Skip to main content
  • 168 Accesses

Abstract

In a gas at low pressure the number of positive ions produced by the passage of a stream of electrons is directly proportional to the molecular concentration. The linear relation between ionization and density holds from zero gas pressure up to the point at which ion formation is sufficient to alter effectively the current and energy of the electron stream. Since the gas pressure (at a constant temperature) is directly proportional to its density, the positive ion current produced by a steady electron current may be used as an indicator of pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, P.T. (1930) Phys. Rev. 36, 1293; (1931) 37, 808.

    Google Scholar 

  2. Tate, J.T. and Smith, P.T. (1932) Phys. Rev. 39, 270.

    Google Scholar 

  3. Buckley, O.E. (1916) Proc. Nat. Acad. Sci. USA 2, 683.

    Google Scholar 

  4. Misamichi, So. (1919) Proc. Phys. Math. Soc. (Japan) 1, 76.

    Google Scholar 

  5. Dushman, S. and Found, C.G. (1921) Phys. Rev. 17, 7.

    Google Scholar 

  6. Dushman, S. and Young, A.H. (1945) Phys. Rev. 68, 278.

    Google Scholar 

  7. Reynolds, N.B. (1931) Physics 1, 182.

    Google Scholar 

  8. Holanda, R. (1973) J. Vac. Sci. Technol. 10, 1133.

    Google Scholar 

  9. Found, C.G. and Dushman, S. (1924) Phys. Rev. 23, 734.

    Google Scholar 

  10. Dushman, S. and Young, A.H. (1945) Phys. Rev. 68, 278.

    Google Scholar 

  11. Downing, J.R. and Mellen, G. (1946) Rev. Sci. Instrum. 17, 218.

    Google Scholar 

  12. Riddiford, I., (1951) J. Sci. Instrum. 28, 375.

    Google Scholar 

  13. Wagener, S. and Johnson, C.B. (1951) J. Sci. Instrum. 28, 278.

    Google Scholar 

  14. Moesta, H. and Renn, R. (1957) Vakuumteknik. 6, 35.

    Google Scholar 

  15. Schulz, G.J. (1957) J. Appl. Phys. 28, 1149.

    Google Scholar 

  16. Schulz, G.J. and Phelps, A.V. (1957) Rev. Sci. Instrum. 28, 1051.

    Google Scholar 

  17. McGowan, W. and Kerwin, L. (1960) Can. J. Phys. 38, 567.

    Google Scholar 

  18. Cobic, B., Carter, G. and Leck, J.H. (1961) Vacuum 11, 247.

    Google Scholar 

  19. Ehrlich, G. (1961) J. Appl. Phys. 32, 4.

    Google Scholar 

  20. Rothe, E.W. (1964) J. Vac. Sci. Technol. 1, 66.

    Google Scholar 

  21. Shaw, M.L., (1966) Rev. Sci. Instrum. 37, 113.

    Google Scholar 

  22. Utterbach, N.G. and Griffith, T. Jr. (1966) Rev. Sci. Instrum. 37, 866.

    Google Scholar 

  23. Cleaver, J.S. (1967) J. Sci. Instrum. 44, 969.

    Google Scholar 

  24. Walters, W.L. and Craig, J.H. Jr. (1968) J. Vac. Sci. Technol. 5, 152.

    Google Scholar 

  25. Holanda, R. (1972) NASA Rept No. TH D-6815.

    Google Scholar 

  26. Summers, R.L. (1969) NASA Rept No. TN D-5285.

    Google Scholar 

  27. Nakao, F. (1975) Vacuum 25, 431.

    Google Scholar 

  28. Langmuir, I. and Jones, H.A. (1928) Phys. Rev. 31, 357.

    Google Scholar 

  29. Morgulis, N. (1934) Z. Physik 5, 407.

    Google Scholar 

  30. Schwarz, H. (1944) Z. Physik 122, 437.

    Google Scholar 

  31. Tominaga, G. (1950) J. Vac. Soc. (Japan) 1, 27.

    Google Scholar 

  32. Metson, G.H. (1951) Br. J. Appl. Phys. 2, 46.

    Google Scholar 

  33. Tominaga, G. (1955) Br. J. Appl. Phys. 2, 19.

    Google Scholar 

  34. Oda, Z. and Arata, Y. (1957) J. Vac. Soc. (Japan) 7, 197.

    Google Scholar 

  35. Ishii, H. and Nakayama, K. (1960) J. Vac. Soc. (Japan) 3, 77.

    Google Scholar 

  36. Anderson, H.V. (1963) Rev. Sei. Instrum. 34, 703.

    Google Scholar 

  37. Young, J.R. (1973) J. Vac. Sci. Technol. 10, 212.

    Google Scholar 

  38. Nakayama, K. and Hojo, H. (1974) 6th Int. Vacuum Congr., Kyoto.

    Google Scholar 

  39. Bartmess, J.E. and Georgiadis, R.M. (1983) Vacuum 33, 149.

    Google Scholar 

  40. Savchik, K.J. and Miller, J.A. (1979) J. Am. Chem. Soc. 101, 7206.

    Google Scholar 

  41. Apker, L. (1948) Industr. Engng. Chem. 40, 846.

    Google Scholar 

  42. Anderson, P.A. (1935) Phys. Rev. 47, 958.

    Google Scholar 

  43. Nottingham, W.B. (1937) J. Appl. Phys. 8, 762.

    Google Scholar 

  44. Lander, J.J. (1950) Rev. Sci. Instrum. 21, 672.

    Google Scholar 

  45. Bayard, R.T. and Alpert, D. (1950) Rev. Sci. Instrum. 21, 571.

    Google Scholar 

  46. Nottingham, W.B. (1954) Vac. Symp. Trans. Comm. Vac. Tech., Pergamon, New York, 76; (1961) Vac. Symp. Trans. Amer. Vac. Soc. 1, Pergamon, New York, 494.

    Google Scholar 

  47. Carter, G. and Leck, J.H. (1959) Br. J. Appl. Phys. 10, 364.

    Google Scholar 

  48. Van Oostrom, A. (1961) Vac. Symp. Trans. Amer. Vac. Soc. 1, Pergamon, New York, 443.

    Google Scholar 

  49. Alpert, D. (1958) Handbuch der Physik 12, Springer, Berlin, 609.

    Google Scholar 

  50. Ackley, J.W., Lothrop, C.F. and Wheeler, W.R.W. (1962) Vac. Symp. Trans. Amer. Vac. Soc. 9, Pergamon, New York, 452.

    Google Scholar 

  51. Redhead, P.A. (1960) Rev. Sci. Instrum. 31, 343.

    Google Scholar 

  52. Appelt, G. (1962) Vakuumtechnik 11, 174.

    Google Scholar 

  53. Hobson, J.P. (1964) J. Vac. Sci. Technol. 1, 1.

    Google Scholar 

  54. Lange, W.J. and Singleton, J.H. (1966) J. Vac. Sci. Technol. 3, 319.

    Google Scholar 

  55. Poulter, K.F. (1970) Vacuum 20, 385.

    Google Scholar 

  56. Edwards, D. and Lanni, C. (1980) J. Vac. Sci. Technol. 17, 355.

    Google Scholar 

  57. Chen, J.Z., Suen, C.D. and Kuo, Y.H. (1984) Vacuum 34, 641.

    Google Scholar 

  58. Watanabe, F. (1987) J. Vac. Sci. Technol. A5, 242.

    Google Scholar 

  59. Blechschmidt, D. (1974) J. Vac. Sci. Technol. 11, 1160.

    Google Scholar 

  60. Pittaway, L.G. (1974) Philips Res. Repts. 29, 261.

    Google Scholar 

  61. Pittaway, L.G. (1974) Philips Res. Repts. 29, 283.

    Google Scholar 

  62. Lafferty, J.M. (1961) J. Appl. Phys. 32, 424.

    Google Scholar 

  63. Davis, W.D. (1968) J. Vac. Sci. Technol. 5, 23.

    Google Scholar 

  64. Visser, J. (1967) Vacuum 17, 73.

    Google Scholar 

  65. Chen, J.Z. Suen, C.D. and Kuo, Y.H. (1978) J. Vac. Sci. Technol. A5, 2373.

    Google Scholar 

  66. Gabor, D. (1962) British Patent No. 887251.

    Google Scholar 

  67. Herb, R.G. Pauly, T. and Fischer, H.J. (1963) Bull. Amer. Phys. Soc. 8, 336.

    Google Scholar 

  68. Mourad, W.G., Pauly, T. and Herb, R.G. (1964) Rev. Sci. Instrum. 35, 661.

    Google Scholar 

  69. Meyer, E.A. and Herb, R.G. (1967) J. Vac. Sci. Technol. 4, 63.

    Google Scholar 

  70. Gosselin, C.M., Beitel, G.A. and Smith, A. (1970) J. Vac. Sci. Technol. 7, 233.

    Google Scholar 

  71. Fitch, K.R. and Rushton, G.J. (1970) Vacuum 20, 535.

    Google Scholar 

  72. Fitch, K.R., Mulvey, T., Thatcher, W.J. and McIlwraith, A.H. (1971) J. Phys. E. 4, 533.

    Google Scholar 

  73. McCulloh, K.E. and Tilford, C.R. (1981) J. Vac. Sci. Technol. 18, 994.

    Google Scholar 

  74. Tilford, C.R. (1983) J. Vac. Sci. Technol. A1, 152.

    Google Scholar 

  75. Tilford, C.R. (1985) J. Vac. Sci. Technol. A3, 546.

    Google Scholar 

  76. Poulter, K.F. and Sutton, C.M. (1981) Vacuum 31, 147.

    Google Scholar 

  77. Angerth, B. (1972) Vacuum 22, 7.

    Google Scholar 

  78. Laurent, J.M., Benvenuti, C. and Scalambrin, F. (1977) Proc. 7th Int. Vacuum Congr., Vienna, 1, 113.

    Google Scholar 

  79. Redhead, P.A. (1969) J. Vac. Sci. Technol., 6, 848.

    Google Scholar 

  80. Pittaway, L.G. (1970) J. Appl. Phys. 3, 1113.

    Google Scholar 

  81. Arnold, P.C. and Bills, D.G. (1984) J. Vac. Sci. Technol. A2, 159.

    Google Scholar 

  82. Gentsch, H., Tewes, J. and Messer, G. (1985) Vacuum 35, 137.

    Google Scholar 

  83. Choumoff, P. and Iapteff, B. (1974) Electron Fisc. Apli. 17, 71.

    Google Scholar 

  84. Choumoff, P. and laptef,, B. (1974) Proc. 6th Int. Vac. Congr., Kyoto.

    Google Scholar 

  85. Poulter, K.F. Calcatelli, A., Choumoff, P.S, lapteff, B., Messer, G. and Grosse, G. (1980). J. Vac. Sci. Technol. 17, 679.

    Google Scholar 

  86. Wood, S.D. and Tilford, C.R. (1985) J. Vac. Sci. Technol. A3, 542.

    Google Scholar 

  87. Messer, G. (1977) Phys. Bull. (Germany) 33, 343.

    Google Scholar 

  88. Becker, H.-U. and Messer, G. (1980) Vide, Couches Minces, 2, Suppl. 201, 234.

    Google Scholar 

  89. Utterback, N.G. and Griffith, T. Jr. (1966) Rev. Sci. Instrum. 37.

    Google Scholar 

  90. Werner, J.G. and Leck, J.H. (1969) J. Sci. Instrum. 2, 861.

    Google Scholar 

  91. Redhead, P.A. and Hobson, J.P. (1965) Br. J. Appl. Phys. 16, 1555.

    Google Scholar 

  92. Nottingham, W.B. and Torney, F.L. (1960) Vac. Symp. Trans. Amer. Vac. Soc., Pergamon, New York, 117.

    Google Scholar 

  93. Schulz, G.J. (1957) J. Appl. Phys. 28, 1149.

    Google Scholar 

  94. Schulz, G.J. and Phelps, A.V. (1957) Rev. Sci. Instrum. 28, 1051.

    Google Scholar 

  95. Weinman, J.A. (1966) Rev. Sci. Instrum. 37, 636.

    Google Scholar 

  96. Cleaver, J.S. (1967) J. Sci. Instrum. 44, 969.

    Google Scholar 

  97. Beeck, U. and Reich, G. (1974) Vacuum 24, 27.

    Google Scholar 

  98. Kudzia, J. and Stbwko, W. (1981) Vacuum 31, 9.

    Google Scholar 

  99. Kudzia, J. and Stówko, W. (1981) Vacuum 31, 359.

    Google Scholar 

  100. Kuo, Y.H. (1981) Vacuum 31, 303.

    Google Scholar 

  101. Langmuir, I. (1913) J. Amer. Chem. Soc. 35, 105.

    Google Scholar 

  102. Langmuir, I. (1915) J. Amer. Chem. Soc. 37, 1139.

    Google Scholar 

  103. Langmuir, I. (1915) J. Amer. Chem. Soc. 37, 417; (1912) 34, 860; (1912) 34, 1310; (1914) 36, 1708.

    Google Scholar 

  104. Langmuir, I. (1913) J. Amer. Chem. Soc. 35, 931.

    Google Scholar 

  105. Riddiford, L. (1951) J. Sci. Instrum. 28, 375.

    Google Scholar 

  106. Blears, J. (1950) Rev. Sci. Instrum. Suppl. No. 1, 36.

    Google Scholar 

  107. Young, J.R. (1959) J. Appl. Phys. 30, 1671.

    Google Scholar 

  108. Schlier, R.E. (1958) J. Appl. Phys. 29, 1162.

    Google Scholar 

  109. Schissel, P.O. (1962) J. Appl. Phys. 33, 2659.

    Google Scholar 

  110. Grayson, M.A. (1979) Int. J. Mass. Spectr. Ion Phys. 30, 383.

    Google Scholar 

  111. Podor, B. (1983) Vacuum 33, 67.

    Google Scholar 

  112. Schwarz, H. (1944) Z. Phys. 122, 437.

    Google Scholar 

  113. Carter, G., Cobic, B. and Leck, J.H. (1961) Br. J. Appl. Phys. 12, 384.

    Google Scholar 

  114. Hickmott, T.W. (1960) J. Chem. Phys. 32, 810.

    Google Scholar 

  115. Langmuir, I. (1913) Trans. Amer. Inst. Elect. Engrs. 32, 1893.

    Google Scholar 

  116. Gear, P.E. (1975) Vacuum 26, 3.

    Google Scholar 

  117. Alpert, D. (1958) Handbuch der Physik 12, Springer, Berlin, 609.

    Google Scholar 

  118. Carter, G. (1959) Vacuum 9, 190.

    Google Scholar 

  119. Cobic, B., Carter, G. and Leck, J.H. (1961) Br. J. Appl. Phys. 12, 282.

    Google Scholar 

  120. James, L.H. and Carter, G. (1962) Br. J. Appl. Phys. 13, 2.

    Google Scholar 

  121. Berman, A. (1982) Vacuum 32, 497.

    Google Scholar 

  122. Varnerin, L.J. and Carmichael, J.H. (1955) J. Appl. Phys. 26, 782.

    Google Scholar 

  123. Young, J.R. (1955) J. Appl. Phys. 26, 1302.

    Google Scholar 

  124. Hobson, J.P. and Edmonds, T. (1963) Can. J. Phys. 41, 827.

    Google Scholar 

  125. Byvik, C.E. and Bradford, J.M. (1966) Space Sim. Conf., NASA Langley Research Center, Houston, 209.

    Google Scholar 

  126. Ishikawa, K. (1965) Jap. J. Appl. Phys. 4, 461.

    Google Scholar 

  127. Leck, J.H. and Carter, G. (1960) Trans. 1st Int. Congr. Vac. Technol., 463.

    Google Scholar 

  128. Alpert, D. (1953) J. Appl. Phys. 24, 860.

    Google Scholar 

  129. Bills, D.G. and Carleton, N.P. (1958) J. Appl. Phys. 29, 692.

    Google Scholar 

  130. Cobic, B., Carter, G. and Leck, J.H. (1961) Br. J. Appl. Phys. 12, 288.

    Google Scholar 

  131. Hobson, J.P. (1961) Vacuum 11, 16.

    Google Scholar 

  132. Blears, J. (1947) Proc. Roy. Soc. A. 188, 62.

    Google Scholar 

  133. Haefer, R.A. and Hengevoss, J. (1960) Vac. Symp. Trans. Amer. Vac. Soc., Pergamon, New York, 67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Blackie & Son Ltd.

About this chapter

Cite this chapter

Leck, J.H. (1989). Thermionic cathode ionization gauges. In: Total and Partial Pressure Measurement in Vacuum Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0877-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0877-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8224-2

  • Online ISBN: 978-1-4613-0877-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics