lithography. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0885-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0885-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8228-0

  • Online ISBN: 978-1-4613-0885-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics