Skip to main content

Electromechanical and Pharmacomechanical Coupling in Vascular Smooth Muscle

  • Chapter
Physiology and Pathophysiology of the Heart

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 90))

Abstract

The contractile response of smooth-muscle cells is triggered by an increase of the free cytoplasmic concentration of calcium ions. In skinned smooth-muscle fibers, i.e., tissues from which the cell membrane has been chemically removed by detergent treatment, the threshold Ca concentration for initiating contraction amounts to approximately 10-7 M, and full activation of the contractile proteins occurs at about 10-5 M calcium {1–3}.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Endo M, Kitazawa T, Yagi S, Lino M, Kakuta Y: some properties of chemically skinned smooth muscle fibers. In: Casteels R, Godfraind T, Ruegg JC (eds) Excitation-Contraction Coupling in Smooth Muscle. Amsterdam: North-Holland Publishing. 1977, pp 199–209.

    Google Scholar 

  2. Gordon AR: Contraction of detergent-treated smooth muscle. Proc Natl Acad Sci USA 75: 3527–3530, 1978.

    PubMed  CAS  Google Scholar 

  3. Saida K, Nonomura Y: Characteristics of Ca2+- and Mg2+-induced tension development in chemically skinned smooth muscle cells. J Gen Physiol 72: 1–14, 1978.

    PubMed  CAS  Google Scholar 

  4. Van Breemen C, Farinas BR, Gerba P, McNaughton ED: Excitation-contraction coupling in rabbit aorta studied by the lanthanum method for measuring calcium influx. Circ Res 30: 33–54, 1972.

    Google Scholar 

  5. Droogmans G, Raeymaekers L, Casteels R: Electro- and pharmacomechanical coupling in the smooth muscle cells of the rabbit ear artery. J Gen Physiol 70: 129–148, 1977.

    PubMed  CAS  Google Scholar 

  6. Ebashi S: Regulation of muscle contraction. Proc Roy Soc Lond B 207: 259–286, 1980.

    CAS  Google Scholar 

  7. Caputo C: Excitation and contraction processes in muscle. Ann Rev Biophys Bioeng 7: 63–83, 1978.

    CAS  Google Scholar 

  8. Bond M, Kitazawa T, Somlyo AP, Somlyo AV: Release and recycling of calcium by the sarcoplasmic reticulum in guinea-pig portal vein smooth muscle. J Physiol 355: 677–695, 1984.

    PubMed  CAS  Google Scholar 

  9. Evans DHL, Schild HO, Thesleff S: Effects of drugs on depolarized plain muscle, J Physiol (London) 143: 474–485, 1958.

    CAS  Google Scholar 

  10. Waugh WH: Adrenergic stimulation of depolarized arterial muscle. Circ Res 11: 264–276, 1962.

    PubMed  CAS  Google Scholar 

  11. Somlyo AV, Somlyo AP: Electromechanical and pharmacomechanical coupling in vascular smooth muscle. J Pharmacol Exp Ther 159: 129–145, 1968.

    PubMed  CAS  Google Scholar 

  12. Bolton TB: Mechanism of action of transmitters and other substances on smooth muscle. Physiol Rev 59: 606–718, 1979.

    PubMed  CAS  Google Scholar 

  13. Goldmann DE: Potential, impedance and rectification in membranes. J Gen Physiol 27: 37–60, 1943.

    Google Scholar 

  14. Hodgkin AL, Katz B: The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol (London) 108: 37–77, 1949.

    CAS  Google Scholar 

  15. Casteels R, Kitamura R, Kuriyama H, Suzuki H: The membrane properties of the smooth muscle cells of the rabbit pulmonary artery. J Physiol (London) 271: 41 - 61, 1977.

    CAS  Google Scholar 

  16. Casteels R, Droogmans G, Hendrickx H: Electro- genic sodium pump in smooth muscle cells of the guinea-pig’s taenia coli. J Physiol (London) 217: 297 - 313, 1971.

    CAS  Google Scholar 

  17. Hendrickx H, Casteels R: Electrogenic sodium pump in arterial smooth muscle cells. Pfliigers Arch 346: 299–306, 1974.

    CAS  Google Scholar 

  18. Bonaccorsi A, Hermsmeyer K, Aprigliano O, Smith CB, Bohr DF: Mechanism of potassium relaxation of arterial muscle. Blood Vessels 14: 261–276, 1977.

    PubMed  CAS  Google Scholar 

  19. Casteels R: The distribution of chloride ions in the on arterioles of the guinea-pig. J Physiol (London) 313: 343–350, 1981.

    Google Scholar 

  20. Aickin CC, Brading AF: Measurement of intracellular chloride in guinea-pig vas deferens by ion analysis, 36chloride efflux and microelectrodes. J Physiol (London) 326: 139–154, 1982.

    CAS  Google Scholar 

  21. Droogmans G, Casteels R: Membrane potential and ion transport in smooth muscle cells. In: Buelbring E, Shuba MF (eds) Physiology of Smooth Muscle. New York: Raven Press, 1976, pp 11–18.

    Google Scholar 

  22. Aickin CC, Brading AF: The role of chloride- bicarbonate exchange in the regulation of intracellular chloride in guinea-pig vas deferens. J Physiol 349: 587–606, 1984.

    PubMed  CAS  Google Scholar 

  23. Funaki S: Spontaneous spike-discharges of vascular smooth muscle. Nature 191: 1102–1103, 1961.

    PubMed  CAS  Google Scholar 

  24. Steedman WM: Micro-electrode studies on mammalian vascular muscle. J Physiol (London) 186: 382–400, 1966

    CAS  Google Scholar 

  25. Somlyo AV, Vinall P, Somlyo AP: Excitation- contraction coupling and electrical events in two types of vascular smooth muscle. Microvasc Res 1: 354–373, 1969.

    PubMed  CAS  Google Scholar 

  26. Golenhofen K, von Loh D: Intracellular potential- messungen zur normalen spontanaktivitat des isolier- ten portalvene des meerschweinchens. Pfliigers Arch 319: 82–100, 1970.

    CAS  Google Scholar 

  27. Harder DR: Comparison of electrical properties of middle cerebral and mesenteric artery in cat. Am J Physiol 239: C23–C26, 1980.

    PubMed  CAS  Google Scholar 

  28. Harder DR, Sperelakis N: Membrane electrical properties of vascular smooth muscle from guinea-pig superior mesenteric artery. Pfliigers Arch 378: 111–119, 1978.

    CAS  Google Scholar 

  29. Harder DR, Sperelakis N: Action potentials induced in guinea-pig arterial smooth muscle by tetrae- thylammonium. Am J Physiol 237: C75–C80, 1979.

    PubMed  CAS  Google Scholar 

  30. Itoh T, Kuriyama H, Suzuki H: Excitation- contraction coupling in smooth muscle cells of the guinea-pig mesenteric artery. J Physiol (London) 321: 513 - 535, 1981.

    CAS  Google Scholar 

  31. Harder DR, Belardinelli L, Sperelakis N, Rubio R, Berne RM: Differential effects of adenosine and nitroglycerin on the action potentials of large and small coronary arteries. Circ Res 44: 176–182, 1979.

    PubMed  CAS  Google Scholar 

  32. Hirst GDS: Neuromuscular transmission in arterioles of guinea-pig submucosa. J Physiol (London) 273: 263–275.

    Google Scholar 

  33. Holman ME, Surprenant A: Some properties of the excitatory junction potentials recorded from saphenous arteries of rabbits. J Physiol (London) 287: 337–351, 1979.

    CAS  Google Scholar 

  34. Hirst GDS, Neild TD: Evidence for two populations of excitatory receptors for noradrenaline in arteriolar smooth muscle. Nature 283: 767–768, 1980.

    PubMed  CAS  Google Scholar 

  35. Hirst GDS, Neild TD: Localization of specialized noradrenaline receptors at neuromuscular junctions

    Google Scholar 

  36. Sneddon P, Westfall DP: Pharmacological evidence that adenosine triphosphate and noradrenaline are cotransmitters in the guinea-pig vas deferens. J Physiol (London) 347: 561–580, 1984.

    CAS  Google Scholar 

  37. Sneddon P, Burnstock G: Inhibition of excitatory junction potentials in guinea-pig vas deferens by a, β-methylene-ATP: Further evidence of ATP and noradrenaline as cotransmitters. Eur J Pharmacol 100: 85–90, 1984.

    PubMed  CAS  Google Scholar 

  38. Kugelgen IV, Starke K: Noradrenaline and adenosine triphosphate as co-transmitters of neurogenic vasoconstriction in rabbit mesenteric artery. J Physiol 367: 435–455, 1985.

    Google Scholar 

  39. Sneddon P, Burnstock G: ATP as co-transmitter in rat tail artery. Eur J Pharmacol 106: 149–152, 1984.

    PubMed  CAS  Google Scholar 

  40. Walsh J V, Singer JJ: Voltage clamp of single freshly dissociated smooth muscle cells: Current-voltage relationships for three currents. Pfliigers Arch 390: 207–210, 1981.

    CAS  Google Scholar 

  41. Klockner U, Isenberg G: Action potentials and net membrane currents of isolated smooth muscle cells (urinary bladder of the guinea-pig). Pfliigers Arch 405: 329–339, 1985.

    CAS  Google Scholar 

  42. Droogmans G, Callewaert G: Ca2+-channel current and its modification by the dihydropyridine agonist BAY k 8644 in isolated smooth muscle cells. Pfliigers Arch 406: 259–265, 1986.

    CAS  Google Scholar 

  43. Saida K: Intracellular Ca release in skinned smooth muscle. J Gen Physiol 80: 191–202, 1982.

    PubMed  CAS  Google Scholar 

  44. Su C, Bevan J A, Ursillo RC: Electrical quiescence of pulmonary artery smooth muscle during sympathomimetic stimulation. Circ Res 15: 20–27, 1964.

    CAS  Google Scholar 

  45. Vonderlage M: Spread of contraction in rabbit ear artery preparations in response to stimulation by norepinephrine. Circ Res 49: 600–608, 1981.

    PubMed  CAS  Google Scholar 

  46. Ito Y, Kitamura K, Kuriyama H: Effects of acetylcholine and catecholamines on the smooth muscle cells of the porcine coronary artery. J Physiol (London) 294: 595–611, 1979.

    CAS  Google Scholar 

  47. Kitamura K, Kuriyama H: Effects of acetylcholine on the smooth muscle cell of isolated main coronary artery of the guinea-pig. J Physiol (London) 293: 119–133, 1979.

    CAS  Google Scholar 

  48. Kuriyama H, Suzuki H: The effects of acetylcholine on the membrane and contractile properties of smooth muscle cells of the rabbit superior mesenteric artery. Br J Pharmacol 64: 493–501, 1978.

    PubMed  CAS  Google Scholar 

  49. Harder DR: Membrane electrical effects of histamine on vascular smooth muscle of canine coronary artery. Circ Res 46: 372–377, 1980.

    PubMed  CAS  Google Scholar 

  50. Harder DR, Abel PW, Hermsmeyer K: Membrane electrical mechanism of basilar artery constriction and pial artery dilation by norepinephrine. Circ Res 49: 1237–1242, 1981.

    PubMed  CAS  Google Scholar 

  51. Kajiwara M: General features of electrical and mechanical properties of smooth muscle cells in the guinea-pig abdominal aorta. Pfliigers Arch Eur J Physiol 393: 109–117, 1982.

    CAS  Google Scholar 

  52. Godfraind T, Kaba A: The role of calcium in the action of drugs on vascular smooth muscle. Arch Int Pharmacodyn 196: 35–49, 1972.

    PubMed  Google Scholar 

  53. Bohr DF: Vascular smooth muscle updated. Circ Res 32: 665–671, 1973.

    PubMed  CAS  Google Scholar 

  54. Deth R, Van Breemen C: Relative contributions of Ca++ influx and cellular Ca++ release during drug- induced activation of the rabbit aorta. Pfliigers Arch Eur J Physiol 348: 13–22, 1974.

    CAS  Google Scholar 

  55. Deth R, Van Breemen C: Agonist induced release of intracellular Ca++ in the rabbit aorta. J Membrane Biol 30: 363 - 380, 1977.

    CAS  Google Scholar 

  56. Bevan JA, Waterson JG: Biphasic constrictor response of the rabbit ear artery. Circ Res 28: 655–661, 1971.

    PubMed  CAS  Google Scholar 

  57. Steinsland OS, Furchgott RF, Kirpekar SM: Biphasic constriction of the rabbit ear artery. Circ Res 32: 49 - 58, 1973.

    PubMed  CAS  Google Scholar 

  58. Peiper U, Griebel L, Wende W: Activation of vascular smooth muscle cells of rat aorta by noradrenaline and depolarization: Two different mechanisms. Pfliigers Arch Eur J Physiol 330: 74–89, 1971.

    CAS  Google Scholar 

  59. Bilek I, Laven R, Peiper U, Regnat K: The effect of verapamil on the response to noradrenaline or to potassium-depolarization in isolated vascular strips. Microvasc Res 7: 181–189, 1974.

    PubMed  CAS  Google Scholar 

  60. Golenhofen K, Hermstein N: Differentiation of calcium activation mechanisms in vascular smooth muscle by selective suppression with verapamil and D-600. Blood Vessels 12: 21–37, 1975.

    PubMed  CAS  Google Scholar 

  61. Golenhofen K, Hermstein N, Lammel E: Membrane potential and contraction of vascular smooth muscle (portal vein) during application of noradrenaline and high potassium, and selective inhibitory effects of iproveratril (verapamil). Microvasc Res 5: 73–80, 1973.

    PubMed  CAS  Google Scholar 

  62. Vanhoutte PM, Shepherd JT: Effect of temperature on reactivity of isolated cutaneous veins of the dog. Am J Physiol 218: 1746–1750, 1970.

    PubMed  CAS  Google Scholar 

  63. Vanhoutte PM, Lorenz RR: Effect of temperature on reactivity of saphenous, mesenteric and femoral veins of the dog. Am J Physiol 218: 317–329, 1970.

    Google Scholar 

  64. Peiper U, Griebel L, Wende W: Unterschiedliche temperaturabhangigkeit der gefassmuskelkontrak- tion nach aktivierung durch kalium-depolarization bzw, Noradrenalin. Pfliigers Arch 324: 67–78, 1971.

    CAS  Google Scholar 

  65. Droogmans G, Casteels R: Temperature-dependence of 45Ca fluxes and contraction in vascular smooth muscle cells of rabbit ear artery. Pfliigers Arch 391: 183 - 189, 1981.

    CAS  Google Scholar 

  66. Deth R, Casteels R: A study of releasable Ca2+ fractions in smooth muscle cells of the rabbit aorta. J Gen Physiol 69: 401–416, 1977.

    PubMed  CAS  Google Scholar 

  67. Deth R, Lynch CJ: Mobilization of a common source smooth muscle cells of the guinea-pig’s taenia coli. J Physiol (London) 214: 225–243, 1971. of smooth muscle Ca2+ by norepinephrine and methylxanthines. Am J Physiol 240: C239–C247, 1981.

    CAS  Google Scholar 

  68. Itoh T, Kuriyama H, Suzuki H: Differences and similarities in the noradrenaline- and caffeine- induced mechanical responses in the rabbit mesenteric artery. J Physiol 337: 609–629, 1983.

    PubMed  CAS  Google Scholar 

  69. Saida K, van Breemen C: Characteristics of the norepinephrine-sensitive Ca2+-store in vascular smooth muscle. Blood Vessels 21: 43–52, 1984.

    PubMed  CAS  Google Scholar 

  70. Casteels R, Raeymaekers L: The action of acetylcholine and catecholamines on an intracellular calcium store in the smooth muscle cells of the guinea-pig taenia coli, J Physiol (London) 294: 51–68, 1979.

    CAS  Google Scholar 

  71. Casteels R, Kitamura K, Kuriyama H, Suzuki H: Excitation-contraction coupling in the smooth muscle cells of the rabbit main pulmonary artery. J Physiol (London) 271: 63–79, 1977.

    CAS  Google Scholar 

  72. Casteels R, Droogmans G: Exchange characteristics of the noradrenaline sensitive calcium store in vascular smooth muscle cells of rabbit ear artery. J Physiol (London) 317: 263–279, 1981.

    CAS  Google Scholar 

  73. Van Breemen C, Siegel B: The mechanism of a- adrenergic activation of the dog coronary artery. Circulation Res 46: 426–429, 1980.

    PubMed  Google Scholar 

  74. McCalden TA, Bevan J A: Sources of activator calcium in rabbit basilar artery. Am J Physiol 241: H129–H131, 1981, 65.

    Google Scholar 

  75. Somlyo AP, Devine CE, Somlyo AV, North SR: Sarcoplasmic reticulum and the temperature- dependent contraction of smooth muscle in calcium free solution. J Cell Biol 51: 722–741, 1971.

    PubMed  CAS  Google Scholar 

  76. Karaki H, Kubota H, Urakawa N: Mobilization of stored calcium for phasic contraction induced by norepinephrine in rabbit aorta. Eur J Pharmacol 56: 237–245, 1979.

    PubMed  CAS  Google Scholar 

  77. Putney Jr JW: A model for receptor-regulated calcium entry. Cell Calcium 7: 1–12 1986.

    PubMed  CAS  Google Scholar 

  78. Devine CE, Somlyo AV, Somlyo AP: Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscle. J Cell Biol 52: 690–718, 1972.

    PubMed  CAS  Google Scholar 

  79. Devine CE, Rayns DG: Freeze fracture studies of membrane systems in vertebrate muscle. II. Smooth muscle. J Ultrastruct Res 51: 293–306, 1975.

    PubMed  CAS  Google Scholar 

  80. Somlyo AP, Somlyo AV, Shuman H: Electron probe analysis of vascular smooth muscle. Composition of mitochondria, nuclei and cytoplasm. J Cell Biol 67: 911–918, 1979.

    Google Scholar 

  81. Raeymaekers L, Casteels R: Measurement of Ca uptake in the endoplasmic reticulum of the smooth muscle cells of the rabbit ear artery. Arch Int Physiol Biochim 75: 33–34, 1981. 71.

    Google Scholar 

  82. Hashimoto T, Hirata M, Itoh T, Kanmura Y, Kuriyama H: Inositol 1,4, 5-trisphosphate activates pharmacomechanical coupling in smooth muscle of the rabbit mesenteric artery. J Physiol 370: 605–618, 1986.

    PubMed  CAS  Google Scholar 

  83. Berridge MJ, Irvine RF: Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321, 1984.

    PubMed  CAS  Google Scholar 

  84. Blaustein MP: Sodium ions, calcium ions, blood pressure regulation and hypertension: A reassessment and an hypothesis. Am J Physiol 232: CI65–C173, 1977.

    Google Scholar 

  85. Droogmans G, Casteels R: Sodium and calcium interactions in vascular smooth muscle cells of rabbit ear artery. J Gen Physiol 74: 57 - 70, 1979.

    PubMed  CAS  Google Scholar 

  86. Schatzmann HJ, Vincenzi FF: Calcium movements across the membrane of human red cells. J Physiol (London) 201: 369–395, 1969.

    CAS  Google Scholar 

  87. Van Breemen C, Wuytack F, Casteels R: Stimulation of 45Ca efflux from smooth muscle cells by metabolic inhibition and high K depolarization. Pflugers Arch 359: 183–196, 1975.

    PubMed  Google Scholar 

  88. Casteels R, Van Breemen C, Wuytack F: Effect of metabolic depletion on the membrane permeability of smooth muscle cells and its modification by La3+. Nature 239: 249–251, 1972.

    CAS  Google Scholar 

  89. Wuytack F, Raeymaekers L, De Schutter G, Casteels R: Demonstration of the phosphorylated intermediates of the Ca2+-transport ATPase in a microsomal fraction and in a (Ca2++Mg2+)-ATPase purified from smooth muscle by means of calmodulin affinity chromatography. Biochim Bioph Acta 693: 45–52, 1982.

    CAS  Google Scholar 

  90. Wuytack F, Raeymaekers L, Verbist J, Desmedt H, Casteels R: Evidence for the presence in smooth muscle of two types of Ca2+-transport APTase. Biochem J 224: 445–451, 1984.

    PubMed  CAS  Google Scholar 

  91. Raeymaekers L, Wuytack F, Casteels R: Subcellular fractionation of pig stomach smooth muscle. A study of the distribution of the (Ca2++Mg2+)-ATPase activity in plasmalemma and endoplasmic reticulum. Biochem Biophys Acta 815: 441–454, 1985.

    PubMed  CAS  Google Scholar 

  92. Wuytack F, De Schutter G, Casteels R: Purification of (Ca2++Mg2+)-ATPase from smooth muscle by calmodulin affinity chromatography. FEBS Lett 129: 297 - 300, 1981.

    PubMed  CAS  Google Scholar 

  93. Wuytack F, De Schutter G, Verbist J, Casteels R: Antibodies to the calmodulin-binding Ca2+- transport ATPase from smooth muscle. FEBS Lett 154: 191–195, 1983.

    PubMed  CAS  Google Scholar 

  94. Grover AK, Kwan CY, Daniel EE: Na-Ca exchange in rat myometrium membrane vesicles highly enriched in plasma membranes. Am J Physiol 240: C175–C182, 1981.

    PubMed  CAS  Google Scholar 

  95. Morel N, Godfraind T: Sodium/calcium exchange in smooth muscle microsomal fractions. Biochem J 218: 421–427, 1984.

    PubMed  CAS  Google Scholar 

  96. Raeymaekers L, Jones LR: Evidence for the presence of phospholamban in the endoplasmic reticulum of smooth muscle. Biochem Biophys Acta 882: 258–265, 1986.

    PubMed  CAS  Google Scholar 

  97. Itoh T, Izumi H, Kuriyama H: Mechanisms of relaxation induced by activation of -adrenoceptors in smooth muscle cells of the guinea-pig mesenteric artery. J Physiol (London) 326: 475–493, 1982.

    CAS  Google Scholar 

  98. Batra S: The role of mitochondrial calcium uptake in contraction and relaxation of human myometrium. Biochim Biophys Acta 305: 428–432, 1972.

    Google Scholar 

  99. Raeymaekers L, Wuytack F, Batra S, Casteels R: A comparative study of the calcium accumulation by mitochondria and microsomes isolated from the smooth muscle of the guinea-pig taenia coli. Pfliigers Arch 368: 217–223, 1977.

    CAS  Google Scholar 

  100. Saida K, van Breemen C: A possible Ca2+-induced Ca2+-release mechanism mediated by norepinephrine in vascular smooth muscle. Pfliigers Arch 397: 166–167, 1983.

    CAS  Google Scholar 

  101. Popescu LM, Diculescu I, Zelck U, Ionescu N: Ultrastructural distribution of calcium in smooth muscle cells of guinea-pig taenia coli. Cell Tissue Res 154: 357–378, 1974.

    PubMed  CAS  Google Scholar 

  102. Debbas G, Hoffman L, Landon EJ, Hurwitz L: Electron microscopic localization of calcium in vascular smooth muscle. Anat Rec 182: 447–472, 1975.

    PubMed  CAS  Google Scholar 

  103. Atsumi S, Sugi H: Localization of calcium- accumulating structures in the anterior byssal retractor muscle of Mytilus edulis and their role in the regulation of active and catch contractions. J Physiol (London) 257: 549–560, 1976.

    CAS  Google Scholar 

  104. Sugi H, Daimon T: Translocation of intracellularly stored calcium during the contraction-relaxation cycle in guinea-pig taenia coli. Nature 269: 436–438, 1977.

    PubMed  CAS  Google Scholar 

  105. McGuffee LJ, Hurwitz L, Little SA, Skipper BE: A 45Ca autoradiographic and stereological study of freeze-dried smooth muscle of the guinea-pig vas deferens. J Cell Biol 90: 201–210, 1981.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Droogmans, G., Casteels, R. (1989). Electromechanical and Pharmacomechanical Coupling in Vascular Smooth Muscle. In: Sperelakis, N. (eds) Physiology and Pathophysiology of the Heart. Developments in Cardiovascular Medicine, vol 90. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0873-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0873-7_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8222-8

  • Online ISBN: 978-1-4613-0873-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics