Skip to main content
  • 158 Accesses

Abstract

There are three alternative techniques available for Use in industrial and research laboratories where the calibrations can be carried out (i) by comparison with a ‘transferable’ or ‘reference’ gauge which is subject to periodic calibration in a National Standard or equivalent laboratory; (ii) against a fundamental standard which may be a true pressure (for example a McLeod) gauge; (iii) on a plant especially designed to produce precise pressures. Due to the extensive developments in the design and construction of the reference gauges (the capacitance manometer, section 1.3, and the spinning rotor gauge, section 1.4) it is the former technique which has the greatest attraction for most vacuum workers. With the comparison techniques, calibration of practical working gauges, such as the ionization and thermal conductivity, can be made down to pressures of 10−4 mbar, with uncertainties of the order of ± 5%. It requires a considerable investment in both skill and finance to obtain a significant improvement in this performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nash, P.J. and Thompson, T.J. (1983) J. Vac. Sci. Technol. A1, 172.

    Article  Google Scholar 

  2. Buckingham, J.D. (1976) Vacuum 26, 143.

    Article  Google Scholar 

  3. Reich, G. (1980) Proc. 8th Int. Vacuum Congr., Cannes, 11, 222.

    Google Scholar 

  4. Poulter, K.F. (1977) J. Phys. E. Sci. Instrum., 10, 112.

    Article  Google Scholar 

  5. Elliott, K.W.T., Woodman, D.M. and Dadson, R.S. (1967) Vacuum 17, 439.

    Article  Google Scholar 

  6. Barton, R.S. and Chubb, J.N. (1965) Vacuum 15, 113.

    Article  Google Scholar 

  7. Normand, C. (1962) Trans. 8th AVS Vacuum Symp. 1961, 1, Pergamon, Oxford, 534.

    Google Scholar 

  8. Florescue, N. (1962) Trans. 8th AVS Vacuum Symp. 1961 1, Pergamon, Oxford, 504.

    Google Scholar 

  9. Bannenberg, J.G. and Tip, A. (1968) Proc. 4th Int. Vac. Congr., Manchester 1968, Inst. of Phys. and Phys. Soc. Conf. Ser. 6, Addlard & Son, Surrey, 609.

    Google Scholar 

  10. Hayward, W. and Jepson, R. (1962) Trans. 9th AVS Vacuum Symp. 1962, Macmillan, New York, 459.

    Google Scholar 

  11. Bennewitz, H. and Dohmann, H. (1964) Vakuumtechnik 14, 8.

    Google Scholar 

  12. Owens, C. (1965) J. Vac. Sci. Technol. 2, 104.

    Article  Google Scholar 

  13. Roehrig, J. and Simons, J. (1962) Trans. 8th AVS Vacuum Symp. 1961, 1, Pergamon, Oxford, 511.

    Google Scholar 

  14. Hultzman, W., and Krause, L. (1974) J. Vac. Sci. Technol. 11, 889.

    Article  Google Scholar 

  15. Hojo, H., Ono, M. and Nakayama, K. (1977) Proc. 7th Int. Vac. Congr., Vienna 1977, Berger & Sohne, Vienna, 117.

    Google Scholar 

  16. Poulter, K.F. (1978) Vacuum 28, 135.

    Article  Google Scholar 

  17. McCulloh, K.E., Tilford, C.R., Wood, S.D. and Martin, D.F. (1986) J. Vac. Sci. Technol. A4, 362.

    Google Scholar 

  18. Knudsen, M. (1950) Kinetic Theory of Gases, 3rd edn., Methuen, London.

    Google Scholar 

  19. Dushman, S. (1949) Scientific Foundations of Vacuum Technique, John Wiley, New York.

    Google Scholar 

  20. Bureau, A.J., Laslett, L.J. and Keller, J.M. (1952) Rev. Sci. Instrum. 23, 683.

    Article  Google Scholar 

  21. Choumoff, P., Bernardet, H., Mativet, J. and Sauneuf, R. (1970) J. Vac. Sci. Technol. 7, 270.

    Article  Google Scholar 

  22. Grosse, G. and Messer, G. (1970) Vacuum 20, 373.

    Article  Google Scholar 

  23. Poulter, K. (1974) J. Phys. E., Sci. Instrum. 7, 39.

    Article  Google Scholar 

  24. Fowler, P. and Brock, F.J. (1970) J. Vac. Sci. Technol. 7, 507.

    Article  Google Scholar 

  25. Grosse, G. and Messer, G. (1981) Vakuumtechnik 30, 226.

    Google Scholar 

  26. Kaye, G.W.C. (1927) High Vacua, Longman & Green, New York.

    Google Scholar 

  27. Peggs, G.N. (1976) Vacuum 26, 321.

    Article  Google Scholar 

  28. McCulloh, K.E., Tilford, C.R., Ehrlich, C.D. and Long, F.G. (1987) J. Vac. Sci. Technol. A5, 376.

    Google Scholar 

  29. Christian, R.G. and Leck, J.H. (1966) J. Sci. Instrum. 43, 229.

    Article  Google Scholar 

  30. Lawson, P.R.W. (1975) Vacuum 25, 377.

    Article  Google Scholar 

  31. Close, K.J., Vaugham-Watkins, R.S. and Yarwood, J. (1977) Vacuum 27, 511.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Blackie & Son Ltd.

About this chapter

Cite this chapter

Leck, J.H. (1989). Gauge calibration. In: Total and Partial Pressure Measurement in Vacuum Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0877-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0877-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8224-2

  • Online ISBN: 978-1-4613-0877-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics