Skip to main content

Cyclic Nucleotides and Protein Phosphorylation in Vascular Smooth-Muscle Relaxation

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 90))

Abstract

Vascular smooth-muscle contractility is regulated by a variety of membrane and intracellular effectors. In many cases, these effectors operate through alterations in intracellular cyclic nucleotide levels. Since the contractile state of smooth muscle is dependent on the concentration of intracellular activator calcium ([Ca2+]i), the relationship between this ion and cyclic nucleotides is central to the regulation of vascular tone. The complexity of this issue is illustrated by the observations of Ca2+-dependent changes in cyclic nucleotide levels and cyclic-nucleotide-mediated alterations of vascular tone independent of changes in [Ca2+]i.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee TP, Kuo JF, Greengard P: Role of muscarinic cholinergic receptors in regulation of guanosine 3,5′-monophosphate content in mammalian brain, heart muscle and intestinal smooth muscle. Proc Natl Acad Sci USA 69: 3287–3291, 1972.

    Article  PubMed  CAS  Google Scholar 

  2. Dunham EW, Haddox MK, Goldberg ND: Alteration of vein cyclic 3′5′-nucleotide concentrations during changes in contractilty. Proc Natl Acad Sci USA 71: 815–819, 1974.

    Article  PubMed  CAS  Google Scholar 

  3. Schultz G, Schultz K, Hardman JG: Effects of norepinephrine on cyclic nucleotide levels in the ductus deferens of the rat. Metabolism 24: 429–437, 1975.

    Article  PubMed  CAS  Google Scholar 

  4. Schultz K-D, Schultz K, Schultz G: Sodium nitroprusside and other smooth muscle relaxants increase cyclic GMP levels in rat ductus deferens. Nature 265: 750–751, 1977.

    Article  PubMed  CAS  Google Scholar 

  5. Katsuki S, Arnold WP, Murad F: Effects of sodium nitroprusside, nitroglycerin, and sodium azide on levels of cyclic nucleotides and mechanical activity of various tissues. J Cyclic Nucleotide Res 3: 239–247, 1977.

    PubMed  CAS  Google Scholar 

  6. Diamond J, Blisard KS: Effects of stimulant and relaxant drugs on tension and cyclic nucleotide levels in canine femoral artery. Mol Parmacol 12: 688–841 692, 1976.

    Google Scholar 

  7. Mittal CK, Murad F: Guanylate cyclase: Regulation of cyclic GMP metabolism. In: Nathanson JA, Kebabian JW (eds) Handbook of Experimental Pharmacology, Vol 58/I: Cyclic Nucleotide Biochemistry. Berlin: Springer-Verlag, 1982, pp 225–260.

    Google Scholar 

  8. Waldman SA, Murad F: Cyclic GMP synthesis and function. Pharmacol Rev 39: 163–196, 1987.

    PubMed  CAS  Google Scholar 

  9. Gerzer R, Böhme E, Hoffman F, Schultz G: Soluble guanylate cyclase purified from bovine lung contains heme and copper. FEBS Lett 132: 71–74, 1981.

    Article  PubMed  CAS  Google Scholar 

  10. Kamisaki Y, Saheki S, Nakane M, Palmieri JA, Kuno T, Chang BY, Waldman SA, Murad F: Soluble guanylate cyclase from rat lung exists as a hetero- dimer. J Biol Chem 261: 7236–7241, 1986.

    PubMed  CAS  Google Scholar 

  11. Kimura H, Mittal CK, Murad F: Activation of guanylate cyclase from rat liver and other tissues by sodium azide. J Biol Chem 250: 8016–8022, 1975.

    PubMed  CAS  Google Scholar 

  12. Katsuki S, Arnold W, Mittal C, Murad F: Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cyclic Nucleotide Res 3: 23–25, 1977.

    PubMed  CAS  Google Scholar 

  13. Mittal CK, Murad F: Properties and oxidative re-gulation of guanylate cyclase. J Cyclic Nucletoide Res 3: 381–391, 1977.

    CAS  Google Scholar 

  14. Murad F, Mittal CK, Arnold WP, Katsuki S, Kimura H: Guanylate cyclase: Activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv Cyclic Nucleotide Res 9: 145–158, 1978.

    PubMed  CAS  Google Scholar 

  15. Bennett BM, Nakatsu K, Brien JF, Marks GS: Biotransformation of glyceryl trinitrate to glyceryl dinitrate by human hemoglobin. Can J Physiol Pharmacol 62: 704–706, 1984.

    Article  PubMed  CAS  Google Scholar 

  16. Bennett BM, Kobus SM, Brien JF, Nakatsu K, Marks GS: Requirement for reduced, unliganded hemoprotein for the hemoglobin- and myoglobin-mediated biotransformation of glyceryl trinitrate. J Pharmacol Exp Ther 237: 629–631, 1986.

    PubMed  CAS  Google Scholar 

  17. Furchgott RF, Zawadzki JV: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature (London) 288: 373–376, 1980.

    Article  CAS  Google Scholar 

  18. Furchgott RF: Role of endothelium in responses of vascular smooth muscle. Circ Res 53: 557–573,

    Google Scholar 

  19. Griffith TM, Edwards DH, Lewis MJ, Newby AC, Henderson AH: The nature of endothelium-derived vascular relaxant. Nature (London) 308: 645–647, 1984.

    Article  CAS  Google Scholar 

  20. Rapoport RM, Murad F: Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cyclic GMP. Circ Res 52: 352–357, 1983.

    PubMed  CAS  Google Scholar 

  21. Förstermann U, Mulsch A, Böhme E, Busse R: Stimulation of soluble guanylate cyclase by an acetylcholine-induced endothelium-derived factor from rabbit and canine arteries. Circ Res 58: 531–538, 1986.

    PubMed  Google Scholar 

  22. Ignarro LJ, Harbison RG, Wood KS, Kadowitz PJ: Activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor from intrapul monary artery and vein: Stimulation by acetylcholine, bradykinin, and arachidonic acid. J Pharmacol Exp Ther 237: 893–900, 1986.

    PubMed  CAS  Google Scholar 

  23. Wikberg JES, Axelsson K, Andersson RGG: Effect of nitroglycerin on the contraction-relaxation cycle and endogenous levels of cyclic GMP in bovine mesenteric artery and guinea pig vas degerens. In: Bevan J A (ed) Vascular Neuroeffector Mechanisms. New York: Raven Press, 1980, pp 261–263.

    Google Scholar 

  24. Keith RA, Burkman AM, Sokoloski TD, Fertel RH: Vascular tolerance to nitroglycerin and cyclic GMP generation in rat aortic smooth muscle. J Pharmacol Exp Ther 221: 525–531, 1982.

    PubMed  CAS  Google Scholar 

  25. Needleman P, Johnson Jr. EM: Mechanism of tolerance development to organic nitrates. J Pharmacol Exp Ther 184: 709–715, 1973.

    PubMed  CAS  Google Scholar 

  26. Brien JF, McLaughlin BE, Breedon TH, Bennett BM, Nakatsu K, Marks GS: Biotransformation of glyceryl trinitrate occurs concurrently with relaxation of rabbit aorta. J Pharmacol Exp Ther 237: 608–614, 1986.

    PubMed  CAS  Google Scholar 

  27. Axelsson KL, Andersson RGG: Tolerance towards nitroglycerin, induced in vivo, is correlated to a reduced cyclic GMP response and an alteration in cyclic GMP turnover. Eur J Pharmacol 88: 71–79, 1983.

    Article  PubMed  CAS  Google Scholar 

  28. Molina CR, AndresenJW, Rapoport RM, Waldman S, Murad F: The effect of in vivo nitroglycerin therapy on endothelium-dependent and -independent vascular relaxation and cyclic GMP accumulation in rat aorta. J Cardiovasc Pharmacol 10: 371–378, 1987.

    Article  PubMed  CAS  Google Scholar 

  29. Rapoport RM, Waldman SA, Ginsberg R, Molina CR, Murad F: Effects of glyceryl trinitrate on endothelium-dependent and -independent relaxation and cyclic GMP levels in rat aorta and human coronary artery. J Cardiovasc Pharmacol 10: 82–89, 1987.

    Article  PubMed  CAS  Google Scholar 

  30. Waldman SA, Rapoport RM, Ginsberg R, Murad F: Desensitization to nitroglycerin in vascular smooth muscle from rat and human. Biochem Pharmacol 35: 3525–3531, 1986.

    Article  PubMed  CAS  Google Scholar 

  31. Kukovetz WR, Holzman S, Poch G: Function of cyclic GMP in acetylcholine-induced contraction of coronary smooth muscle. Naunyn-Schmiedeberg’s Arch Pharmacol 319: 29–33, 32. Martin W, Villani GM, Jothianandan D, Furchgott RF: Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther 232: 708–716, 1985.

    Google Scholar 

  32. Murakani K, Karaki H, Urakawa N: Role of endothelium in the contraction induced by norepinephrine and clonidine in rat aorta. Jpn J Pharmacol 39: 357–364, 1985.

    Article  Google Scholar 

  33. Oshiro ME, Paiva AC, Paiva TB: Endothelium-dependent inhibition of the use of extracellular calcium for the arterial response to vasoconstrictor agents. Gen Pharmacol 16: 567–572, 1985.

    Article  PubMed  CAS  Google Scholar 

  34. Fiscus RR, Rapoport RM, Murad F: Endothelium-dependent and nitrovasodilator-induced activation of cyclic GMP-dependent protein kinase in rat aorta. J Cyclic Nucleotide Protein Phosphorylation Res 9: 415–425, 1983.

    Google Scholar 

  35. Martin W, Furchgott RF, Villani GM, Jothi ananthan D: Phosphodiesterase inhibitors induce endothelium-dependent relaxation of rat and rabbit aorta by potentiating the effects of spontaneously released endothelium derived relaxing factor. J Pharmacol Exp Ther 237: 539–547, 1986.

    PubMed  CAS  Google Scholar 

  36. Kaiser L, Hull SS, Sparks HV: Methylene blue and ETYA block blood flow-dependent dilation in canine femoral artery. Am J Physiol 250: H974–H981, 1986.

    PubMed  CAS  Google Scholar 

  37. Rubayani GM, Romero JC, Vanhoutte PM: Flow- induced release of endothelium-derived relaxing factor. Am J Physiol 250: H1145–H1149, 1986.

    Google Scholar 

  38. Coburn RF, Eppinger R, Scott DP: Oxygen dependent tension and vascular smooth muscle. Does the endothelium play a role? Circ Res 58: 341–347, 1986.

    PubMed  CAS  Google Scholar 

  39. Spokas EG, Folco G, Quilley J, Chandler P, McGiff JC: Endothelial mechanism in the vascular action of hydralazine. Hypertension 5 (Supp I): 1107–1111, 1983.

    Google Scholar 

  40. Waldman SA, Lewicki J A, Brandwein HJ, Murad F: Partial purification and characterization of particulate guanylate cyclase from rat liver after solubilization with trypsin. J Cyclic Nucleotide Res 8: 359–370, 1982.

    PubMed  CAS  Google Scholar 

  41. Sinacore MS, Lewicki J A, Waldman SA, Murad F: Determination of the subcellular distribution of guanylate cyclase in neural crest-derived cultured cells using a tandem double monoclonal immunoassay. (abstr) Fed Proc 42: 1853, 1983.

    Google Scholar 

  42. Winquist RJ, Faison EP, Waldman SA, Schwartz K, Murad F, Rapoport RM: Atrial natriuretic factor elicits an endothelium-independent relaxation and activates particulate guanylate cyclase in vascular smooth muscle. Proc Natl Acad Sci USA 81: 7661–7664, 1984.

    Article  PubMed  CAS  Google Scholar 

  43. Rapoport RM, Waldman SA, Schwartz K, Winquist RJ, Murad F: Effects of atrial natriuretic factor, sodium nitroprusside, and acetylcholine on cyclic GMP levels and relaxation in rat aorta. Eur J Parmacol 115: 219–229, 1985.

    Article  CAS  Google Scholar 

  44. Ballermann BJ, Brenner BM: Biologically active atrial peptides. J Clin Invest 76: 2041–2048, 1985.

    Article  CAS  Google Scholar 

  45. Fiscus RR, Rapoport RM, Waldman SA, Murad F: Atriopepeptin II elevates cyclic GMP, activates cyclic GMP-dependent protein kinase and causes relaxation in rat thoracic aorta. Biochim Biophys Acta 846: 179–184, 1985.

    Article  PubMed  CAS  Google Scholar 

  46. Waldman SA, Rapoport RM, Murad F: Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J Biol Chem 259: 14332–14334, 1984.

    PubMed  CAS  Google Scholar 

  47. Leitman DC, AndresenJW, Catalano RM, Waldman SA, Tuan JJ, Murad F: Atrial natriuretic peptide binding, cross-linking, and stimulation of cyclic GMP accumulation and particulate guanylate cyclase activity in cultured cells. J Biol Chem 263: 3720–3728, 1988.

    PubMed  CAS  Google Scholar 

  48. Leitman DC, Agnost VL, Tuan J, Andresen JW, Murad F: Atrial natriuretic factor and sodium nitroprusside increase cyclic GMP in cultured rat lung fibroblasts by activating different forms of guanylate cyclase. Biochem J 244: 69–74, 1987.

    PubMed  CAS  Google Scholar 

  49. Leitman DC, Andresen JW, Kuno T, Kamisaki Y, Chang JW, Murad F: Identification of multiple binding sites for atrial natriuretic factor by affinity cross-linking in cultured endothelial cells. J Biol Chem 261: 11650–11655, 1986.

    PubMed  CAS  Google Scholar 

  50. Kuno T, Andresen JW, Kamisaki Y, Waldman SA, Chang LY, Saheki S, Leitman DC, Nakane M, Murad F: Co-purification of an atrial natriuretic factor receptor and particulate guanylate cyclase from rat lung. J Biol Chem 261: 5817–5823, 1986.

    PubMed  CAS  Google Scholar 

  51. Sutherland EW, Rail TW, Menon T: Adenyl cyclase. I. Distribution, preparation, and properties. J Biol Chem 237: 1220–1227, 1962.

    PubMed  CAS  Google Scholar 

  52. Kramer GL, Hardman JG: Cyclic nucleotides and blood vessel contraction. In: Bohr DF, Somylo AP, Sparks, Jr. HV (eds) Handbook of Physiology. The Cardiovascular System. Vol. 2: Vascular Smooth Muscle. Bethesda: American Physiological Society, 1980, pp 179–199.

    Google Scholar 

  53. Hardman JG: Cyclic nucleotides and smooth muscle contraction: Some conceptual and experimental considerations. In: Bulbring E, Bradding A, Jones AW, Tomita T (eds) Smooth Muscle: An Assessment of Current Knowledge. London: Edward Arnold,

    Google Scholar 

  54. pp 249–262.

    Google Scholar 

  55. Ross EM, Gilman AG: Biochemical properties of hormone-sensitive adenylate cyclase. Ann Rev Biochem 46: 533–564, 1980.

    Article  Google Scholar 

  56. Limbird L: Activation and attenuation of adenylate cyclase. The role of GTP-binding proteins as macro-molecular messengers in receptor-cyclase coupling. Biochem J 195: 1–13, 1981.

    PubMed  CAS  Google Scholar 

  57. Lefkowitz RJ, Stadel JM, Caron MG: Adenylate cyclase-coupled beta adrenergic receptors: Structure and mechanisms of activation and desensitization. Ann Rev Biochem 52: 159–186, 1983.

    Article  PubMed  CAS  Google Scholar 

  58. Gilman AG: Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclase. J Clin Invest 73: 1–4, 1984.

    Article  PubMed  CAS  Google Scholar 

  59. Birnbaumer L, Codina J, Mattera R, Cerione RA, Hildebrandt JD, Sunyer T, Rojas FJ, Caron MG, Lefkowitz RJ, Iyengar R: Regulation of hormone receptors and adenyl cyclases by guanine nucleotide binding N proteins. Recent Prog Hormone Res 41: 41–99, 1985.

    CAS  Google Scholar 

  60. Ferguson KM, Higashijima T, Smigel MD, Gilman AG: The influence of bound GDP on the kinetics of guanine nucleotide binding to G proteins. J Biol Chem 261: 7393–7399, 1986.

    PubMed  CAS  Google Scholar 

  61. Wells JN, Hardman JG: Cyclic nucleotide phosphodiesterases. Adv Cyclic Nucleotide Res 8: 119–143, 1977.

    PubMed  CAS  Google Scholar 

  62. Beavo JA, Hansen RS, Harrison SA, Hurwitz RL, Martins TJ, Mumby MC: Identification and properties of cyclic nucleotide phosphodiesterases. Mol Cell Endocrinol 28: 387–410, 1982.

    Article  PubMed  CAS  Google Scholar 

  63. Appleman MM, Ariano MA, Takemoto DJ, Whitson RH: Cyclic nucleotide phosphodiesterases. Handb Expl Pharmacol 58/I: 261–300, 1982.

    Google Scholar 

  64. Pearl RG, Rosenthal MH, Murad F, Ashton JPA: Aminophylline potentiates sodium nitroprusside-induced hypotension in the dog. Anethesiology 61: 712–715, 1984.

    Article  CAS  Google Scholar 

  65. Wells JN, Baird CE, Wu YJ, Hardman JG: Cyclic nucleotide phosphodiesterase activities of pig coronary arteries. Biochim Biophys Acta 384: 430–442, 1975.

    PubMed  CAS  Google Scholar 

  66. Lugnier C, Schoeffler P, LeBec A, Strouthou E, Stoclet JC: Selective inhibition of cyclic nucleotide phosphodiesterases of human, bovine, and rat aorta. Biochem Pharmacol 35: 1743–1751, 1986.

    Article  PubMed  CAS  Google Scholar 

  67. Saitoh Y, Hardman JG, Wells JN: Differences in the association of calmodulin with cyclic nucleotide phosphodiesterase in relaxed and contracted arterial strips. Biochemistry 24: 1613–1618, 1985.

    Article  PubMed  CAS  Google Scholar 

  68. Plascik MT, Babich M, Rush ME: Calmodulin sti-mulation and calcium regulation of smooth muscle adenylate cyclase activity. J Biol Chem 258: 10913–10918, 1983.

    Google Scholar 

  69. Katada T, Gilman AG, Watanabe Y, Bauer S, Jakobs KH: Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem 151: 431–437, 1985.

    Article  PubMed  CAS  Google Scholar 

  70. Nabika T, Nara Y, Yamori Y, Lovenberg W, Endo J: Angiotensin II and phorbol ester enhance isoproterenol- and vasoactive intestinal peptide (VlP)-induced cyclic AMP accumulation in vascular smooth muscle cells. Biochem Biophys Res Com- mun 131: 30–36, 1985.

    Article  CAS  Google Scholar 

  71. Zwiller J, Revel M-O, Malviya AN: Protein kinase C catalyzes phosphorylation of guanylate cyclase in vitro. J Biol Chem 260: 1350–1353, 1984.

    Google Scholar 

  72. Lincoln TM, Dills Jr. WL, Corbin SD: Purification and subunit composition of guanosine 3′,5′-mono-phosphate-dependent protein kinase from bovine lung. J Biol Chem 252: 4269–4275, 1977.

    PubMed  CAS  Google Scholar 

  73. Glass DB, Krebs EG: Protein phosphorylation catalyzed by cyclic AMP-dependent and cyclic GMP-dependent protein kinases. Ann Rev Pharmacol Toxicol 20: 363–388, 1980.

    Article  CAS  Google Scholar 

  74. Mackenzie CW: Bovine lung cyclic GMP-dependent protein kinase exhibits two types of specific cyclic GMP-binding sites. J Biol Chem 257: 5589–5593, 1982.

    PubMed  CAS  Google Scholar 

  75. Corbin JD, Doskeland SO: Studies of two different intrachain cyclic GMP-binding sites of cyclic GMP- dependent protein kinase. J Biol Chem 258: 11391–11397, 1983.

    PubMed  CAS  Google Scholar 

  76. Diamond J, Schmidt CJ, Nichols WK: Effects of sodium nitroprusside on tension and cyclic GMP- dependent protein kinase activity in nonvascular smooth muscle. Proc West Pharmacol Soc 26: 9–12, 1983.

    PubMed  CAS  Google Scholar 

  77. Ives HE, Casnellie JE, Greengard P, Jamieson JD: Subcellular localization of cyclic GMP-dependent protein kinase and its substrates in vascular smooth muscle. J Biol Chem 255: 3777–3785, 1980.

    PubMed  CAS  Google Scholar 

  78. Casnellie JE, Ives HE, Jamieson JD, Greengard P: Cyclic GMP-dependent protein phosphorylation in intact medial tissue and isolated cells from vascular smooth muscle. J Biol Chem 255: 3770–3776, 1980.

    PubMed  CAS  Google Scholar 

  79. Rapoport RM, Draznin MB, Murad M: Sodium nitroprusside-induced protein phosphorylation in intact rat aorta is mimicked by 8-bromo cyclic GMP. Proc Natl Acad Sci USA 79: 6470–6474, 1982.

    Article  PubMed  CAS  Google Scholar 

  80. Rapoport RM, Draznin MB, Murad F: Endothelium- dependent relaxation in rat thoracic aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature (London) 306: 174–176, 1983.

    Article  CAS  Google Scholar 

  81. Rapoport RM, Draznin MB, Murad F: Endothelium- dependent vasodilator- and nitrovasodilator-induced relaxation may be mediated through cyclic GMP formation and cyclic GMP-dependent protein phos-phorylation. Trans Assoc Am Physicians 96: 19–30, 1983.

    PubMed  CAS  Google Scholar 

  82. Rapoport RM, Draznin MB, Murad F: Mechanism of adenosine triphosphate-, thrombin-, and trypsin- induced relaxation in rat thoracic aorta. Circ Res 55: 468–471, 1984.

    PubMed  CAS  Google Scholar 

  83. Draznin MB, Rapoport RM, Martinez GA, Murad F: Myosin light chain dephosphorylation in intact rat thoracic aorta treated with sodium nitroprusside: Role of cyclic GMP (abstr). Clin Res 31: 466A, 1983.

    Google Scholar 

  84. Silver PJ, Kocmund SM, Pinto PB: Enhanced phosphorylation of arterial particulate proteins by cyclic nucleotides and human atrial natriuretic factor. Eur J Pharmacol 122: 385–386, 1986.

    Article  PubMed  CAS  Google Scholar 

  85. Corbin JD, Sugden PH, West L, Flockhart DA, Lincoln TM, McCarthy D: Studies on the properties and mode of action of the purified regulatory subunit of bovine heart adenosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem 253: 3997–4003, 1978.

    PubMed  CAS  Google Scholar 

  86. Kuo JF. Greengard P: Cyclic-nucleotide-dependent protein kinases. IV. Widespread occurence of adenosine, 3′, 5′-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom. Proc Natl Acad Sci USA 64: 1349–1355, 1969.

    Article  PubMed  CAS  Google Scholar 

  87. Silver PJ, Schmidt-Silver C, DiSalvo J: ß-Adrenergic relaxation and c-AMP kinase activation in coronary arterial smooth muscle. Am J Physiol 242: H177–H184, 1982.

    PubMed  CAS  Google Scholar 

  88. SinghD: Adenosine 3′,5′-monophosphate-dependent protein kinase from mammalian artery: Isolation and properties of the isoenzymes. Cell Mol Biol 27: 419–428, 1981.

    Google Scholar 

  89. Singh D: Distribution and localization of adenosine 3′,5′-monophosphate-dependent protein kinase in mammalian artery. Blood Vessels 17: 312–323, 1980.

    PubMed  CAS  Google Scholar 

  90. Vegesna RVK, Diamond J: Effects of isoproterenol and forskolin on tension, cyclic AMP levels, and cyclic AMP-dependent protein kinase activity in bovine coronary artery. Can J Physiol Pharmacol 62: 1116–1123, 1984.

    Article  PubMed  CAS  Google Scholar 

  91. Silver PJ, Walus K, DiSalvo J: Adenosine-mediated relaxation and activation of cyclic AMP-dependent protein kinase in coronary arterial smooth muscle. J Pharmacol Exp Ther 228: 342–347, 1984.

    PubMed  CAS  Google Scholar 

  92. Schnaar RL, Sparks HV: Response of large an small coronary arteries to nitroglycerin, NaNO2, and adenosine. Am J Physiol 223: 223–228, 1972.

    PubMed  CAS  Google Scholar 

  93. Sands H, Sinclair D, Mascali J: Cyclic AMP and protein kinase in the spontaneously hypertensive rat aorta and tissue-cultured aortic smooth muscle cells. Blood Vessels 13: 361–373, 1976.

    PubMed  CAS  Google Scholar 

  94. Bhalla RC, Webb RC, Singh D, Ashley T, Brock T: Calcium fluxes, calcium binding, and adenosine cyclic 3′,5′-monophosphate-dependent protein kinase activity in the aorta of spontaneously hypertensive and Kyoto Wistar normotensive rats. Mol Pharmacol 14: 468–477, 1978.

    PubMed  CAS  Google Scholar 

  95. Coquil JF, Hamet P: Activity of cyclic AMP- dependent protein kinase in heart and aorta of spontaneously hypertensive rat. Proc Soc Exp Biol Med 164: 569–575, 1980.

    PubMed  CAS  Google Scholar 

  96. Silver PJ, Michalak RJ, Kocmund SM: Role of cyclic AMP protein kinase in decreased arterial cyclic AMP responsiveness in hypertension. J Pharmacol Exp Ther 232: 595–601, 1985.

    PubMed  CAS  Google Scholar 

  97. Bhalla RC, Webb RC, Singh D, Brock T: Role of cyclic AMP in rat aortic microsomal phosphorylation and calcium uptake. Am J Physiol. 234: H508–H514, 1978.

    PubMed  CAS  Google Scholar 

  98. Brockbank KJ, England PJ: A rapid method for the preparation of sarcolemmal vesicles from rat aorta, and the stimulation of calcium uptake into the vesicles by cyclic AMP-dependent protein kinase. FEBS Lett 122: 67–71, 1980.

    Article  PubMed  CAS  Google Scholar 

  99. Suematsu E, Hirata M, Kuriyama H: Effects of cAMP-and cGMP-dependent protein kinase and calmodulin on Ca2+ uptake by highly purified sarcolemmal vesicles of vascular smooth muscle. Biochim Biophys Acta 773: 83–90, 1984.

    Article  PubMed  CAS  Google Scholar 

  100. Chiesi M. Gasser J, Carafoli E: Properties of the Ca-pumping ATPase of sarcoplasmic reticulum from vascular smooth muscle. Biochem Biophys Res Commun 124: 797–806, 1984.

    Article  PubMed  Google Scholar 

  101. Boulanger-Saunier C, Kattenburg DM, Stoclet J-C: Cyclic AMP-dependent phosphorylation of a 16 kd protein of rat aortic myocytes. FEBS Lett 193: 283–288, 1985.

    Article  PubMed  CAS  Google Scholar 

  102. Raeymaekers L, Jones LR: Evidence for the presence of phospholamban in the endoplasmic reticulum of smooth muscle. Biochim Biophys Acta 882: 258–265, 1986.

    PubMed  CAS  Google Scholar 

  103. Berridge MJ: Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 220: 345–360, 1984.

    PubMed  CAS  Google Scholar 

  104. Marston SB: The regulation of smooth muscle contractile proteins. Prog Biophys Mol Biol 41: 1–41, 1982.

    Article  Google Scholar 

  105. Ebashi S: The regulation of contractility. In: Stracher A (ed) Muscle and Non-Muscle Motility. Vol 1. New York: Academic Press, 1983, pp 217–232.

    Google Scholar 

  106. Barron Jr, Barany M, Barany K, Storti RV: Reversible phosphorylation and dephosphorylation of the 20,000 dalton light chain myosin during the contraction-relaxation-contraction cycle of arterial smooth muscle. J Biol Chem 255: 6238–2644, 1980.

    Google Scholar 

  107. Somlyo AV, Butler TM, Bons M, Somlyo AP: Myosin filaments have nonphosphorylated light chains in relaxed smooth muscle. Nature (London) 294: 567–569, 1981.

    Article  CAS  Google Scholar 

  108. Gerthoffer WT, Murphy RA: Ca2+, myosin phosphorylation, and relaxation of arterial smooth muscle, Am J Physiol 245: C271–C277, 1983.

    PubMed  CAS  Google Scholar 

  109. Aksoy MO, Mras S, Kamm KE, Murphy RA: Ca2+, cAMP, and changes in myosin phosphorylation during contraction of smooth muscle. Am J Physiol 245: C255–C270, 1983.

    PubMed  CAS  Google Scholar 

  110. Aksoy MO, Stewart GJ, Harakal C: Myosin light chain phosphorylation and evidence for latchbridge formation in norepinephrine stimulated canine veins. Biochem Biophys Res Commun 135: 735–741, 1986.

    Article  PubMed  CAS  Google Scholar 

  111. Dillon PF, Aksoy MO, Driska SP, Murphy RA: Myosin phosphorylation and the crossbridge cycle in arterial smooth muscle. Science 211: 495–497, 1981.

    Article  PubMed  CAS  Google Scholar 

  112. Driska SP, Aksoy MO, Murphy RA: Myosin light chain phosphorylation associated with contraction in arterial smooth muscle. Am J Physiol 240: C222–C233, 1981.

    PubMed  CAS  Google Scholar 

  113. Aksoy MO, Murphy RA, Kamm KE: Role of Ca2+ and myosin light chain phosphorylation in regulation of smooth muscle. Am J Physiol 242: CI 09–C116, 1982.

    Google Scholar 

  114. Johnson RM, Lincoln TM: Effects of nitroprusside, glyceryl trinitrate, and 8′-bromo cyclic GMP on phosphorylase a formation and myosin light chain phosphorylation in rat aorta. Mol Pharmacol 27: 333–342, 1984.

    Google Scholar 

  115. Rasmussen H, Forder J, Kojima I, Scriabine A: TPA-induced contraction of isolated rabbit vascular smooth muscle. Biochem Biophys Res Commun 122: 776–784, 1984.

    Article  PubMed  CAS  Google Scholar 

  116. Chatterjee M, Tejada M: Phorbol ester induced contraction in chemically-skinned vascular smooth muscle. Am J Physiol 251: C1–C6, 1986.

    Google Scholar 

  117. Miller JR, Hawkins DJ, Wells JN: Phorbol diesters alter the contractile responses of porcine coronary artery. J Pharmacol Exp Ther 239: 38–42, 1986.

    PubMed  CAS  Google Scholar 

  118. Sybertz EJ, Desiderio DM, Tetzloff G, Chiu PJS: Phorbol dibutyrate contractions in rabbit aorta: Calcium dependence and sensitivity to nitrovasodilators and 8-Br-cyclic GMP. J Pharmacol Exp Ther 239: 78–83, 1986.

    PubMed  CAS  Google Scholar 

  119. Nishizuka Y: Studies and perspectives of protein kinase C. Science 233: 305–312, 1986.

    Article  PubMed  CAS  Google Scholar 

  120. Griendling KK, Rittenhouse SE, Brock TA, Ekstein LS, Gimbrone MA Jr., Alexander RW: Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells. J Biol Chem 261: 5901–5906, 1986.

    PubMed  CAS  Google Scholar 

  121. Adelstein RS, Conti MA, Hathaway DR: Phos-phorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3′,5′- monophosphate-dependent protein kinase. J Biol Chem 253: 8347–8350, 1978.

    PubMed  CAS  Google Scholar 

  122. Silver PJ, DiSalvo J: Adenosine 3′5′-monophos- phate-mediated inhibition of myosin light chain phosphorylation in bovine aortic actomyosin. J Biol Chem 254: 9950–9954, 1979.

    Google Scholar 

  123. Adelstein RS, Eisenberg E: Regulation and kinetics of the actin-myosin-ATP interactions. Ann Rev Biochem 49: 921–956, 1980.

    Article  PubMed  CAS  Google Scholar 

  124. Conti MA, Adelstein RS: The relationship between calmodulin binding and phosphorylation of smooth muscle myosin kinase by the catalytic subunit of 3′, 5′c AMP-dependent protein kinase. J Biol Chem 256: 3178–3181, 1981.

    PubMed  CAS  Google Scholar 

  125. Vallet B, Molla A, Demaille JG: Cyclic adenosine 3′,5′-monophosphate-dependent regulation of puri¬fied bovine aortic calcium/calmodulin-dependent myosin light chain kinase. Biochim Biophys Acta 674: 256–264, 1981.

    PubMed  CAS  Google Scholar 

  126. Hathaway DR, Konick MV, Codican SA: Phosphorylation of myosin light chain kinase from vascular smooth muscle by cAMP- and cGMP-dependent protein kinases. J Mol Cell Cardiol 17: 841–850, 1985.

    Article  PubMed  CAS  Google Scholar 

  127. Bhalla RC, Sharma RV, Gupta RC: Isolation of two myosin light-chain kinases from bovine carotid artery and their regulation by phosphorylation mediated by cyclic AMP-dependent protein kinase. Biochem J 203: 583–592, 1982.

    PubMed  CAS  Google Scholar 

  128. Kamm KE, Stull JT: The function of myosin light chain kinase phosphorylation in smooth muscle. Ann Rev Pharmacol Toxicol 25: 593–620, 1985.

    Article  CAS  Google Scholar 

  129. Riiegg JC, Paul RJ: Calmodulin and cyclic AMP- dependent protein kinase alter calcium sensitivity in porcine carotid skinned fibers. Circ Res 50: 394–399, 1982.

    Google Scholar 

  130. Pfitzer G, Hofmann F, DiSalvo J, Rüegg JC. cGMP and cAMP inhibit tension development in skinned coronary arteries. Ptiugers Arch 401: 277–280, 1984.

    Article  CAS  Google Scholar 

  131. Itoh T, Kanmura Y, Kuriyama H, Sasaguri T: Nitroglycerine- and isoprenaline-induced vasodilation: Assessment from the actions of cyclic nucleotides. Br J Pharmacol 84: 393–406, 1985.

    PubMed  CAS  Google Scholar 

  132. Pfitzer G, Rüegg JC, Zimmer M, Hofmann F: Relaxation of skinned coronary arteries depends on the relative concentrations of Ca2+, calmodulin and active cAMP-dependent protein kinase. Pfliigers Arch 405: 70–76, 1985.

    Article  CAS  Google Scholar 

  133. Itoh T, Izumi H, Kuriyama H: Mechanisms of relaxation induced by activation of ß-adrenoceptors in smooth muscle cells of the guinea pig mesenteric artery. J Physiol 326: 475–493, 1982.

    PubMed  CAS  Google Scholar 

  134. McMahon EG, Paul RJ: Effects of forskolin and cyclic nucleotides on isometric force in rat aorta. Am J Physiol 250: C468–C473, 1986.

    PubMed  CAS  Google Scholar 

  135. Nishikawa M, de Lanerolle P, Lincoln TM, Adelstein RS: Phosphorylation of mammalian myosin light chain kinase by the catalytic subunit of cyclic AMP-dependent protein kinase and by cyclic GMP- dependent protein kinase. J Biol Chem 259: 8429–8439, 1984.

    PubMed  CAS  Google Scholar 

  136. Morgan JP, Morgan KG: Vascular smooth muscle: The first recorded Ca2+ transients. Pflügers Arch 395: 75–77, 1982.

    Article  PubMed  CAS  Google Scholar 

  137. Gerthoffer WT, Trevethick MA, Murphy RA: Myosin phosphorylation and cyclic adenosine 3′ 5′-mono-phosphate in relaxation of arterial smooth muscle by vasodilators. Circ Res 54: 83–89, 1984.

    PubMed  CAS  Google Scholar 

  138. Lincoln TM, Johnson RM: Possible role of cyclic GMP-dependent protein kinase in vascular smooth muscle function. Adv Cyclic Nucleotide Protein Phosphorylation Res 17: 285–296, 1984.

    PubMed  CAS  Google Scholar 

  139. Kattenburg DM, Daniel EE: Effects of endogenous cyclic AMP-dependent protein kinase catalytic sub- unit on Ca-uptake by plasma membrane vesicles from rat mesenteric artery. Blood Vessels 21: 257–266, 1984.

    PubMed  CAS  Google Scholar 

  140. Kuriyama H, Ito Y, Suzuki H, Kitamura K, Itoh T: Factors modifying contraction-relaxation cyclic in vascular smooth muscle. Am J Physiol 243: H641–H662, 1982.

    PubMed  CAS  Google Scholar 

  141. Kobayashi S, Kanaide H, Nakamura M: Cytosolic- free calcium transients in cultured vascular smooth muscle cells: Microfluorometry measurements. Science 229: 553–556, 1985.

    Article  PubMed  CAS  Google Scholar 

  142. Popescu LM, Panoiu C, Hinescu M, Nutu O: The mechanism of cGMP-induced relaxation in vascular smooth muscle. Eur J Pharmacol 107: 393–394, 1985.

    Article  PubMed  CAS  Google Scholar 

  143. Casteels R, Raeymaekers L, Droogmans G, Wuytack F: Na+-K+ ATPase, Na+-Ca2+ exchange, and excitation-contraction coupling in smooth muscle. J Cardiovasc Pharmacol 7 (Suppl 3): S103–S110, 1985.

    PubMed  CAS  Google Scholar 

  144. Somlyo AP, Somlyo AV, Smiesko V: Cyclic AMP and vascular smooth muscle. Adv Cyclic Nucleotide Res 1: 175–194, 1972.

    PubMed  CAS  Google Scholar 

  145. Webb RC, Bohr DF: Relaxation of vascular smooth muscle by isoproterenol, dibutyryl-cyclic AMP and theophylline. J Pharmacol Exp Ther 217: 26–35, 1981.

    PubMed  CAS  Google Scholar 

  146. Bose D, Innes IR: Isoprenaline-induced relaxation of smooth muscle not due to electrogenic pumping. Can J Physiol Pharmacol 50: 378–380, 1972.

    Article  PubMed  CAS  Google Scholar 

  147. Rapoport RM, Murad R: Effect of ouabain and alterations in potassium concentration on relaxation induced by sodium nitroprusside. Blood Vessels 20: 255–264, 1983.

    PubMed  CAS  Google Scholar 

  148. Rapoport RM, Schwartz K, Murad F: Effects of Na+, K+-pump inhibitors and membrane depolarizing agents on acetylcholine-induced endothelium- dependent relaxation and cyclic GMP accumulation in rat aorta. Eur J Pharmacol 110: 203–209, 1985.

    Article  PubMed  CAS  Google Scholar 

  149. Van Eldere J, Raeymaekers L, Casteels R: Effects of isoprenaline on intracellular Ca uptake and on Ca influx in arterial smooth muscle. Pflügers Arch 395: 81–83, 1982.

    Article  PubMed  Google Scholar 

  150. Lincoln TM: Effects of nitroprusside and 8-bromo- cyclic GMP on the contractile activity of the rat aorta. J Pharmacol Exp Ther 224: 100–107, 1983.

    PubMed  CAS  Google Scholar 

  151. Meisheri KD, Taylor CJ, Saneii H: Synthetic atrial peptide inhibits intracellular calcium release in smooth muscle. Am J Physiol 250: C171–C174, 1986.

    PubMed  CAS  Google Scholar 

  152. Taylor CJ, Meisheri RD: Inhibitory effects of a synthetic atrial peptide on contractions and 45Ca fluxes in vascular smooth muscle. J Pharmacol Exp Ther 237: 803–808, 1986.

    PubMed  CAS  Google Scholar 

  153. Meisheri KD, Van Breeman C: Effects of ß-adrenergic stimulation on calcium movements in rabbit aortic smooth muscle: Relationship with cyclic AMP. J Physiol 331: 429–441, 1982.

    PubMed  CAS  Google Scholar 

  154. Mitchell RH: Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415: 81–147, 1975.

    Google Scholar 

  155. Takai Y, Kikkawa U, Kaibuchi K, Nishizuka Y: Membrane phospholipid metabolism and signal transduction for protein phosphorylation. Adv Cyclic Nucleotide Protein Phosphorylation Res 13: 119–158, 1984.

    Google Scholar 

  156. Villalobos-Molina R, Mirna U, Hong E, Garcia- Sainz JA: Correlation between phosphatidylinositol labelling and contraction in rabbit aorta: Effect of alpha-1 adrenergic activation. J Pharmacol Exp Ther 222: 258–261, 1982.

    PubMed  CAS  Google Scholar 

  157. Legan E, Chernow B, Parillo J, Roth BJ: Activation of phosphatidylinositol turnover in rat aorta by ar adrenergic receptor stimulation. Eur J Pharmacol 110: 389–390, 1985.

    Article  PubMed  CAS  Google Scholar 

  158. Rapoport RM: Cyclic guanosine monophosphate inhibition of contraction may be mediated through inhibition of phosphatidylinositol hydrolysis in rat aorta. Circ Res 58: 407–409, 1986.

    PubMed  CAS  Google Scholar 

  159. Fujii K, Ishimatsu T, Kuriyama H: Mechanism of vasodilation induced by a-human atrial natriuretic polypeptide in rabbit and guinea-pig renal arteries. J Physiol 377: 315–322, 1986.

    PubMed  CAS  Google Scholar 

  160. Murad F: Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest 78: 1–5, 1986.

    Article  PubMed  CAS  Google Scholar 

  161. Palmer RMJ, Ferrige AG, Moneada S: Nitric oxide release accounts for the biological activity of endo-thelium-derived relaxing factor. Nature 327: 524–526, 1987.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bennett, B.M., Molina, C.R., Waldman, S.A., Murad, F. (1989). Cyclic Nucleotides and Protein Phosphorylation in Vascular Smooth-Muscle Relaxation. In: Sperelakis, N. (eds) Physiology and Pathophysiology of the Heart. Developments in Cardiovascular Medicine, vol 90. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0873-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0873-7_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8222-8

  • Online ISBN: 978-1-4613-0873-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics