Skip to main content

Thermal conductivity gauges

  • Chapter

Abstract

Because it is a function of the gas pressure, the rate of heat transfer through a gas can, after a suitable calibration, be used to give an indication of the pressure. This principle was first put to use in the field of high vacuum by Pirani in 19061, when it became important to measure with some accuracy the pressure inside electric lamp bulbs. Pirani showed that the heat transfer could best be measured by observing the rate of loss of heat from a thin wire suspended freely in the vacuum chamber. The heat loss from the wire is the sum of the following four components: (i) conduction; (ii) convection; (iii) radiation and (iv) conduction along the wire to the end supports. The first and, in some special gauges, the second of these components are useful in pressure measurement, as both are dependent upon gas pressure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pirani, M. (1906) Deutsche Phys. Ges. Verk. 8, 686.

    Google Scholar 

  2. Knudsen, M. (1911) Ann. Phys. (Leipzig) 34, 593.

    Google Scholar 

  3. Roberts, J.K. (1943) Heat and Thermodynamics, 3rd edn., ( Blackie ), London.

    Google Scholar 

  4. Knudsen, M. (1950) Kinetic Theory of Gases, 3rd edn., Methuen, London.

    Google Scholar 

  5. Kennard, E.H. (1938) Kinetic Theory of Gases, McGraw-Hill, New York.

    Google Scholar 

  6. Von Smoluchowski, M. (1911) Ann. Phys. (Leipzig) 35, 983.

    Google Scholar 

  7. Hunt, A.L. (1968) J. Vac. Sci. Technol. 5, 61.

    Article  Google Scholar 

  8. Von Ubisch, H. (1947) Arkivf. Mat. Astra. och Fysik 34A, 14.

    Google Scholar 

  9. Dickins, B.G. (1934) Proc. Roy. Soc. A. 143, 517.

    Article  Google Scholar 

  10. Weber, S. (1917) Ann. Phys. (Leipzig) 54, 165, 325.

    Google Scholar 

  11. Thomas, L.B. and Olmer, F. (1943) J. Amer. Chem. Soc. 65, 1036.

    Article  Google Scholar 

  12. Leck, J.H. (1964) Pressure Measurement in Vacuum Systems, 2nd edn., Chapman & Hall, London, Appendix 2.1.

    Google Scholar 

  13. Roberts, J.K. (1930) Proc. Roy. Soc. A. 129, 146; (1932) 135, 192; (1933) 142, 518.

    Google Scholar 

  14. Mann, W.B. (1934) Proc. Roy. Soc. A. 146, 776; (1937) 158, 397.

    Google Scholar 

  15. Veis, S. (1959) Vacuum 9, 186.

    Article  Google Scholar 

  16. Hale, C.F. (1911) Trans. Amer. Elect. Chem. Soc. 20, 243.

    Google Scholar 

  17. Leck, J.H. and Martin, C.S. (1956) J. Sci. Instrum. 33, 181.

    Article  Google Scholar 

  18. Dunoyer, L. (1949) Vide 4 (20) 571; (21) 603; (22) 643.

    Google Scholar 

  19. Von Ubisch, H. (1948) Arkiv f. Mat. Astro. och Fysik 36A, 4;

    Google Scholar 

  20. Von Ubisch, H. (1948) Nature (London) 161, 927.

    Article  Google Scholar 

  21. Leck, J.H. (1952) J. Sci. Instrum. 29, 258.

    Article  Google Scholar 

  22. Ellett, A. and Zabel, R.M. (1931) Phys. Rev. 37, 1024, 1112.

    Article  Google Scholar 

  23. English, J., Fletcher, B. and Steckelmacher, W. (1965) J. Sci. Instrum. 42, 77.

    Article  Google Scholar 

  24. Leck, J.H. (1954) J. Sci. Instrum. 31, 226.

    Article  Google Scholar 

  25. McMillan, J.A. and Buch, T. (1957) Rev. Sci. Instrum. 28, 881.

    Article  Google Scholar 

  26. Johnson, J.B. (1956) Rev. Sci. Instrum. 27, 303.

    Article  Google Scholar 

  27. Flanick, A.P. and Ainsworth, J.E. (1961) Rev. Sci. Instrum. 32, 356.

    Article  Google Scholar 

  28. Heinje, L. and Vink, A.T. (1969) Philips Tech. Rev. 30, 166.

    Google Scholar 

  29. Steckelmacher, W. and Fletcher, B. (1972) J. Phys. E: Sci. Instr. 5, 405.

    Article  Google Scholar 

  30. Steckelmacher, W. (1973) Vacuum 23, 307.

    Article  Google Scholar 

  31. Voege, W. (1906) Phys. Z. 7, 498.

    Google Scholar 

  32. Hart, E.D. and Elkin, W.H. (1946) J. Sci. Instrum. 23, 17.

    Article  Google Scholar 

  33. Picard, R.G. and co-workers (1946) Rev. Sci. Instrum. 17, 125.

    Article  Google Scholar 

  34. Garrod, R.I. and Gross, K.A. (1948) J. Sci. Instrum. 25, 378.

    Article  Google Scholar 

  35. Kenty, C. and Reuter, F.W. (1947) Rev. Sci. Instrum. 18, 918.

    Article  Google Scholar 

  36. Webber, R.J. and Lane, C.T. (1946) Rev. Sci. Instrum. 17, 308.

    Article  Google Scholar 

  37. Dunlap, G.C. and Trump, J.G. (1937) Rev. Sci. Instrum. 8, 37.

    Article  Google Scholar 

  38. Benson, J.M. (1956) Vac. Symp. Trans. Comm. Vac. Tech. Pergamon, New York, 87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Blackie & Son Ltd.

About this chapter

Cite this chapter

Leck, J.H. (1989). Thermal conductivity gauges. In: Total and Partial Pressure Measurement in Vacuum Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0877-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0877-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8224-2

  • Online ISBN: 978-1-4613-0877-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics