Skip to main content

Synergetics

An Approach to Self-Organization

  • Chapter
Self-Organizing Systems

Part of the book series: Life Science Monographs ((LSMO))

Abstract

Synergetics is offered as a physical construct for understanding self-organization. It is a mathematical—physical way of studying how collections of subsystems (such as atoms, cells, animals) can produce structures and patterns by self-organization. The construct is applicable to all kinds of matter. The great generality of thermodynamics pertains to thermal equilibrium or, in irreversible thermodynamics, to systems driven only slightly from that equilibrium. When systems are driven very far from equilibrium, however, new things can happen, and the classic concepts of thermodynamics are no longer adequate. Ordered structures can arise out of formerly chaotic states and can be maintained by energy and matter fluxes passing through the system. The laser is used as an example to exhibit the general concepts and principles of these new “instability” states that can possess ever-increasing order.

The concept of “slaving” is fundamental in synergetics. Long-lasting quantities may enslave short-lasting quantities. Symmetry-breaking or selection of bistable state alternatives also may be important in nonequilibrium systems. Because of the slaving principle, there can be an enormous resentative of such higher-ordered enslaving principles. At critical instability points, nonequilibrium systems “test” various configurations or collective notions by fluctuations. These configured dynamic “modes” can act as order parameters and enslave all other modes of the system. This structuring of order parameters can occur within an entire hierarchy of instability points.

There are two possible outcomes of such phenomena: completely chaotic motion that can decay to a structureless state when power is turned off; or, typical of biological systems, structure that is maintained even when metabolic processes stop. Function can be latent in form.

A mathematical schema is provided and applied to a “morphogenetic” example. —The Editor

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, R. H., and J. E. Marsden (1978) Foundations of Mechanics, 2nd ed. Cummings, Menlo Park, Calif.

    Google Scholar 

  • Anderson, P. W. (1972) More is different: Broken symmetry and the nature of the hierarchical structure of science. Science 177:393.

    Article  PubMed  CAS  Google Scholar 

  • Berding, C, and H. Haken (1982) Pattern formation in morphogenesis. J. Math. Biol. 14:133–151.

    Article  PubMed  CAS  Google Scholar 

  • Eigen, M. (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523.

    Article  PubMed  CAS  Google Scholar 

  • Eigen, M., and P. Schuster (1977) The hypercycle: Part A. Naturwissenschaften 64:541–565.

    Article  PubMed  CAS  Google Scholar 

  • Eigen, M., and P. Schuster (1978a) The hypercycle: Part B. Naturwissenschaften 65:7–41.

    Article  Google Scholar 

  • Eigen, M., and P. Schuster (1978b) The hypercycle: Part C. Naturwissenschaften 65:341–369.

    Article  CAS  Google Scholar 

  • Gierer, A., and H. Meinhardt (1974) Biological pattern formation involving lateral inhibition. Lect. Math. Life Sci. 7:163–183.

    Google Scholar 

  • Graham, R., and H. Haken (1968) Quantum theory of light propagation in a fluctuating laser-active medium. Z. Phys. 213:420–450.

    Article  Google Scholar 

  • Graham, R., and H. Haken (1970) Laser light—First example of a second-order phase transition far away from thermal equilibrium. Z. Phys. 273:31–46.

    Google Scholar 

  • Haken, H. (1964) A nonlinear theory of laser noise and coherence. Z. Phys. 181:96–124.

    Article  CAS  Google Scholar 

  • Haken, H. (1970a) Lectures at Stuttgart University (unpublished).

    Google Scholar 

  • Haken, H. (1970b) Laser theory. In: Encyclopedia of Physics, Vol. XXV/2c, L. Genzel (ed.). Springer-Verlag, Berlin.

    Google Scholar 

  • Haken, H. (1970c) Laserlicht—ein neues Beispiel für eine Phasenumwandlung? In: Festkörperprobleme X, O. Madelung (ed.). Pergamon/Vieweg, Brunswick, pp. 62–73.

    Google Scholar 

  • Haken, H. (1977) Synergetics—An Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biòlogy. Springer-Verlag, Berlin.

    Google Scholar 

  • Haken, H. (1978a) Nonequilibrium phase transitions and bifurcation of limit cycles and multiperiodic flows. Z. Phys. B 29:61–66.

    Article  Google Scholar 

  • Haken, H. (1978b) Nonequilibrium phase transitions and bifurcation of limit cycles and multiperiodic flows in continuous media. Z. Phys. B 30:423–428.

    Article  Google Scholar 

  • Haken, H. (1983) Advanced Synergetics. Springer-Verlag, Berlin.

    Google Scholar 

  • Haken, H., and R. Graham (1971) Synergetik: Die Lehre vom Zusammenwirken in Wissenschaft und Technik. Umschau 6:191.

    Google Scholar 

  • Haken, H., and H. Olbrich (1978) Analytical treatment of pattern formation in the Gierer-Meinhardt model of morphogenesis. J. Math. Biol. 6:317–331.

    Article  CAS  Google Scholar 

  • Haken, H., and H. Sauermann (1963) Frequency shifts of laser modes in solid state and gaseous lasers. Z. Phys. 176:47–62.

    Article  CAS  Google Scholar 

  • Haken, H., and A. Wunderlin (1982) Slaving principle for stochastic differential equations with additive and multiplicative noise and for discrete noisy maps. Z. Phys. B 47:179–187.

    Article  Google Scholar 

  • Landau, L. D., and I. M. Lifshitz (1959) Course of Theoretical Physics, Vol. 5. Pergamon Press, Elms-ford, N.Y.

    Google Scholar 

  • Nicolis, G., and I. Prigogine (1977) Self-Organization in Non-Equilibrium Systems. Wiley, New York.

    Google Scholar 

  • Schaller, C. (1980) Talk given at the Tagung der Ges. deutscher Naturforsch und Arzte, Hamburg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Haken, H. (1987). Synergetics. In: Yates, F.E., Garfinkel, A., Walter, D.O., Yates, G.B. (eds) Self-Organizing Systems. Life Science Monographs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0883-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0883-6_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8227-3

  • Online ISBN: 978-1-4613-0883-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics