Skip to main content

Effects of the Volatile Anesthetic Agents on the Heart

  • Chapter
  • 312 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 90))

Abstract

It took only just over a year after William Morton showed the feasibility of surgical anesthesia to demonstrate the marked effects of volatile anesthetic agents on the heart. On 28 January 1848, Hannah Greener, aged 15, was the first patient to die during chloroform anesthesia (presumably of ventricular fibrillation).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hauswirth O, Schaer H: Effects of halothane on the sinoatrial node. J. Pharmacol Exp Therap 158: 36 - 39, 1967.

    CAS  Google Scholar 

  2. Reynolds AK, Chiz JF, Pasquet AF: Halothane and methoxyflurane: A comparison of their effects on cardiac pacemaker fibers. Anesthesiology 33: 602 - 610, 1970.

    PubMed  CAS  Google Scholar 

  3. Maylie J, Morad M, Weiss J: A study of pacemaker potential in rabbit sino-atrial node: Measurement of potassium activity under voltage-clamp conditions. J Physiol 311: 161 - 178, 1981.

    PubMed  CAS  Google Scholar 

  4. Kampine JP, Bosnjak ZJ, Turner LA: Effects of halothane on SA node: role of calcium. Anesthesiology 55: A58, 1981.

    Google Scholar 

  5. Lynch C, Vogel S, Sperelakis N: Halothane depression of myocardial slow action potentials. Anesthesiology of 55: 360 - 368, 1981.

    CAS  Google Scholar 

  6. Merlos JR, Bosnjak ZJ, Purlock RV, Turner LA, Kampine JR: Halothane and enflurane effects on SA node cells. Anesthesiology 53: S143, 1980.

    Google Scholar 

  7. Hauswirth O: Effects of halothane on single atrial, ventricular, and Purkinje fibers. Circ Res 24: 745 - 750, 1969.

    PubMed  CAS  Google Scholar 

  8. Reynolds AK, Chiz JF, Pasquet AF: Pacemaker migration and sinus node arrest with methoxyflurane and halothane. Can Anaesth Sof J 18: 137 - 144, 1971.

    CAS  Google Scholar 

  9. Pratila MG, Vogel S, Sperelakis N: Effects of enflurane on rabbit atrium. Unpublished data.

    Google Scholar 

  10. Scherlag BJ, Helfant RH, Damato AN: A catheterization technique for His-bundle stimulation and recording in intact dog. J Appl Physiol 25: 425 - 428, 1968.

    Google Scholar 

  11. Damato AN, Lau SH, Bobb GA, Wit AL: Recording of AV nodal activity in the intact dog heart. Am Heart J 80: 353 - 366, 1970.

    PubMed  CAS  Google Scholar 

  12. Narula OS, Scherlag BJ, Samet P, Javier RP: Atrioventricular block: Localization and classification by His-bundle recordings. Am J Med 50: 146 - 165, 1971.

    PubMed  CAS  Google Scholar 

  13. Kastor JA: Atrioventricular block. N Engl J Med 292: 462-465, 572 - 574, 1975.

    Google Scholar 

  14. Atlee JL, Rusy BF: Halothane depression of A-V conduction studied by electrograms of the bundle of His in dogs. Anesthesiology 36: 112 - 118, 1972.

    PubMed  CAS  Google Scholar 

  15. Atlee JL, Alexander SC: Halothane effects on conductivity of the AV node and His Purkinje system in the dog. Anesth Anaig (Cleve) 56: 378 - 386, 1977.

    CAS  Google Scholar 

  16. Atlee JL, Homer LD, Tober RE: ’Diphenylhydantoin and lidocaine modification of AV conduction in halothane anesthetized dogs. Anesthesiology 43: 49 - 60, 1975.

    PubMed  CAS  Google Scholar 

  17. Atlee JL III, Houge JC, Malkinson CE: Halothane and AV conduction: Awake vs anesthesia. Anesthesiology 55: A53, 1981.

    Google Scholar 

  18. Hantler CB, Kroll DA, Tait AR, Knight PR: Cardiac effects of halothane with spinal anesthesia. Anesthesiology 55: A4, 1981.

    Google Scholar 

  19. Morrow DH, Haley JV, Logic JR: Anesthesia and digitalis. VII. The effect of pentobarbital halothane and methoxyflurane of the AV conduction and inotropic responses to ouabain. Anesth Analg (Cleve) 51: 430 - 438, 1972.

    CAS  Google Scholar 

  20. Jacques A, Hudon F: Effect of epinephrine on the human heart during methoxyflurane anesthesia. Can Anaesth Soc J 10: 53, 1963.

    PubMed  CAS  Google Scholar 

  21. Atlee JR III, Rusy BF: Atrioventricular conduction times and atrioventricular nodal conductivity during enflurane anesthesia in dogs. Anesthesiology 47: 498 - 503, 1977.

    PubMed  CAS  Google Scholar 

  22. Atlee JL, Rusy BF, Kreul JF: Supraventricular excitability in dogs during anesthesia with halothane and enflurane. Anesthesiology 49: 407 - 413, 1978.

    PubMed  CAS  Google Scholar 

  23. Zaidon JR, Curling PE, Kaplan JA: Effect of enflurane on pacing threshold. Anesthesiology 55: A59, 1981.

    Google Scholar 

  24. Blitt CD, Raessler KL, Wightman MA, Groves BM, Wall CL, Geha DG: Atrioventricular conduction in dogs during anesthesia with isoflurane. Anesthesiology 50: 210 - 212, 1979.

    PubMed  CAS  Google Scholar 

  25. Pruett JK, Mote PS, Grover TE, Augeri JM: Enflurane and halothane effects on cardiac Purkinje fibers. Anesthesiology 55: A65, 1981.

    Google Scholar 

  26. Chen C, Gettes LS, Katzung BG: Effect of lidocaine and quinidine on steady-state characteristics and recovery kinetics of (dV/dt)max in guinea pig ventricular myocardium. Circ Res 37: 20 - 29, 1975.

    PubMed  CAS  Google Scholar 

  27. Hashimoto K, Endoh M, Kimura T: Effects of halothane on automaticity and contractile force of isolated blood-perfused canine ventricular tissue. Anesthesiology 42: 15 - 25, 1975.

    PubMed  CAS  Google Scholar 

  28. Logic JR, Morrow DH: The effect of halothane on ventricular automaticity. Anesthesiology 36: 107 - 118, 1972.

    PubMed  CAS  Google Scholar 

  29. Lynch C, Vogel S, Pratila MG, Sperelakis N: Enflurane depression of myocardial slow action potentials. J Pharmacol Exp Ther 222: 405 - 409, 1982.

    CAS  Google Scholar 

  30. Vassalle M: Electrogenesis of the plateau and pacemaker potential. Am Rev Physiol 41: 425-440, 1979-

    Google Scholar 

  31. Lappas DC, Buckley MJ, Laver MB, Daggett WM, Lowenstein E: Left ventricular performance and pulmonary circulation following addition of nitrous oxide to morphine during coronary-artery surgery. Anesthesiology 43: 61 - 69, 1975.

    PubMed  CAS  Google Scholar 

  32. Delaney TJ, Kistner JR, Lake CL, Miller ED Jr: Myocardial function during halothane and enflurane anesthesia in patients with coronary artery disease. Anesth Analg (Cleve) 59: 240 - 244, 1980.

    CAS  Google Scholar 

  33. Stevens WC, Cromwell TH, Halsey MJ, Eger EI II, Shakespeare TF, Bahlman SH: The cardiovascular effects of a new inhalational anesthetic, Forane, in human volunteers at constant arterial carbon dioxide tension. Anesthesiology 35: 8 - 16, 1971.

    PubMed  CAS  Google Scholar 

  34. Rathod R, Jacobs HK, Kramer NE, Rao TLK, Salem MR, Towne WD: Echocardiographic assessment of ventricular performance following induction with two anesthetics. Anesthesiology 49: 86 - 90, 1978.

    PubMed  CAS  Google Scholar 

  35. Kaplan JA, Miller ED, Bailey DR: A comparative study of enflurane and halothane using systolic time intervals. Anesth Analg (Cleve) 55: 263 - 268, 1976.

    CAS  Google Scholar 

  36. Smith NT, Calverley RK, Prys-Roberts C, Eger EI II, Jones CW: Impact nitrous oxide on the circulation during enflurane anesthesia in man. Anesthesiology 48: 345 - 349, 1978.

    PubMed  CAS  Google Scholar 

  37. Merin RG, Kumazawa T, Luka NL: Myocardial function and metabolism in the conscious dog and during halothane anesthesia. Anesthesiology 44: 402 - 514, 1976.

    PubMed  CAS  Google Scholar 

  38. Kemmotsu O, Hashimoto Y, Shimosato S: Inotropic effects of isoflurane on mechanics of contraction in isolated cat papillary muscles from normal and failing hearts. Anesthesiology 39: 470-477, 1973-

    Google Scholar 

  39. Kemmotsu O, Hashimoto Y, Shimosato S: The effects of fluroxene and enflurane on contractile performance of isolated papillary muscles from failing hearts. Anesthesiology 40: 252 - 260, 1974.

    PubMed  CAS  Google Scholar 

  40. Ritzman RJ, Erickson HH, Miller ED: Cardiovascular effects of enflurane and halothane in the rhesus monkey. Anesth Analg (Cleve) 55: 85 - 91, 1976.

    CAS  Google Scholar 

  41. Merin RG, Kumazawa T, Luka NL: Enflurane depresses myocardial function perfusion and metabolism in the dog. Anesthesiology 45: 501 - 507, 1976.

    PubMed  CAS  Google Scholar 

  42. Brown BR, Crout JR: A comparative study of the effects of five general anesthetics on myocardial contractility. Anesthesiology 34: 236 - 245, 1971.

    PubMed  CAS  Google Scholar 

  43. Seeman P: The membrane expansion theory of anesthesia. In: Fink BR (ed) Molecular Mechanisms of Anesthesia. Progress in Anesthesiology, Vol 1. New York: Raven Press, 1975, pp 243 - 252.

    Google Scholar 

  44. Halsey MJ: Structure-activity relationships of inhalational anesthetics. In: Halsey MJ, Millar RA, Sutton JA (eds) Molecular Mechanisms in General Anesthesia. Edinburgh: Churchill Livingstone, 1974, pp 3 - 16.

    Google Scholar 

  45. Halsey MJ, Brown FF, Richards RE: Perturbations of model protein systems as a basis for the central and peripheral mechanisms of general anaesthesia. Molecular interactions and activity in proteins. Ciba Foundation Symposium 60. Amsterdam: Excerpta Medica, 1978.

    Google Scholar 

  46. Woodbury JW, d’Arrigo JS, Eyring H: Molecular mechanism of general anesthesia lipoprotein conformation change theory. In: Fink BR (ed) Molecular Mechanisms of Anesthesia. Progress in Anesthesiology, Vol 1. New York: Raven Press, 1975, pp 253–276.

    Google Scholar 

  47. Metcalfe JC, Hoult JRS, Colley CM: The molecular implications of a unitary hypothesis of anesthetic action. In: Halsey MJ, Millar RA, Sutton JA (eds) Molecular Mechanisms in General Anaesthesia. Edinburgh: Churchill Livingstone, 1974, pp 145 - 163.

    Google Scholar 

  48. Cheng SC, Brunner EA: Is anesthesia caused by excess GABA? In: Fink BR (ed) Molecular Mechanisms of Anesthesia. Progress in Anesthesiology, Vol 2, New York: Raven Press, 1980, pp 137 - 144.

    Google Scholar 

  49. Trudeil JR: A unitary theory of anesthesia based on lateral phase separations in nerve membranes. Anesthesiology 46: 5 - 10, 1977.

    Google Scholar 

  50. Rosenberg PH, Eibl H, Stier A. Biphasic effects of halothane on phospholipid and synaptic plasma membranes: a spin label study. Mol Pharmacol 11: 879 - 882, 1975.

    PubMed  CAS  Google Scholar 

  51. Pang KY, Chang TL, Miller KW: On the coupling between anesthetic induced membrane fluidization and cation permeability in lipid vesicles. Mol Pharmacol 15: 729-738, 1979-

    Google Scholar 

  52. Mastrangelo CJ, Trudell JR, Edmunds HN, Cohen EN: Effect of clinical concentrations of halothane on phospholipid membrane fluidity. Mol Pharmacol 14: 463 - 467, 1978.

    PubMed  CAS  Google Scholar 

  53. Menn RG; Inhalational anesthetics and myocardial metabolism: Possible mechanism of functional effects. Anesthesiology 34: 236 - 245, 1971.

    Google Scholar 

  54. Lain RF, Hess ML, Gertz EW, Briggs FN: Calcium uptake activity of canine myocardial sarcoplasmic reticulum in the presence of anesthetic agents. Circ Res 23: 597 - 604, 1968.

    PubMed  CAS  Google Scholar 

  55. Lee SL, Alto LE, Dhalla NS: Subcellular effects of some anesthetic agents on rat myocardium, Can J Physiol Pharmacol 57: 65 - 70, 1974.

    Google Scholar 

  56. Su JY, Kerrick WGL: Effects of halothane on Ca++-activated tension development in mechanically disrupted rabbit myocardial fibers. Pflügers Archiv 375: 111 - 117, 1978.

    PubMed  CAS  Google Scholar 

  57. Su JY, Kerrick WGL: Effects of halothane on caffeine-induced tension transients in functionally skinned myocardial fibers. Pflügers Archiv 380: 29 - 34, 1979.

    PubMed  CAS  Google Scholar 

  58. Su JY, Kerrick WGL: Effects of enflurane on functionally skinned myocardial fibers from rabbits. Anesthesiology 52: 385 - 389, 1980.

    PubMed  CAS  Google Scholar 

  59. Price HL, Ohnishi ST: Effects of anesthetics on the heart. Fed Proc 39: 1575 - 1579, 1980.

    PubMed  CAS  Google Scholar 

  60. Ohnishi ST, Di Camillo Ca, Singer M, Price HL: Correlation between halothane-induced myocardial depression and decreases in La3+-displaceable Ca2+ in cardiac muscle cells. J Cardiovasc Pharmacol 2: 67 - 75, 1980.

    PubMed  CAS  Google Scholar 

  61. Blanck TJJ, Thompson M: Calcium transport by cardiac sarcoplasmic reticulum: Modulation of halothane action by substrate concentration and pH. Anesth Anaig (Cleve) 60: 390 - 394, 1981.

    CAS  Google Scholar 

  62. Conahan TJ, Blanck TJJ: Sarcoplasmic reticulum: Enflurane effect on Ca++ dynamics. Anesthesiology 51: S146, 1979.

    Google Scholar 

  63. Blanck TJJ, Thompson M: Enflurane and isoflurane stimulate calcium transport by cardiac sarcoplasmic reticulum. Anesth Anaig (Cleve) 61: 142 - 145, 1982.

    CAS  Google Scholar 

  64. Komai H, Rusy BF: Effect of halothane on rested- state and potentiated-state contractions in rabbit papillary muscle: Relationship to negative inotropic actions. Anesth Anaig (Cleve) 61: 403 - 409, 1982.

    CAS  Google Scholar 

  65. Weidmann S: Heart: Electrophysiology. Ann Rev Physiol 36: 155 - 169, 1974.

    CAS  Google Scholar 

  66. Shigenobu K, Schneider JA, Sperelakis N: Blockade of slow Na+ and Ca++ currents in myocardial cells hy verapamil. J Pharmacol Exp Ther 190: 280 - 288, 1974.

    PubMed  CAS  Google Scholar 

  67. Fabiato A, Fabiato F: Calcium and cardiac excitation-contraction coupling. Ann Rev Physiol 41: 473 - 484, 1979.

    CAS  Google Scholar 

  68. Await CH, Frederickson EL: The contractile and cell membrane effects of halothane. Anesthesiology 25: 90, 1964.

    Google Scholar 

  69. Lynch C, Vogel S, Pratila MG, Sperelakis N: Me- thoxyflurane depression of myocardial slow action potentials. Unpublished findings.

    Google Scholar 

  70. Shigenobu K, Sperelakis N: Calcium current channels enduced by catecholamines in chick embryonic hearts whose fast Na+ channels are blocked by TTX or elevated K+. Circ Res 31: 932 - 952, 1972.

    PubMed  CAS  Google Scholar 

  71. Reuter H, Scholz H: A study of the ion selectivity and kinetic properties of the calcium-dependent slow inward current in cardiac muscle. J Physiol (Lond) 264: 17 - 47, 1977.

    CAS  Google Scholar 

  72. Watanabe AM, Besch HR Jr: Cyclic adenosine monophosphate modulation of slow Ca++ influx channels in guinea pig hearts. Circ Res 35: 316 - 324, 1974.

    CAS  Google Scholar 

  73. Sperelakis N, Schneider JA: A metabolic control mechanism for calcium ion influx that may protect the ventricular myocardial cell. Am J Cardiol 37: 1079 - 1085, 1976.

    PubMed  CAS  Google Scholar 

  74. Reuter H, Scholz H: The regulation of the calcium conductance of cardiac muscle by adrenalin. J Physiol (Lond) 264: 49 - 62, 1977.

    CAS  Google Scholar 

  75. Kass RS, Siegelbaum SA, Tsien RW: Three micro- electrode voltage clamp experiments in calf Purkinje fibers: Is slow inward current adequately measured? J Physiol (Lond) 290: 201 - 225, 1979.

    CAS  Google Scholar 

  76. Morrow DH, Townley NT: Anesthesia and digitalis toxicity: An experimental study. Anesth Analg (Cleve) 43: 510 - 519, 1964.

    CAS  Google Scholar 

  77. Reynolds AK, Home ML: Studies on the cardio- toxicity of ouabain. Can J Physiol Pharmacol 47: 165 - 170, 1969.

    PubMed  CAS  Google Scholar 

  78. Morrow DH, Knapp DE, Logic JR: Anesthesia and digitalis toxicity. V. Effect of the vagus on ouabain- induced ventricular automaticity during halothane. Anesth Analg (Cleve) 49: 23 - 27, 1970.

    CAS  Google Scholar 

  79. Damato AN, Lau SH, Bobb GA: Digitalis-induced bundle-branch ventricular tachycardia studied by electrode catheter recordings of the specialized conducting tissues of the dog. Circ Res 28: 16 - 22, 1971.

    PubMed  CAS  Google Scholar 

  80. Logic JR, Morrow DH: The effect of halothane on ventricular automaticity. Anesthesiology 36: 107- 118, 1972.

    Google Scholar 

  81. Matsui H, Schwartz A: Mechanism of cardiac glycoside inhibition of the (Na+-K+)-dependent ATPase from cardiac tissue. Biochim Biophys Acta 151: 655 - 663, 1968.

    PubMed  CAS  Google Scholar 

  82. Baker PF, Blaustein MP, Hodgkin AL, Steinhardt RA: The influence of calcium on sodium efflux in squid axons. J Physiol (Lond) 200: 431 - 458, 1969.

    CAS  Google Scholar 

  83. Pruett JK, Gramling ZW: Halothane enhanced membrane responsiveness in canine Purkinje fibers. Fed Proc 38: 589, 1979.

    Google Scholar 

  84. Ivankovich AD, Miletich DJ, Grossman RK, Al- brecht RF, El-Etr AA, Cairoli VJ: The effect of en- flurane, isoflurane, fluroxene, methoxyflurane and diethyl ether anesthesia on ouabain tolerance in the dog. Anesth Anaig (Cleve) 55: 360 - 365, 1976.

    CAS  Google Scholar 

  85. Pearle DL, Gillis RA: Effect of digitalis on response of the ventricular pacemaker to sympathetic neural stimulation and to isoproterenol. Am J Cardiol 34: 704 - 710, 1974.

    PubMed  CAS  Google Scholar 

  86. Skovsted P, Price ML, Price HL: The effects of carbon dioxide on preganglionic sympathetic activity during halothane, methoxyflurane and cyclopropane anesthesia. Anesthesiology 37: 70 - 75, 1972.

    PubMed  CAS  Google Scholar 

  87. Brown FF III, Owens WD, Felts JA, Spitznagel EL Jr, Cryer PE: Plasma epinephrine and norepinephrine levels during anesthesia: Enflurane-N20-02 compound with fentanyl-N20-02. Anesth Analg (Cleve) 61: 366 - 370, 1982.

    Google Scholar 

  88. Skovsted P, Sapthavichaikul S: The effects of isoflurane on arterial pressure, pulse rate, autonomic nervous activity and barostatic reflexes. Can Anaesth Soc J 24: 304 - 314, 1977.

    PubMed  CAS  Google Scholar 

  89. Hashimoto K, Hashimoto K: The mechanism of sensitization of the ventricle to epinephrine by halothane. Am Heart J 83: 652 - 658, 1972.

    PubMed  CAS  Google Scholar 

  90. Hashimoto K, Endoh M, Kimura T: Effects of halothane on automaticity and contractile force of isolated blood-perfused canine ventricular tissue. Anesthesiology 42: 15 - 25, 1975.

    PubMed  CAS  Google Scholar 

  91. Zink J, Sasyniuk BI, Dresel PE: Halothane-epine- phrine induced cardiac arrhythmias and the role of heart rate. Anesthesiology 43: 548 - 555, 1975.

    PubMed  CAS  Google Scholar 

  92. Singer DH, Lazzara R, Hoffman BF: Electrophysiological effects of canine peripheral A-V conducting system. Circ Res 26: 361 - 378, 1970.

    Google Scholar 

  93. Reynolds AK, Chiz JF: Epinephrine-potentiated slowing of conduction in Purkinje fibers. Res Com- mun Chem Pathol Pharmacol 9: 633 - 642, 1974.

    CAS  Google Scholar 

  94. Joas TA, Stevens WC: Comparison of the arrhythmic doses of epinephrine during Forane, halothane and fluroxene anesthesia in dogs. Anesthesiology 35: 48 - 53, 1971.

    PubMed  CAS  Google Scholar 

  95. Johnston RR, Eger EI II, Wilson C: A comparative interaction of epinephrine with enflurane, isoflurane and halothane in man. Anesth Analg (Cleve) 55: 709 - 712, 1976.

    CAS  Google Scholar 

  96. Horrigan RW, Eger EI II, Wilson C: Epinephrine- induced arrhythmias during enflurane anesthesia in man: A non-linear dose-response relationship and dose-dependent protection from lidocaine. Anesth Analg (Cleve) 57: 547 - 550, 1970.

    Google Scholar 

  97. Singh BN, Elklrodt G, Peter GT: Verapamil: A review of its pharmacological properties and therapeutic use. Drugs 15: 169 - 197, 1978.

    PubMed  Google Scholar 

  98. Brichard G, Zimmerman PE: Verapamil in cardiac dysrhythmias during anesthesia. Br J Anaesth 42: 1005 - 1012, 1970.

    PubMed  CAS  Google Scholar 

  99. Bayer R, Kalusche D, Kaufmann R, Mannhold R: Inotropic and electrophysiological actions of verapamil and D-600 in myocardium. III. Effects of the optical isomers on transmembrane action potentials. Naunyn-Schmiedebergs Arch Pharmacol 290: 81 - 97, 1975.

    PubMed  CAS  Google Scholar 

  100. Merin RG: Slow channel inhibitors, anesthetics and cardiovascular function. Anesthesiology 55: 198 - 200, 1981.

    PubMed  CAS  Google Scholar 

  101. Kapur PA, Flacke WE: Epinephrine-induced arrhythmias and cardiovascular function after verapamil during halothane anesthesia in the dog. Anesthesiology 55: 218 - 225, 1981.

    PubMed  CAS  Google Scholar 

  102. Kapur PA, Flacke WE, Olewine SK, Van Etten PA: Cardiovascular and catecholamine responses to verapamil during enflurane anesthesia. Anesthesiology 55: A14, 1981.

    Google Scholar 

  103. Kapur PA, Flacke WE, Olewine SK: Comparison of effects of isoflurane versus enflurane on cardiovascular and catecholamine responses to verapamil in dogs. Anesth Analg (Cleve) 61: 193 - 194, 1982.

    Google Scholar 

  104. Kates RA, Kaplan JA, Hug CC, Guyton R, Dorsey LM: Hemodynamic interactions of verapamil and isoflurane in dogs. Anesth Analg (Cleve) 61: 194- 195, 1982.

    Google Scholar 

  105. Ellrodt G, Chew CYC, Singh BN: Therapeutic implications of slow-channel blockade in cardio-cir- latory disorders. Circulation 62: 669 - 679, 1980.

    PubMed  CAS  Google Scholar 

  106. Braunwald E: Control of myocardial oxygen consumption. Am J Cardiol 27: 416 - 432, 1971.

    PubMed  CAS  Google Scholar 

  107. Smith NT: Myocardial function and anaesthesia. In: Prys-Roberts (ed) The Circulation in Anaesthesia. Oxford: Blackwell Scientific, 1980, pp 59 - 60.

    Google Scholar 

  108. Shimosato S: Isovolumic intraventricular pressure change: An index of myocardial contractility during anesthesia. Anesthesiology 31: 327 - 333, 1969.

    PubMed  CAS  Google Scholar 

  109. Pollack GH: Isovolumic intraventricular pressure. Anesthesiology 32: 381 - 383, 1970.

    PubMed  CAS  Google Scholar 

  110. Mason DT, Braunwald E, Covell JW, Sonnenblick EH, Ros J Jr: Assessment of cardiac contractility: The relation between the rate of pressure rise and ventricular pressure during isovolumic systole. Circulation 44: 47 - 58, 1971.

    PubMed  CAS  Google Scholar 

  111. Prys-Roberts C, Gersh BJ, Baker AB, Reuben SR: The effects of halothane on the interactions between myocardial contractility, aortic impedance and left ventricular performance. I. Theoretical considerations and results. Br J Anaesth 44: 634 - 639, 1972.

    PubMed  CAS  Google Scholar 

  112. Nelson RR, Gobel FL, Jorgensen CR, Wang K, Wang Y, Taylor HL: Hemodynamic predictors of myocardial oxygen consumption during static and dynamic exercise. Circulation 50: 1179 - 1189, 1974.

    PubMed  CAS  Google Scholar 

  113. Gobel FL, Nordstrom LA, Nelson RR, Jorgensen CR, Wang Y: Rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. Circulation 57: 549 - 556, 1978.

    PubMed  CAS  Google Scholar 

  114. Roy WL, Edelist G, Gilbert B: Myocardial ischemia during non-cardiac surgical procedures in patients with coronary-artery disease. Anesthesiology 51: 393 - 397, 1979.

    PubMed  CAS  Google Scholar 

  115. Sonntag H: Actions of anesthetics on the coronary circulation in normal subjects and patients with ischemic heart disease. Int Anesthesiol Clin 18: 111 - 135, 1980.

    PubMed  CAS  Google Scholar 

  116. Brandi G, McGregor M: Intramural pressure in the left ventricle of the dog. Cardiovasc Res 3: 472- 475, 1969.

    Google Scholar 

  117. Hoffman JIE: Determinants and prediction of transmural myocardial perfusion. Circulation 58: 381 — 391, 1978.

    Google Scholar 

  118. Cohen MV, Kirk ES: Differential response of large and small coronary arteries to nitroglycerin and angiotensin: Autoregulation and tachyphylaxis. Circ Res 33: 445 - 453, 1973.

    PubMed  CAS  Google Scholar 

  119. Braunwald E, Ross J Jr, Sonnenblick EH: Regulation of coronary blood flow: Mechanisms of contraction of the normal and failing heart, 2nd ed. Boston: Little Brown, 1976, pp 200 - 231.

    Google Scholar 

  120. Vatner SF, Franklin D, Braunwald E: Effects of anesthesia and sleep on circulatory response to carotid sinus nerve stimulation. Am J Physiol 220: 1249 - 1255, 1971.

    PubMed  CAS  Google Scholar 

  121. Berne RM: Effect of epinephrine and norepinephrine on coronary circulation. Circ Res 6: 644 - 655, 1958.

    PubMed  CAS  Google Scholar 

  122. Hardin RA, Scott JB, Haddy FJ: Effect of epinephrine and norepinephrine on coronary vascular resistance in dogs. Am J Physiol 201: 276 - 280, 1961.

    PubMed  CAS  Google Scholar 

  123. Hackett JG, Abboud FM, Mark AL, Schmid PG, Heistad DD: Coronary vascular responses to stimulation of chemoreceptors and baroreceptors: Evidence for reflex activation of vagal cholinergic innervation. Circ Res 31: 8 - 17, 1972.

    PubMed  CAS  Google Scholar 

  124. Vatner SF, Higgins CB, Braunwald E: Effects of norepinephrine on coronary circulation and left ventricular dynamics in the conscious dog. Circ Res 34: 812 - 823, 1974.

    PubMed  CAS  Google Scholar 

  125. Pitt B, Elliot EC, Gregg DE: Adrenergic receptor activity in the coronary arteries of the unanesthetized dog. Circ Res 21: 75 - 84, 1967.

    PubMed  CAS  Google Scholar 

  126. Klocke FJ, Ellis AK, Orlick AE: Sympathetic influences on coronary perfusion and evolving concepts of driving pressure, resistance and transmural flow regulation. Anesthesiology 52: 1 - 5, 1980.

    PubMed  CAS  Google Scholar 

  127. Eberlein HJ: Der einfluss von anästhetika auf das koronargefässsystem. Wien Z Inn Med 46: 400 - 403, 1965.

    PubMed  CAS  Google Scholar 

  128. Saito T, Wakisaka K, Yudate T: Coronary and systemic circulation during (inhalation) anesthesia in dogs. Far East J Anesth 5: 105 - 111, 1966.

    Google Scholar 

  129. Weaver PC: Study of the cardiovascular effects of halothane. Ann R Coll Surg Engl 49: 114 - 136, 1971.

    PubMed  CAS  Google Scholar 

  130. Kumazawa T, Merin RG: Effects of inhalation anesthetics on cardiac function and metabolism in the intact dog. Recent Adv Cardiac Struct Metab 10: 71 - 79, 1975.

    CAS  Google Scholar 

  131. Douglas WR: Of pigs and men and research: A review of applications and analogies of the pig Sus scrofa, in human medical research. Space Life Sei 3: 226 - 234, 1972.

    CAS  Google Scholar 

  132. Merin RG, Verdouw PD, De Jong JW: Dose-depen- dent depression of cardiac function and metabolism by halothane in swine (Sus scrofa). Anesthesiology 46: 417 - 423, 1977.

    PubMed  CAS  Google Scholar 

  133. Wolff G, Claudi B, Rist M, Wardak MR, Niederer W, Graedel E: Regulation of coronary blood flow during ether and halothane anaesthesia. Br J Anaesth 44: 1139 - 1149, 1972.

    PubMed  CAS  Google Scholar 

  134. Domenech Rj, Macho P, Valdes J, Penna M: Coronary vascular resistance during halothane anesthesia. Anesthesiology 46: 236 - 240, 1977.

    Google Scholar 

  135. Sawyer DC, Ely SW, Korthuis RJ, Scott JB: Effects of halothane in right coronary circulation in the dog. Anesth Anaig (Cleve) 59: 559, 1980.

    Google Scholar 

  136. Sawyer DC, Ely SW, Scott JB: Halothane and enflurane effects on the coronary circulation. Anesthesiology 53: S129, 1980.

    Google Scholar 

  137. Verrier ED, Edelist G, Consigny PM, Robinson S, Hoffman JIE: Greater coronary vascular reserve in dogs anesthetized with halothane. Anesthesiology 53: 445 - 459, 1980.

    PubMed  CAS  Google Scholar 

  138. Müggenburg BA, Mauderly JL: Cardiopulmonary function of awake, sedated and anesthetized beagle dogs. J Appl Physiol 37: 152 - 157, 1974.

    PubMed  Google Scholar 

  139. Vatner SP, Smith NT: Effects of halothane on left ventricular function and distribution of regional blood flow in dogs and primates. Circ Res 34: 155 - 167, 1974.

    PubMed  CAS  Google Scholar 

  140. Sonntag H, Merin RG, Donath U, RadkeJ, Schenk HD: Myocardial metabolism and oxygenation in man awake and during halothane anesthesia. Anesthesiology 51: 204 - 210, 1979.

    PubMed  CAS  Google Scholar 

  141. Bland JHL, Lowenstein EL: Halothane-induced decrease in experimental myocardial ischemia in the non-failing canine heart. Anesthesiology 45: 287 - 293, 1976.

    PubMed  CAS  Google Scholar 

  142. Smith G, Rogers K, Thorburn J: Halothane improves the balance of oxygen supply to demand in acute experimental myocardial ischemia. Br J Anaesth 52: 577 - 583, 1980.

    PubMed  CAS  Google Scholar 

  143. Klassen GA, Bramwell RS, Bromage PR: Effect of acute sympathectomy by epidural anesthesia on the canine coronary circulation. Anesthesiology 52; 8 - 15, 1980.

    PubMed  CAS  Google Scholar 

  144. Merin RC: Is anesthesia beneficial for the ischemic heart? Anesthesiology 53: 439 - 440, 1980.

    PubMed  CAS  Google Scholar 

  145. Prys-Roberts C, Roberts JG, Foex P, Clarke TNS, Bennett MJ, Ryder WA: Interaction of anesthesia, beta receptor blockade and blood loss in dogs with induced myocardial infarction. Anesthesiology 45: 326 - 339, 1976.

    PubMed  CAS  Google Scholar 

  146. Nugent M, Walls JT, Tinker JH, Harrison CE: Post-ischemic myocardial function: No anesthetic protection. Anesthesiology 53: S108, 1980.

    Google Scholar 

  147. Gerson JL, Hickey RF, Bainton CR: Treatment of myocardial ischemia with halothane or nitroprus- side-propranolol. Anesth Analg (Cleve) 62: 10 - 14, 1982.

    Google Scholar 

  148. Lowenstein E, Foex P, Francis CM, Davies WL, Yusuf S, Ryder WA: Regional ischemic ventricular dysfunction in myocardium supplied by a narrowed coronary artery with increasing halothane concentration in the dog. Anesthesiology 55: 349-359, 1981. 149. Behrenbeck T, Nugent M, Quasha A, Hoffman E, Ritman E, Tinker J: Halothane and ischemic regional myocardial wall dynamics. Anesthesiology 53: S140, 1980.

    Google Scholar 

  149. Francis CM, Glazebrook C, Lowenstein E, Davies WL, Foex P, Ryder WA: Effect of halothane on the performance of the heart in the case of critical constriction of the L circumflex coronary artery. Br J Anaesth 52: 63IP, 1980.

    Google Scholar 

  150. Cutfield GR, Francis CM, Foex P, Lowenstein E, Davies WL, Ryder WA: Myocardial function and critical constriction of the L anterior descending coronary artery: Effects of enflurane. Br J Anaesth 52: 953P, 1980.

    Google Scholar 

  151. Hickey RF, Verrier ED, Baer RW, Vlahakes GJ, Hoffman JIE: Does deliberate hypotension produce myocardial ischemia when the coronary artery is stenotic? Anesthesiology 53: S89, 1980.

    Google Scholar 

  152. Merin RG, Verdouw PD, De Jong JW: Myocardial functional and metabolic responses to ischemia in swine during halothane and fentanyl anesthesia Anesthesiology 56: 84 - 92, 1982.

    CAS  Google Scholar 

  153. Lowenstein E, Hill RD, Rajogopalan B, Schneider RC: Winnie the Pooh revisited, or, the more recent adventures of Piglet. Anesthesiology 56: 81 - 83, 1982.

    PubMed  CAS  Google Scholar 

  154. Waters DD, Daluz P, Wyatt HL, Swan JHC, Forrester JS: Early changes in regional and global left ventricular function induced by graded reductions in regional coronary perfusion. Am J Cardiol 39: 537 - 543, 1977.

    PubMed  CAS  Google Scholar 

  155. Hoffman WE, Miletich DJ, Albrecht RF: Cardiovascular and regional blood flow changes during halothane anesthesia in the aged rat. Anesthesiology 56: 444 - 448, 1982.

    PubMed  CAS  Google Scholar 

  156. Lieberman RW, Jobes DR, Schwartz AJ, Andrews RW: Incidence of ischemia during CABG using halothane. Anesthesiology 51: S90, 1979.

    Google Scholar 

  157. Slogoff S, Keats AS, OH E: Preoperative propranolol therapy and aorta-coronary bypass operation. JAMA 240: 1487 - 1490, 1978.

    PubMed  CAS  Google Scholar 

  158. Kistner JR, Miller ED, Lake CL, Ross WT Jr: Indices of myocardial oxygenation during coronary- artery revascularization in man with morphine versus halothane anesthesia. Anesthesiology 50: 324 - 330, 1979.

    PubMed  CAS  Google Scholar 

  159. Calverly RK, Smith NT, Jones CW, Prys-Roberts C, Eger EI II: Ventilatory and cardiovascular effects of enflurane anesthesia during spontaneous ventilation in man. Anesth Analg (Cleve) 57: 610 - 618, 1978.

    Google Scholar 

  160. Tarnow J, Eberlein HJ, Oser G, Patschke D, Schneider E, Schweichel E, Wilde J: Influence of modern inhalational anesthetics on haemodynamics, myocardial contractility, LV volumes and myocardial oxygen supply. Anaesthetist 26: 220 - 230, 1977.

    CAS  Google Scholar 

  161. Pask HT, England PJ, Prys-Roberts C: Effects of volatile inhalational anesthetic agents on isolated bovine cardiac myofibrillar ATPase. J Mol Cell Cardiol 13: 293 - 301, 1981.

    PubMed  CAS  Google Scholar 

  162. Prys-Roberts C, Lloyd JW, Fisher A, Kerr JH, Paterson TJS: Deliberate profound hypotension induced with halothane: Studies of haemodynamics and pulmonary gas exchange. Br J Anaesth 46: 105 - 116, 1974.

    PubMed  CAS  Google Scholar 

  163. Lowenstein E, Philbin DM: narcotic “anesthesia” in the eighties. Anesthesiology 55: 195 - 197, 1981.

    PubMed  CAS  Google Scholar 

  164. Waller JL, Hug CC, Nagle DM, Craver JM: Hemodynamic changes during fentanyl-oxygen anesthesia for aortocoronary bypass operation. Anesthesiology 55: 212 - 217, 1981.

    PubMed  CAS  Google Scholar 

  165. Stanley TH, Philbin DM, Coggins CH: Fentanyl- oxygen anesthesia for coronary artery surgery: Cardiovascular and antidiuretic hormone responses. Can Anaesth Soc J 26: 168 - 172, 1979.

    PubMed  CAS  Google Scholar 

  166. Lunn JK, Stanley TH, Eisele J, et al.: High-dose fentanyl anesthesia for coronary artery surgery: Plasma fentanyl concentrations and influence of nitrous oxide on cardiovascular responses. Anesth Analg (Cleve) 58: 390 - 395, 1979.

    CAS  Google Scholar 

  167. Zurick Am, Urzua J, Yared J-P, Estafanous FG: Comparison of hemodynamic and hormonal effects of large single dose fentanyl anesthesia and halo- thane/N20 anesthesia for coronary artery surgery. Anesth Analg (Cleve) 61: 521 - 526, 1982.

    Google Scholar 

  168. Sonntag H, Larsen R, Hilfiker O, Kettler D, Brock-schnieder B: Myocardial blood flow and oxygen consumption during high-dose fentanyl anesthesia in patients with coronary disease. Anesthesiology 56: 417 - 422, 1982.

    PubMed  CAS  Google Scholar 

  169. Atlee JL III, Brownlee SW, Burstrom RE: Conscious-state comparisons of the effects of inhalation anesthetics on specialized atrioventricular conduction times in dogs. Anesthesiology 64: 703 - 710, 1986.

    PubMed  CAS  Google Scholar 

  170. Lynch C III: Differential depression of myocardial contractility by halothane and isoflurane in vitro. Anesthesiology 64: 650 - 631, 1986.

    Google Scholar 

  171. Su JY, Bell JG: Effects of isoflurane on functionally skinned myocardial fibers from rabbits. Anesthesiology 57: All, 1982.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pratila, M.G., Pratilas, V. (1989). Effects of the Volatile Anesthetic Agents on the Heart. In: Sperelakis, N. (eds) Physiology and Pathophysiology of the Heart. Developments in Cardiovascular Medicine, vol 90. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0873-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0873-7_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8222-8

  • Online ISBN: 978-1-4613-0873-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics