Skip to main content

Mechanical manometers

  • Chapter
  • 160 Accesses

Abstract

The simplest vacuum pressure gauge is the glass U-tube containing mercury or some other low vapour-pressure liquid. One limb of the tube is connected to the vacuum chamber, the pressure above the other being held at some fixed value by means of an auxiliary vacuum system. Usually the pressure in the auxiliary vacuum is maintained at a very low level compared with that in the main chamber, so that the unknown pressure is given directly by the difference in levels of the two liquid columns. Differences in level of 0.1 mm can just be detected by eye. This sets a limit of minimum pressure change detectable to 0.1 mbar for a mercury filling. The sensitivity can be increased approximately 15 times by replacing the mercury with a low-vapour-pressure oil (because of the reduced density), such as butyl phthalate or Apiezon diffusion-pump oil. This allows pressure differences of the order of 10−2 mbar to be detected by eye. There are many descriptions of the practical details of this type of gauge, those by Biondi1 and Maslach2 being good examples. Damage to the vacuum system can occur all too easily if fluid is forced out of the manometer by a sudden and large pressure difference set up accidentally across it, for example due to the pressure in one limb rising to atmospheric. The damage can be prevented by simple splash traps put in each of the two arms of the U-tube some distance above the liquid surfaces3.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biondi, M.A. (1953) Rev. Sci. Instrum. 24, 989.

    Article  Google Scholar 

  2. Maslach, G.J. (1952) Rev. Sci. Instrum. 23, 367.

    Article  Google Scholar 

  3. Maguire, F.S. and Thomas, A.G. (1961) J. Sci. Instrum. 38, 261.

    Article  Google Scholar 

  4. Hickman, K.C.D. (1934) Rev. Sci. Instrum. 5, 161.

    Article  Google Scholar 

  5. Hickman, K.C.D. and Weyerts, W.J. (1930) J. Amer. Chem. Soc. 52, 4714.

    Article  Google Scholar 

  6. Rayleigh, Lord (1901) Phil. Trans. A 196, 205.

    Article  Google Scholar 

  7. Newbury, K. and Utterback, C.L. (1932) Rev. Sci. Instrum. 3, 593.

    Article  Google Scholar 

  8. Shrader, J.E. and Ryder, H.M. (1919) Phys. Rev. 13, 321.

    Article  Google Scholar 

  9. Carver, E.K. (1923) J. Amer. Chem. Soc. 45, 59.

    Article  Google Scholar 

  10. Johnson, M.C. and Harrison, G.O. (1929) J. Sci. Instrum. 6, 305.

    Article  Google Scholar 

  11. Farquharson, J. and Kermicle, H.A. (1957) Rev. Sci. Instrum. 28, 324.

    Article  Google Scholar 

  12. Zigman, P. (1959) Rev. Sci. Instrum. 30, 1060.

    Article  Google Scholar 

  13. Elliott, K.W.T., Wilson, D.C., Mason, F.C.P. and Bigg, P.H. (1960) J. Sci. Instrum. 37, 162.

    Article  Google Scholar 

  14. Hart, H.R. (1961) J. Sci. Instrum. 38, 300.

    Article  Google Scholar 

  15. Hirsch, E.H. (1959) J. Sci. Instrum. 36, 477.

    Article  Google Scholar 

  16. Kemp, J.F. (1959) J. Sci. Instrum. 36, 77.

    Article  Google Scholar 

  17. Pannell, J.R. (1924) Fluid Velocity and Pressure, Edward Arnold, London, 91.

    Google Scholar 

  18. Dodge, R.A. and Thompson, M.J. (1937) Fluid Mechanics, McGraw-Hill, New York.

    Google Scholar 

  19. Sederholm, P. and Benedicks, C. (1940) Arkiv f. Mat. Astra. och Fys. 27, A8.

    Google Scholar 

  20. McLeod, H. (1874) Phil. Mag. 48, 110.

    Google Scholar 

  21. Jansen, C.G.J. and Venema, A. (1959) Vacuum 9, 219.

    Article  Google Scholar 

  22. Bixler, H.J., Michaels, A.S. and Parker, R.B. (1960) Rev. Sci. Instrum. 31, 1155.

    Article  Google Scholar 

  23. Armbruster, M.H. (1946) J. Amer. Chem. Soc. 68, 1342.

    Article  Google Scholar 

  24. Flosdorf, E.W. (1945) Industr. engng. Chem. Anal. Ed. 17, 198.

    Article  Google Scholar 

  25. Hayward, A.T.J. (1962) J. Sci. Instrum. 39, 367.

    Article  Google Scholar 

  26. Porter, A.W. (1933) Trans. Faraday Soc. 29, 702.

    Article  Google Scholar 

  27. Rosenberg, P. (1939) Rev. Sci. Instrum. 10, 131.

    Article  Google Scholar 

  28. Rosenberg, P. (1938) Rev. Sci. Instrum. 9, 258.

    Article  Google Scholar 

  29. Klemperer, O. (1944) J. Sci. Instrum. 21, 88.

    Article  Google Scholar 

  30. Barr, W.E. and Anhorn, V.J. (1946) Instruments 19, 666.

    Google Scholar 

  31. Podgurski, H.H. and Davis, F.N. (1960) Vacuum 10, 377.

    Article  Google Scholar 

  32. Keevil, N.B., Errington, R.F. and Newman, L.T. (1941) Rev. Sci. Instrum. 12, 609.

    Article  Google Scholar 

  33. Elliott, K.W.T., Woodman, Daphne, M. and Dadson, R.S. (1967) Vacuum 17, 439.

    Article  Google Scholar 

  34. Sharma, J.K.N., Dwivedi, H.K. and Sharma, D.R. (1980) J. Vac. Sci. Technol. 17, 820.

    Article  Google Scholar 

  35. Clark, R.J. (1929) J. Sci. Instrum. 5, 126.

    Article  Google Scholar 

  36. Moser, H. and Poltz, H. (1957) Z. Instrumentkunde 65, 43.

    Google Scholar 

  37. Miller, J.R. (1972) J. Vac. Sci. Technol. 9, 201.

    Article  Google Scholar 

  38. Cespiro, Z. (1973) Vacuum 23, 277.

    Article  Google Scholar 

  39. Akiyama, Y., Hashimoto, H. and Ishii, H. (1967) Vacuum 17, 393.

    Article  Google Scholar 

  40. Groszkowski, J. (1949) Le Vide 4, 668.

    Google Scholar 

  41. Flosdorf, E.W. (1938) Industr. engng. Chem. Anal. Ed. 10, 534.

    Article  Google Scholar 

  42. Axelbank, M. (1950) Rev. Sci. Instrum. 21, 511.

    Article  Google Scholar 

  43. Gaede, W. (1915) Ann. Phys. (Leipzig) 46, 357.

    Google Scholar 

  44. Ishii, H. and Nakayama, K. (1961) Vac. Sym. Trans. Amer. Vac. Soc. 1, 519 (Pergamon New York).

    Google Scholar 

  45. Meinke, C. and Reich, G. (1962) Vakuumtechnik 11, 86.

    Google Scholar 

  46. Vries, A.E. de and Rol, P.K. (1965) Vacuum 15, 135.

    Article  Google Scholar 

  47. Berman, A. (1974) Vacuum 24, 241.

    Article  Google Scholar 

  48. Tunniclife, R.J. and Rees, J.A. (1967) Vacuum 17, 457.

    Article  Google Scholar 

  49. East, H.G. and Kuhn, H. (1946) J. Sci. Instrum. 23, 185.

    Article  Google Scholar 

  50. Crompton, R.W. and Elford, M.T. (1957) J. Sci. Instrum. 34, 405.

    Article  Google Scholar 

  51. Olsen, A.R. and Hirst, L.L. (1929) J. Amer. Chem. Soc. 51, 2378.

    Article  Google Scholar 

  52. Pressey, D.C. (1953) J. Sci. Instrum. 30, 20.

    Article  Google Scholar 

  53. Sullivan, J.J. (1985) J. Vac. Sci. Technol. A3, 1721.

    Google Scholar 

  54. Hyland, R.W. and Tilford, C.R. (1985) J. Vac. Sci. Technol. A3, 1731.

    Google Scholar 

  55. Poulter, K.F. (1981) Le Vide 36, 521.

    Google Scholar 

  56. Reich, G. (1981) Proc. 9th Int. Vac. Congr., Madrid, ed. J.L. de Segovia, Madrid.

    Google Scholar 

  57. Poulter, K.F., Rodgers, M.J., Nash, P.J., Thompson, T.J. and Perkin, M.P. (1983) Vacuum 33, 311.

    Article  Google Scholar 

  58. Takaisi, T. and Sensui, Y. (1963) Trans. Faraday Soc. 59, 2503.

    Article  Google Scholar 

  59. Meyer, O.E. (1865) Pogg. Ann. 125, 177.

    Article  Google Scholar 

  60. Meyer, O.E. (1873) Pogg. Ann. 148, 203.

    Article  Google Scholar 

  61. Maxwell, J.C. (1866) Phil. Trans. Roy. Soc. 157, 249.

    Google Scholar 

  62. Maxwell, J.C. (1860) Phil. Mag. 19, 31.

    Google Scholar 

  63. Sutherland, W. (1896) Phil. Mag. Ser. 3. 42, 373.

    Article  Google Scholar 

  64. Langmuir, I. (1913) J. Amer. Chem. Soc. 35, 105.

    Article  Google Scholar 

  65. Drawin, H.W. (1965) Vacuum 15, 99.

    Article  Google Scholar 

  66. Fremerey, J.K. (1982) Vacuum 32, 685.

    Article  Google Scholar 

  67. Coolidge, A.S. (1923) J. Amer. Chem. Soc. 45, 1937.

    Article  Google Scholar 

  68. Andrews, M.R. (1926) J. Phys. Chem. 30, 1947.

    Google Scholar 

  69. Bruche, E. (1923) Phys. Z. 26, 717;

    Google Scholar 

  70. Bruche, E. (1926) Ann. Phys. (Leipzig) 79, 695.

    Google Scholar 

  71. Hurd, D.T. and Corvin, M.L. (1954) Rev. Sci. Instrum. 25, 1126;

    Article  Google Scholar 

  72. Neher, H.V. (1962) Rev. Sci. Instrum. 33, 808.

    Article  Google Scholar 

  73. Anderson, J.R. (1958) Rev. Sci. Instrum. 29, 1073.

    Article  Google Scholar 

  74. See, for example, Schwarz, H.J. (1956) Vac. Sym. Trans. Comm. Vac. Tech. (Pergamon, New York) 37;

    Google Scholar 

  75. Schwarz, H.J. Vac. Symp. Trans. Amer. Vac. Soc. (1961) 1, 467 (Pergamon, New York).

    Google Scholar 

  76. Becker, W. (1961) Vacuum 11, 195;

    Article  Google Scholar 

  77. Becker, W. (1960) Vakuumtechnik 9, 48.

    Google Scholar 

  78. Pacey, D.J. (1959) Vacuum 9, 262.

    Google Scholar 

  79. Kokubun, K., Hirata, M., Murakami, H., Toda, Y. and Ono, M. (1984) Vacuum 34, 731.

    Article  Google Scholar 

  80. Kirata, K., Kokubun, M., Ono, M. and Nakayama, K. (1985) J. Vac. Sci. Technol. A3, 1742.

    Google Scholar 

  81. Ono, M., Hirata, M., Kokubun, K., Murakami, H., Tamura, F., Hojo, H., Kawashima, H. and Kyogoku, H. (1985) J. Vac. Sci. Technol. A3, 1746.

    Google Scholar 

  82. Ono, M., Hirata, M., Kokubun, K., Mukakami, H., Hojo, H., Kawashima, H. and Kyogoku, H. (1986) J. Vac. Sci. Technol. A4, 1728.

    Google Scholar 

  83. Hirata, M., Ono, M., Kokubun, K., Abe, M., Maruno, N., Shimizu, K. and Ogawa, T. (1987) J. Vac. Sci. Technol. A5, 2393.

    Google Scholar 

  84. Dushman, S. (1915) Phys. Rev. 5, 212.

    Article  Google Scholar 

  85. Briggs, W.E. (1954) Vac. Symp. Trans. Comm. Vac. Tech. 3, Pergamon Press, New York.

    Google Scholar 

  86. Beams, J.W., Spitzer, D.M.Jr. and Wade, J.P.Jr. (1962) Rev. Sci. Instrum. 33, 151.

    Article  Google Scholar 

  87. Fremerey, J.K. (1971) Rev. Sci. Instrum. 42, 753.

    Article  Google Scholar 

  88. Fremerey, J.K. (1972) Rev. Sci. Instrum. 43, 1413.

    Article  Google Scholar 

  89. Fremerey, J.K. (1972) J. Vac. Sci. Technol 9, 108.

    Article  Google Scholar 

  90. Fremerey, J.K. (1973) Rev. Sci. Instrum. 44, 1396.

    Article  Google Scholar 

  91. Fremerey, J.K. and Boden, K. (1978) J. Phys. E. Sci. Instrum. 11, 106.

    Article  Google Scholar 

  92. Fremerey, J.K. (1985) J. Vac. Sci. Technol. A3, 1715.

    Google Scholar 

  93. Nixon, J.D. and Kenney, D.J. (1964) Rev. Sci. Instrum. 35, 1721.

    Article  Google Scholar 

  94. Beams, J.W., Young, J.L. and Moore, J.W. (1946) J. Appl. Phys. 17, 886.

    Article  Google Scholar 

  95. MacHattie, L.E. (1941) Rev. Sci. Instrum. 12, 429.

    Article  Google Scholar 

  96. Reich, G. (1982) J. Vac. Sci. Technol. 20, 1148.

    Article  Google Scholar 

  97. Comsa, G., Fremerey, J.K., Lindenau, B., Messer, G. and Rohl, P. (1980) J. Vac. Sci. Technol. 17, 642.

    Article  Google Scholar 

  98. Messer, G. (1980) Proc. 8th Int. Vacuum Congr. Cannes, II, 191.

    Google Scholar 

  99. McCulloh, K.E., Wood, S.D. and Tilford, C.R. (1985) J. Vac. Sci. Technol. A3, 1738.

    Google Scholar 

  100. Evrard, R. and Boutry, G.A. (1952) J. Vac. Sci. Technol. 6, 279.

    Article  Google Scholar 

  101. Leck, J.H. (1964) Pressure Measurement in Vacuum Systems, Chapman & Hall, London, Chapter 4.

    Google Scholar 

  102. Steckelmacher, W. (1973) Vacuum23, 165.

    Article  Google Scholar 

  103. Knudsen, M. (1934) The Kinetic Theory of Gases, Methuen, New York, 29.

    Google Scholar 

  104. Hurlbut, F.C. (1957) J. Appl. Phys. 28, 844.

    Article  Google Scholar 

  105. Auerbach, D., Becker, C., Cowin, J. and Wharton, L. (1977) Proc. 2nd Int. Symp. Molecular Beams, Noordwijkerhout, Netherlands, 192.

    Google Scholar 

  106. Comsa, G., Fremerey, J.K. and Lindenau, B. (1977) Proc. 7th Int. Vacuum Congr. Vienna, I, 157.

    Google Scholar 

  107. Comsa, G., Fremerey, J.K. and Lindenau, B. (1980) Proc. 8th Int. Vacuum Congr. Cannes, II, 218.

    Google Scholar 

  108. Fremerey, J.K., Proc. 4th Int. Conf. on Solid Surfaces and 3rd Eur. Conf. on Surface Science, Cannes, II, 869.

    Google Scholar 

  109. McCulloh, K.E. (1983) J. Vac. Sci. Technol. A1, 168.

    Google Scholar 

  110. Dushman, S. (1949) Scientific Foundations of Vacuum Technique, John Wiley, New York, 176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Blackie & Son Ltd.

About this chapter

Cite this chapter

Leck, J.H. (1989). Mechanical manometers. In: Total and Partial Pressure Measurement in Vacuum Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0877-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0877-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8224-2

  • Online ISBN: 978-1-4613-0877-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics