Matrix Assembly

  • Robert L. Trelstad
  • Frederick H. Silver


Matrix assembly in morphogenesis, growth, and wound repair is a sequential stepwise process that occurs in overlapping stages and usually involves more than one kind of matrix macromolecule. Combined morphological, biochemical, and physicochemical approaches are generating new information pertaining to the manner in which connective tissue macromolecules assemble. Some features of the assembly process can be studied in vitro under cell-free conditions using the purified components that are increasingly available as more matrix constituents are isolated and chemically characterized. Such studies have indicated that much of the assembly process is driven by physicochemical forces sufficient to generate specific aggregate forms that are very similar if not identical to those seen in vivo. The final structure of a matrix is therefore determined, in part, by forces of “self-assembly.” Detailed evaluation of matrix assembly in vivo, however, indicates that many features of the process are regulated by cells, including aspects such as timing, site of assembly, and spatial orientation. Matrix assembly should therefore be considered a multistep process in which a successive series of physicochemical interactions of the matrix components occur within a context of morphogenetic patterning imposed by cells.


Collagen Fibril Collagen Molecule Matrix Assembly Matrix Constituent Matrix Macromolecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ananthanarayanan, S., and Veis, A., 1972, The molecular parameters of monomeric and acid soluble collagens, low shear gradient viscosity and electric birefringence, Biopolymers 11:1365–1377.Google Scholar
  2. Bailey, A. J., Light, N. D., and Atkins, E. D. T., 1980, Chemical cross-linking restrictions on models for the molecular organization of the collagen fibre, Nature (London) 288:408–410.Google Scholar
  3. Bard, J. B. L., and Chapman, J. A., 1968, Polymorphism in collagen fibrils precipitated at low pH, Nature (London) 219:1279–1280.Google Scholar
  4. Bernengo, J. C., Herbage, D., Marion, C., and Roux, B., 1978, Intermolecular interaction studies on native and enzyme treated acid soluble collagen, Biochim. Biophys. Acta 532:305–314.Google Scholar
  5. Bornstein, P., and Traub, W., 1979, The chemistry and biology of collagen, in: The Proteins, Vol. IV (H. Neurath and R. L. Hill, eds.), pp. 411–631, Academic Press, New York.Google Scholar
  6. Bouteille, M., and Pease, D. C., 1971, The tridimensional structure of native collagenous fibrils, their proteinaceous filaments, J. Ultrastruct. Res. 35:314–338.Google Scholar
  7. Brennan, M., and Davison, P. F., 1980, Role of aldehydes in collagen fibrillogenesis in vitro, Biopolymers 19:1861–1873.Google Scholar
  8. Brodsky, B., Eikenberry, E. F., and Cassidy, K., 1980, An unusual collagen periodicity in skin, Biochim. Biophys. Acta 621:162–166.Google Scholar
  9. Bruns, R. R., 1976, Supramolecular structure of polymorphic collagen fibrils, J. Cell Biol. 68:521–538.Google Scholar
  10. Bruns, R. R., Trelstad, R. L., and Gross, J., 1973, Cartilage collagen: A staggered substructure in reconstituted fibrils, Science 181:269–271.Google Scholar
  11. Bruns, R. R., Hulmes, D. J. S., Therrien, S. F., and Gross, J., 1979, Procollagen segment-long-spacing crystallites: Their role in collagen fibrillogenesis, Proc. Natl. Acad. Sci. USA 76:313–317.Google Scholar
  12. Cantor, C. R., and Schimmel, P. R., 1980, Biohysical Chemistry, Parts I—III, Freeman, San Francisco.Google Scholar
  13. Cassel, J. M., Mandelkern, L., and Roberts, D. E., 1962, The kinetics of the heat precipitation of collagen, J. Am. Leather Chem. Assoc. 57:556–575.Google Scholar
  14. Chapman, G. E., Danyluk, S. S., and McLaughlin, K. A., 1971, A model for collagen hydration, Proc. R. Soc. London B Ser. 178:465–476.Google Scholar
  15. Comper, W. D., and Veis, A., 1977a, The mechanism of nucleation for in vitro collagen fibril formation, Biopolymers 16:2113–2131.Google Scholar
  16. Comper, W. D., and Veis, A., 1977b, Characterization of nuclei in in vitro collagen formation, Biopolymers 16:2133–2142.Google Scholar
  17. Cooper, A., 1970, Thermodynamic studies of the assembly in vitro of native collagen fibrils, Biochem. J. 118:355–365.Google Scholar
  18. Dehl, R. E., 1970, Collagen: Mobil water content of frozen fibers, Science 170:738–739.Google Scholar
  19. Dorrington, K. L., and McCrum, N. G., 1977, Elastin as rubber, Biopolymers 16:1201–1222.Google Scholar
  20. Doyle, B. B., Hukins, D. W. L., Hulmes, D. J. S., Miller, A., and Woodhead-Galloway, J., 1975, Collagen polymorphism: Its origins in the amino acid sequence, J. Moi. Biol. 91:79–99.Google Scholar
  21. Ehrlich, H. P., and Bornstein, P., 1972, Microtubules in transcellular movement of procollagen, Nature (London) 238:257–260.Google Scholar
  22. Eyre, D. R., and Glimcher, M. J., 1972, The distribution of crosslinking aldehydes in α1 and α2 chains of chicken bone collagen, Biochim. Biophys. Acta 278:206–210.Google Scholar
  23. Fletcher, G. C., 1976, Dynamic light scattering from collagen solutions. I. Translational diffusion coefficient and aggregation effects, Biopolymers 15:2201–2217.Google Scholar
  24. Flory, P. J., 1953, Principies of Polymer Chemistry, Cornell University Press, Ithaca, N. Y.Google Scholar
  25. Fraser, R. D. B., MacRae, T. P., and Suzuke, E., 1979, The molecular and fibrillar structure of collagen, in: Fibrous Proteins: Scientific, Industriai and Medicai Aspects (D. A. D. Parry and L. K. Creamer, eds.), pp. 179–206, Academic Press, New York.Google Scholar
  26. Frederickson, R. G., Morse, D. E., and Low, F. N., 1977, High-voltage electron microscopy of extracellular fibrillogenesis, Am. J. Anat. 150:1–34.Google Scholar
  27. Freifelder, D., 1976, Physical Biochemistry, Freeman, San Francisco.Google Scholar
  28. Fung, B. M., Wittschell, J., Jr., and McAmis, L. L., 1974, The state of water on hydrated collagen as studied by pulsed NMR, Bipolymers 13:1767–1776.Google Scholar
  29. Garant, P. R., and Cho, M.-I., 1979, Cytoplasmic polarization of periodontal ligament fibroblasts, J. Periodontal Res. 14:95–106.Google Scholar
  30. Gelman, R. A., and Piez, K. A., 1980, Collagen fibril formation in vitro, J. Biol. Chem. 255:8098–8102.Google Scholar
  31. Gelman, R. A., Poppke, D. C., and Piez, K. A., 1979, Collagen fibril formation in vitro, the role of the nonhelical terminal regions, J. Biol. Chem. 254:11741–11745.Google Scholar
  32. Gillard, G. C., Merrilees, M. J., Bell-Booth, P. G., Reilly, H. C., and Flint, M. H., 1977, The proteoglycan content and the axial periodicity of collagen in tendon, Biochem. J. 163:145–151.Google Scholar
  33. Gross, J., Highberger, J. M., and Schmitt, F. O., 1954, Collagen structures considered as states of aggregation of a kinetic unit. The tropocollagen particle, Proc. Natl. Acad. Sci. USA 40:679–688.Google Scholar
  34. Hall, C. E., 1956, Visualization of individual macromolecules with the electron microscope, Proc. Natl. Acad. Sci. USA 42:801–806.Google Scholar
  35. Hasty, D. L., and Hay, E. D., 1977, Freeze-fracture studies of the developing cell surface, J. Cell Biol. 72:667–686.Google Scholar
  36. Haworth, R. A., and Chapman, J. A., 1977, A study of the growth of normal and iodinated collagen fibrils in vitro using electron microscope autoradiography, Biopolymers 16:1895–1906.Google Scholar
  37. Hay, E. D., and Revel, J.-P., 1969, Fine structure of the developing avian cornea, in: Monographs in Developmental Biology, Vol. 1 (A. Wolsky and P. S. Chen, eds.), Karger, Basel.Google Scholar
  38. Hay, E. D., Hasty, D. L., and Kiehnau, K. L., 1978, Fine structure of collagens and their relation to glycosaminoglycans (GAG), in: Collagen-Platelet Interaction (H. Gastpar, K. Kuhn, and R. Marx, eds.), pp. 129–151, Schattauer, Stuttgart.Google Scholar
  39. Hayashi, T., and Nagai, Y., 1973, Factors affecting the interactions of collagen molecules as observed by in vitro fibril formation. Effects of species and concentration of anions, J. Biochem. 74:253–262.Google Scholar
  40. Hearn, M. T. W., Jenkinson, M. L., Myers, D. B., and Peake, B. M., 1979, Studies on the conformational transitions of rat skin collagen using a spin-label probe, J. Chem. Soc. Perkin Trans. 1 12:1542–1547.Google Scholar
  41. Helseth, D. L., Lechner, J. H., and Veis, A., 1979, Role of the amino-terminal extrahelical region of type I collagen in directing the 4D overlap in fibrogenesis, Biopolymers 18:3005–3014.Google Scholar
  42. Hodge, A. J., and Petruska, J. A., 1963, Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule, in: Aspects of Protein Structure (G. N. Ramachandran, ed.), pp. 280–300, Academic Press, New York.Google Scholar
  43. Hoeve, C. A. J., and Flory, P. J., 1958, The elastic properties of elastin, J. Am. Chem. Soc. 80:6523–6526.Google Scholar
  44. Hoeve, C. A. J., and Flory, P. J., 1974, The elastic properties of elastin, Bipolymers 13:677–686.Google Scholar
  45. Holmes, D. F., and Chapman, J. A., 1979, Axial mass distributions of collagen fibrils grown in vitro: Results for the end regions of early fibrils, Biochem. Biophys. Res. Commun. 87:993–999.Google Scholar
  46. Holmes, L. B., and Trelstad, R. L., 1980, Cell polarity in precartilage mouse limb mesenchyme cells, Dev. Biol. 78:511–520.Google Scholar
  47. Honya, M., and Mizunuma, H., 1974, Collagen fibrillogenesis in vitro: An accelerative effect of surfactants on collagen fibril formation, J. Biochem. 75:113–121.Google Scholar
  48. Hulmes, D. J. S, and Miller, A., 1979, Quasi-hexagonal molecular packing in collagen fibrils, Nature (London) 2V03 878–880.Google Scholar
  49. Hulmes, D. J. S., Miller, A., Parry, D. A. D., Piez, K. A., and Woodhead-Galloway, J., 1973, Analysis of the primary structure of collagen for the origins of molecular packing, J. Mol. Biol. 49:137–148.Google Scholar
  50. Humphreys, S., and Porter, K. R., 1976, Collagen deposition on a preformed grid, J. Morphol. 149:53–72.Google Scholar
  51. Jelinski, L. W., and Torchia, D. A., 1979, 13C/1H high power double magnetic resonance investigation of collagen backbone motion in fibrils and in solution, J. Mol. Biol. 133:45–65.Google Scholar
  52. Kang, A. H., 1972, Studies on the location of intermolecular cross-links in collagen: Isolation of a CNBr peptide containing hydroxylysinonorleucine, Biochemistry 11:1828–1835.Google Scholar
  53. Katz, E. P., and Li, S. T., 1973, The intermolecular space of reconstituted collagen fibrils, J. Mol. Biol. 73:351–369.Google Scholar
  54. Kruse, N. J., and Bornstein, P., 1975, The metabolic requirements for transcellular movement and secretion of collagen, J. Biol. Chem. 250:4841–4847.Google Scholar
  55. Kuhn, K., Kuhn, J., and Schuppler, G., 1964, Kollagenfibrillen mit anormalen Querstreifung-smuste, Naturwissenschaften 51:337.Google Scholar
  56. Kurkinen, M., Alitalo, K., Vaheri, A., Stenman, S. and Saxen, L., 1979, Fibronectin in the development of the embryonic chick eye, Dev. Biol. 69:589–600.Google Scholar
  57. Lapiere, C. M., Nusgens, B., and Pierard, G. E., 1977, Interaction between collagen type I and type III in conditioning bundles organization, Connect. Tissue Res. 5:21–29.Google Scholar
  58. Lillie, J. H., MacCallum, D. K., Scaletta, L. J., and Occhino, J. C., 1977, Collagen structure: Evidence for a helical organization of the collagen fibril, J. Ultrastruct. Res. 58:134–143.Google Scholar
  59. Linsenmayer, T. F., Smith, G. N., and Hay, E. D., 1977, Synthesis of two collagen types by embryonic chick corneal epithelium in vitro, Proc. Natl. Acad. Sci. USA 74:39–43.Google Scholar
  60. McClain, P. E., and Wiley, E. R., 1972, Differential scanning calorimeter studies of the thermal transitions of collagen, J. Biol. Chem. 247:692–697.Google Scholar
  61. Maruyama, K., Matsubara, S., Natori, R., Nonomura, Y., Kimura, S., Ohashi, K., Murakami, F., Handa, S., and Eguchi, G., 1977, Connectin, an elastic protein of muscle. Characterization and function, J. Biochem. 82:317–337.Google Scholar
  62. Meek, K. M., Chapman, J. A., and Hardcastle, R. A., 1979, The staining pattern of collagen fibrils. Improved correlation with sequence data, J. Biol. Chem. 254:10710–10714.Google Scholar
  63. Miller, A., 1976, Molecular packing in collagen fibrils, in: Biochemistry of Collagen (G. N. Ramachandran and A. H. Reddi, eds.), pp. 85–136, Plenum Press, New York.Google Scholar
  64. Miller, A., and Wray, J. S., 1971, Molecular packing in collagen, Nature (London) 230:437–439.Google Scholar
  65. Myers, D. B., Highton, T. C., and Rayns, D. G., 1971, Ruthenium red positive filaments interconnecting collagen fibrils, J. Ultrastruct. Res. 42:87–92.Google Scholar
  66. Nadol, J. B., Jr., Gibbins, J. R., and Porter, K. R., 1969, A reinterpretation of the structure and development of the basement lamella: An ordered array of collagen in fish skin, Dev. Biol. 20:304–331.Google Scholar
  67. Nakao, T., 1975, Fine structure of the myotendinous junction and terminal coupling in the skeletal muscle of the lamprey, Lampetra japonica, Anat. Rec. 182:321–338.Google Scholar
  68. Nakao, K., and Bashey, R. I., 1972, Fine structure of collagen fibrils as revealed by ruthenium red, Exp. Mol. Pathol. 17:6–13.Google Scholar
  69. Neville, A. C., 1976, Animai Asymmetry, Arnold, London.Google Scholar
  70. Nicolis, G., and Prigogine, I., 1977, Seif-organization in Non-equiiibrium Systems, Wiley, New York.Google Scholar
  71. Nist, C., von der Mark, K., Hay, E. D., Olsen, B. R., Bornstein, P., Ross, R., and Dehm, P., 1975, Location of procollagen in chick corneal and tendon fibroblasts with ferritin-conjugated antibodies, J. Cell Biol. 65:75–87.Google Scholar
  72. Oakes, B. W., and Bialkower, B., 1977, Biomechanical and ultrastructural studies on the elastic wing tendon from the domestic fowl, J. Anat. 123:369–387.Google Scholar
  73. Obrink, B., 1972, Non-aggregated tropocollagen at physiological pH and ionic strength, Eur. J. Biochem. 25:563–572.Google Scholar
  74. Olsen, B. R., 1963, Electron microscope studies on collagen. I. Native collagen fibrils, Z. Zellforsch. Mikrosk. Anat. 59:184–198.Google Scholar
  75. Parry, D. A. D., and Craig, A. S., 1979, Electron microscope evidence for an 80 A unit in collagen fibrils, Nature (London) 282:213–215.Google Scholar
  76. Pease, D. C., and Bouteille, M., 1971, The tridimensional ultrastructure of native collagenous fibrils, cytochemical evidence for a carbohydrate matrix, J. Ultrastruct. Res. 35:339–358.Google Scholar
  77. Preston, B. N., Laurent, T. C., Comper, W. D., and Checkley, G. J., 1980, Rapid polymer transport in concentrated solutions through the formation of ordered structures, Nautre (London) 287:499–503.Google Scholar
  78. Prigogine, I., 1980, From Being to Becoming: Time and Complexity in the Physical Sciences, Freeman, San Francisco.Google Scholar
  79. Privalov, P. L., Tektopulo, E. I., and Tischenko, V. M., 1979, Stability and mobility of the collagen structure, J. Mol. Biol. 127:203–216.Google Scholar
  80. Pyeritz, R. E., and McKusick, V. A., 1979, The Marfan syndrome: Diagnosis and management, N. Engl. J. Med. 300:772–777.Google Scholar
  81. Ramachandran, G. N., and Ramakrishnan, C., 1976, Molecular structure, in: Biochemistry of Collagen (G. N. Ramachandran and A. H. Reddi, eds.), pp. 45–84, Plenum Press, New York.Google Scholar
  82. Revel, J.-P., and Hay, E. D., 1963, An autoradiographic and electron microscopic study of collagen synthesis in differentiating cartilage, Z. Zellforsch. Mikrosk. Anat. 61:110–144.Google Scholar
  83. Ross, R., and Bornstein, P., 1969, The elastic fibre. I. The separation and partial characterization of its macromolecular components, J. Cell Biol. 40:366–381.Google Scholar
  84. Ruggeri, A., Benazzo, F., and Reale, E., 1979, Collagen fibrils with straight and helicoidal microfibrils: A freeze-fracture and thin-section study, J. Ultrastruct. Res. 68:101–108.Google Scholar
  85. Silver, F. H., 1981, Type I collagen fibrillogenesis in vitro: Additional evidence for the assembly mechanism, J. Biol. Chem. 256:4973–4977.Google Scholar
  86. Silver, F. H., and Trelstad, R. L., 1979, Linear aggregation and the turbidimetric lag phase: Type I collagen fibrillogenesis in vitro, J. Theor. Biol. 81:515–526.Google Scholar
  87. Silver, F. H., and Trelstad, R. L., 1980, Type I collagen in solution: Structure and properties of fibril fragments, J. Biol. Chem. 255:9427–9433.Google Scholar
  88. Silver, F. H., Langley, K. H., and Trelstad, R. L., 1979, Type I collagen fibrillogenesis: Initiation via a reversible linear growth step, Bipolymers 18:2523–2535.Google Scholar
  89. Smith, J. W., 1968, Molecular pattern in native collagen, Nature (London) 219:157–158.Google Scholar
  90. Squire, J. M., and Freundlich, A., 1980, Direct observation of a transverse periodicity in collagen fibrils, Nature (London) 288:410–413.Google Scholar
  91. Stevens, P. S., 1974, Patterns in Nature, Atlantic/Little, Brown, Boston.Google Scholar
  92. Stinson, R. H., and Sweeny, P. R., 1980, Skin collagen has an unusual D-spacing, Biochim. Biophys. Acta 621:158–161.Google Scholar
  93. Tanford, C., 1961, Physical Chemistry of Macromolecules, Wiley, New York.Google Scholar
  94. Thompson, D’Arcy, 1969, On Growth and Form, Abridged Edition (J. T. Bonner, ed.), Cambridge University Press, London.Google Scholar
  95. Toole, B. P., and Trelstad, R. L., 1971, Hyaluronate production and removal during corneal development in the chick, Dev. Biol. 26:18–35.Google Scholar
  96. Trelstad, R. L., 1970, The Golgi apparatus in chick corneal epithelium: Changes in intracellular position during development, J. Cell Biol. 45:34–42.Google Scholar
  97. Trelstad, R. L., 1971, Vacuoles in the embryonic chick corneal epithelium, an epithelium which produces collagen, J. Cell Biol. 48:689–694.Google Scholar
  98. Trelstad, R. L., 1977, Mesenchymal cell polarity and morphogenesis of chick cartilage, Dev. Biol. 59:153–163.Google Scholar
  99. Trelstad, R. L., and Coulombre, A. J., 1971, Morphogenesis of the collagenous stroma in the chick cornea, J. Cell Biol. 50:840–858.Google Scholar
  100. Trelstad, R. L., and Hayashi, K., 1979, Tendon fibrillogenesis: Intracellular collagen subassemblies and cell surface changes associated with fibril growth, Dev. Biol. 71:228–242.Google Scholar
  101. Trelstad, R. L., Hayashi, K., and Toole, B. P., 1974, Epithelial collagens and glycosaminoglycans in the embryonic cornea, J. Cell Biol. 62:815–830.Google Scholar
  102. Trelstad, R. L., Hayashi, K., and Gross, J., 1976, Collagen fibrillogenesis: Intermediate aggregates and suprafibrillar order, Proc. Natl. Acad. Sci. USA 73:4027–4031.Google Scholar
  103. Trus, B. L., and Piez, K. A., 1980, Compressed microfibril models of the native collagen fibril, Nature (London) 286:300–301.Google Scholar
  104. Urry, D. W., 1978, Molecular perspectives of vascular wall structure and disease: The elastic component, Perspect. Biol. Med. 21:265–291.Google Scholar
  105. Van Holde, K. E., 1971, Physical Biochemistry, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  106. Veis, A., and Yuan, L., 1975, Structure of the collagen microfibril. A four strand overlap model, Biopolymers 14:895–905.Google Scholar
  107. von der Mark, K., von der Mark, H., Timpl, R., and Trelstad, R. L., 1977, Immunofluorescence localization of collagen types I, II, and III in the embryonic chick eye, Dev. Biol. 59:75–85.Google Scholar
  108. Wainwright, S. A., Vosburgh, F., and Hebrank, J. H., 1978, Sharkskin: Function in locomotion, Science 202:747–749.Google Scholar
  109. Weinstock, M., 1972, Collagen formation: Observations on its intracellular packaging and transport, Z. Zellforsch. Mikrosk. Anat. 129:455–470.Google Scholar
  110. Weinstock, M., 1977, Centrosymmetrical cross-banded structures in the matrix of rat incisor predentin and dentin, J. Ultrastruct. Res. 61:218–229.Google Scholar
  111. Weinstock, M., and Leblond, C. P., 1974, Synthesis, migration and release of precursor collagen by odontoblasts as visualized by radioautography after [3H] proline administration, J. Cell Biol. 60:92–127.Google Scholar
  112. Williams, B. R., Gelman, R. A., Poppke, D. C., and Piez, K. A., 1978, Collagen fibril formation, optimal in vitro conditions and preliminary kinetic results, J. Biol. Chem. 253:6578–6585.Google Scholar
  113. Williams, V. R., and Williams, H. B., 1973, Basic Physical Chemistry for the Life Sciences, Freeman, San Francisco.Google Scholar
  114. Wood, G. C., and Keech, M. K., 1960, The formation of fibrils from collagen solutions. 1. The effect of experimental conditions: kinetic and electron-microscope studies, Biochem. J. 75:588–598.Google Scholar
  115. Woodhead-Galloway, J., 1980, Structure of the collagen fibril: Some variations on a theme of tetragonally packed dimers, Proc. B. Soc. London Ser. B 209:275–297.Google Scholar
  116. Yamada, H., 1970, Strength of Biological Materials, Williams & Wilkins, Baltimore.Google Scholar
  117. Zimmermann, B. K., Pikkarainen, J., Fietzek, P. P., and Kuhn, K., 1970, Cross-linkages in collagen. Demonstration of three different intermolecular bonds, Eur. J. Biochem. 16:217–225.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Robert L. Trelstad
    • 1
  • Frederick H. Silver
    • 1
  1. 1.Department of PathologyCollege of Medicine and Dentistry of New Jersey-Rutgers Medical SchoolPiscatawayUSA

Personalised recommendations