Skip to main content

Developmental Changes in Membrane Electrical Properties of the Heart

  • Chapter
Physiology and Pathophysiology of the Heart

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 90))

Abstract

Important physiologic, electrophysiologic, pharmacologic, biochemical, and ultrastructural changes occur during the embryonic development of avian and mammalian hearts. For example, striking changes occur in the electrical properties of ventricular myocardial cells during embryonic development of chick heart. In many mammalian hearts, some of the changes extend into the early postnatal period. These changes affect and determine the functional behavior and properties of the heart at each stage of development and differentiation. Therefore, it is the purpose of this chapter to review and summarize many of these changes in properties. The attention of the reader will be called to a number of recent review articles that summarize these properties, as well as go into greater detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenquist G, De Haan RL: Migration of precardiac cells in the chick embryo: A radioautographic study. Contrib Embryol Carnegie Inst Wash 263: 113–121, 1966.

    Google Scholar 

  2. LeDouarin G, Obrecht G, Coraboeuf E: Determinations regionales dans lair cardiaque presomptive mises en evidence chez l’embryon de poulet par la methode microelectrophysiologique. J Embryol Exp Morphol 15: 153–167, 1966.

    CAS  Google Scholar 

  3. Renaud D: Etude electrophysiologique de la differentiation cardiaque chez l’embryon de poulet. Thesis, University of Nantes, 1973.

    Google Scholar 

  4. Niu MC, Deshpande AK: The development of tubular heart in RNA-treated postnodal pieces of chick blastoderm. J Embryol Exp Morphol 29: 485–501, 1973.

    PubMed  CAS  Google Scholar 

  5. McLean MJ, Renaud JF, Sperelakis N: Cardiac-like action potentials recorded from spontaneously-contracting structures induced in post-nodal pieces of chick blastoderm exposed to an RNA-enriched fraction from adult heart. Differentiation 11: 13–17, 1978.

    Article  PubMed  CAS  Google Scholar 

  6. Girard H: Arterial pressure in the chick embryo. Am J Physiol 224: 454–460, 1974.

    Google Scholar 

  7. Romanoff A: In: The Avian Embryo: Structure and Functional Development. New York: Macmillan, 1960.

    Google Scholar 

  8. Sperelakis N: Changes in membrane electrical properties during development of the heart. In: Zipes DP, Bailey JC, Elharrar V (eds) The Slow Inward Current and Cardiac Arrhythmias. Boston: Martinus Nijhoff, 1980, pp 221–262.

    Google Scholar 

  9. Shimizu Y, Tasaki K: Electrical excitability of developing cardiac muscle in chick embryos. Tohoku J Exp Med 88: 49–56, 1966.

    Article  PubMed  CAS  Google Scholar 

  10. Yeh BK, Hoffman BF: The ionic basis of electrical activity in embryonic cardiac muscle. J Gen Physiol 52: 666–681, 1967.

    Article  Google Scholar 

  11. Couch JR, West TC, Hoff HE: Development of the action potential of the prenatal rat heart. Circ Res 24: 19–31, 1969.

    PubMed  CAS  Google Scholar 

  12. Boethius J, Knutsson E: Resting membrane potential in chick muscle cells during ontogeny. J Exp Zool 174: 281–286, 1970.

    Article  PubMed  CAS  Google Scholar 

  13. Sperelakis N, Shigenobu K: Changes in membrane properties of chick embryonic hearts during development. J Gen Physiol 60: 430–453, 1972.

    Article  PubMed  CAS  Google Scholar 

  14. McDonald TF, De Haan RL: Ion levels and membrane potential in chick heart tissue and cultured cells. J Gen Physiol 61: 89–109, 1973.

    Article  PubMed  CAS  Google Scholar 

  15. Bernard C: Establishment of ionic permeabilities of the myocardial membrane during embryonic development of the rat. In: Lieberman M, Sano T (eds) Developmental and Physiological Correlates of Cardiac Muscle. New York: Raven Press, 1976, pp 169–184.

    Google Scholar 

  16. Sperelakis N: Pacemaker mechanisms in myocardial cells during development of embryonic chick hearts. In: Bouman LN, Jongsma JH (eds) Developments in Cardiovascular Medicine. Vol 17: Cardiac Rate and Rhythm: Physiological, Morphological, and Developmental aspects. The Hague: Martinus Nijhoff, 1982, pp 129–165.

    Google Scholar 

  17. Pappano AJ: Sodium-dependent depolarization of non-innervated embryonic chick heart by acetylcholine. J Pharmacol Exp Ther 180: 340–350, 1972.

    PubMed  CAS  Google Scholar 

  18. Carmeliet EE, Horres CR, Lieberman M, Vereecke JS: Developmental aspects of potassium flux and permeability of the embryonic chick heart. J Physiol (Lond) 254: 673–692, 1976.

    PubMed  CAS  Google Scholar 

  19. De Haan RL: The potassium-sensitivity of isolated embryonic heart cells increases with development. Dev Biol 23: 226–240, 1970.

    Article  Google Scholar 

  20. Löffelholz K, Pappano AJ: Increased sensitivity of sinoatrial pacemaker to acetylcholine and to catecholamines at the onset of autonomic neuroeffector transmission in chick embryo heart. J Pharmacol Exp Ther 191: 479–486, 1974.

    PubMed  Google Scholar 

  21. Pappano AJ: Action potentials in chick atria: On-togenic changes in the dependence of tetrodotoxin-resistant action potentials on calcium, strontium, and barium. Circ Res 39: 99–105, 1976.

    PubMed  CAS  Google Scholar 

  22. Sperelakis N: (Na+-K+)-ATPase activity of embryonic chick heart and skeletal muscles as function of age. Biochim Biophys Acta 266: 230–237, 1972.

    Article  PubMed  CAS  Google Scholar 

  23. Sperelakis N, Lee EC: Characterization of (Na+-K+)-ATPase isolated from embryonic chick hearts and cultured chick heart cells. Biochim Biophys Acta 233: 562–579, 1971.

    Article  PubMed  CAS  Google Scholar 

  24. Klein RL: Ontogenesis of K and Na fluxes in embryonic chick heart. Am J Physiol 199: 613–618, 1970.

    Google Scholar 

  25. Klein RL, Horton CR, Thureson-Klein A: Studies on nuclear amino acid transport and cation content in embryonic myocardium of the chick. Am J Cardiol 25: 300–310, 1970.

    Article  PubMed  CAS  Google Scholar 

  26. Thureson-Klein A, Klein RL: Cation distribution and cardiac jelly in early embryonic hearts: A histo-chemical and electron microscopic study. J Mol Cell Cardiol 2: 31–40, 1971.

    Article  PubMed  CAS  Google Scholar 

  27. Harsch M, Green JW: Electrolyte analyses of chick embryonic fluids and heart tissue. J Cell Comp Physiol 62: 319–326, 1963.

    Article  CAS  Google Scholar 

  28. Sperelakis N: Origin of the cardiac resting potential. In: Berne RM, Sperelakis N (eds) Handbook of Physiology: The Cardiovascular System. Vol 1: The Heart. Bethesda: American Physiological Society, 1979, pp 187–267.

    Google Scholar 

  29. Thomas RC: Electrogenic sodium pump in nerve and muscle cells. Physiol Rev 52: 563–594, 1972.

    PubMed  CAS  Google Scholar 

  30. Deleze J: Possible reasons for drop of resting potential of mammalian heart preparations during hypothermia. Circ Res 8: 553–557, I960.

    Google Scholar 

  31. Page E, Storm SR: Cat heart muscle in vitro. VIII. Active transport of sodium in papillary muscles. J Gen Physiol 48: 957–972, 1965.

    Article  PubMed  CAS  Google Scholar 

  32. Vassalle M: Electrogenic suppression of automaticity in sheep and dog Purkinje fibers. Circ Res 27: 361–377, 1970.

    PubMed  CAS  Google Scholar 

  33. Glitsch HG: An effect of the electrogenic sodium pump on the membrane potential in beating guinea-pig atria. Pflügers Arch 344: 169–180, 1973.

    Article  PubMed  CAS  Google Scholar 

  34. Isenberg G, Trautwein W: The effect of dihydrooua-bain and lithium ions on the outward current in cardiac Purkinje fibers: Evidence for electrogenicity of active transport. Pflügers Arch 350: 41–54, 1974.

    Article  PubMed  CAS  Google Scholar 

  35. Noma A, Irisawa H: Contribution of an electrogenic sodium pump to the membrane potential in rabbit sinoatrial node cells. Pflügers Arch 358: 289–301, 1975.

    Article  PubMed  CAS  Google Scholar 

  36. Lieberman M, Horres CR, Aiton JF, Johnson EA: Active transport and electrogenicity of cardiac muscle in tissue culture. In: 27th Proceedings of the International Congress of Physiological Sciences, Paris, Vol 13, 1977, p 446.

    Google Scholar 

  37. Pelleg A, Vogel S, Belardinelli L, Sperelakis N: Overdrive suppression of automaticity in cultured chick myocardial cells. Am J Physiol 238: H24–H30, 1980.

    PubMed  CAS  Google Scholar 

  38. Coraboeuf E, Le Douarin G, Obrecht-Coutris G: Release of acetylcholine by chick embryo heart before innervation. J Physiol (London) 206: 383–395, 1970.

    PubMed  CAS  Google Scholar 

  39. McLean MJ, Sperelakis N: Retention of fully differentiated electrophysiological properties of chick embryonic heart cells in culture. Dev Biol 50: 134–141, 1976.

    Article  PubMed  CAS  Google Scholar 

  40. Jongsma HJ, Masson-Pevet M, De Bruyne J: Synchronization of the beating frequency of cultured rat heart cells. In: Lieberman M, Sano T (eds) Developmental and Physiological Correlates of Cardiac Muscle. New York: Raven Press, 1976, pp 185–196.

    Google Scholar 

  41. Sperelakis N, Lehmkuhl D: Effect of current on transmembrane potentials in cultured chick heart cells. J Gen Physiol 47: 895–927, 1964.

    Article  PubMed  CAS  Google Scholar 

  42. Sperelakis N, Lehmkuhl D: Ionic interconversion of pacemaker and non-pacemaker cultured chick heart cells. J Gen Physiol 49: 867–895, 1966.

    Article  PubMed  CAS  Google Scholar 

  43. Sperelakis N: Electrophysiology of cultured chick heart cells. In: Sano T, Mizuhira V, Matsuda K (eds) Electrophysiology and Ultrastructure of the Heart. Tokyo: Bunkodo, 1967, pp 81–108.

    Google Scholar 

  44. Pappano AJ, Sperelakis N: Low K+ conductance and low resting potentials of isolated single cultured heart cells. Am J Physiol 217: 1076–1082, 1969.

    PubMed  CAS  Google Scholar 

  45. Rajala GM, Pinter MJ, Kaplan S: Response of the quiescent heart tube to mechanical stretch in the intact chick embryo. Dev Biol 61: 330–337, 1977.

    Article  PubMed  CAS  Google Scholar 

  46. Rosenquist GC: Localization and movement of cardiogenic cells in the chick embryo: Heart-forming portion of the primitive streak. Dev Biol 22: 461–475, 1970.

    Article  PubMed  CAS  Google Scholar 

  47. Deshpande AK, Siddiqui MAQ: A reexamination of heart muscle differentiation in the postnodal piece of chick blastoderm mediated by exogenous RNA. Dev Biol 58: 230–247, 1977.

    Article  PubMed  CAS  Google Scholar 

  48. Shigenobu K, Sperelakis N: Development of sensitivity to tetrodotoxin of chick embryonic hearts with age. J Mol Cell Cardiol 3: 271–286, 1971.

    Article  PubMed  CAS  Google Scholar 

  49. Sperelakis N, Shigenobu K, McLean MJ: Membrane cation channels: Changes in developing hearts, in cell culture, and in organ culture. In: Lieberman M, Sano T (eds) Developmental and Physiological Correlates of Cardiac Cells. New York: Raven Press, 1976, pp 209–234.

    Google Scholar 

  50. Sada H, Sada S, Sperelakis N: Reactivation processes of three inward current systems involved in the rising phase of the action potentials in embryonic chick hearts. Can J Physiol Pharmacol 64: 125–132, 1986.

    Article  PubMed  CAS  Google Scholar 

  51. Iijima T, Pappano AJ: Ontogenetic increase of the maximal rate of rise of the chick embryonic heart action potential: Relationship to voltage, time and tetrodotoxin. Circ Res 44: 358–367, 1979.

    PubMed  CAS  Google Scholar 

  52. Marcus NS, Fozzard H: Tetrodotoxin sensitivity in the developing and adult chick heart. J Mol Cell Cardiol 13: 335–340, 1981.

    Article  PubMed  CAS  Google Scholar 

  53. Pappano AJ: Calcium-dependent action potentials produced by catecholamines in guinea pig atrial muscle fibers depolarized by potassium. Circ Res 27: 379–390, 1970.

    PubMed  CAS  Google Scholar 

  54. Shigenobu K, Sperelakis N: Ca++ current channels induced by catecholamines in chick embryonic hearts whose fast Na+ channels are blocked by tetrodotoxin or elevated K+. Circ Res 31: 932–952, 1972.

    PubMed  CAS  Google Scholar 

  55. Schneider JA, Sperelakis N: The demonstration of energy dependence of the isoproterenol-induced transcellular Ca++ current in isolated perfused guinea pig hearts: An explanation for mechanical failure of ischemic myocardium. J Surg Res 16: 389–03, 1974.

    Article  PubMed  CAS  Google Scholar 

  56. McLean MJ, Shigenobu K, Sperelakis N: Two phar-macological types of slow Na+ channels as distinguished by verapamil blockade. Eur J Pharmacol 26: 379–382, 1974.

    Article  PubMed  CAS  Google Scholar 

  57. Shigenobu K, Schneider JA, Sperelakis N: Blockade of slow Na+ and Ca++ currents in myocardial cells by verapamil. J Pharmacol Exp Ther 190: 280–288, 1974.

    PubMed  CAS  Google Scholar 

  58. Kojima M, Sperelakis N: Calcium antagonistic drugs differ in ability to block the slow Na+ channels of young embryonic chick hearts. Eur J Pharmacol 94: 9–18, 1983.

    Article  PubMed  CAS  Google Scholar 

  59. Kojima M, Sperelakis N: Calcium antagonistic drugs differ in ability to block the slow Na+ channels of young embryonic chick hearts. Eur J Pharmacol 94: 9–18, 1983.

    Article  PubMed  CAS  Google Scholar 

  60. Sada H, Sada S, Sperelakis N: Actions of the slow channel activator, Bay-K-8644, on the electrical activity of 3-day-old embryonic chick hearts. Clin & Exper Pharm and Physiol 12: 521–525, 1985.

    Article  CAS  Google Scholar 

  61. Galper JB, Catterall WA: Developmental changes in the sensitivity of embryonic heart cells to tetrodotoxin and D-600. Dev Biol 65: 216–227, 1978.

    Article  PubMed  CAS  Google Scholar 

  62. Kasuya Y, Matsuki N, Shigenobu K: Changes in sensitivity to anoxia of the cardiac action potential plateau during chick embryonic development. Dev Biol 58: 124–133, 1977.

    Article  PubMed  CAS  Google Scholar 

  63. Nathan RD, De Haan RL: In vitro differentiation of a fast Na+ conductance in embryonic heart cell aggregates. Proc Natl Acad Sei USA 75: 2776–2780, 1978.

    Article  CAS  Google Scholar 

  64. Ishima Y: The effect of tetrodotoxin and sodium Substitution on the action potential in the course of development of the embryonic chicken heart. Proc Jpn Acad 44: 170–175, 1978.

    Google Scholar 

  65. Renaud JF, Romey G, Lombet A, Lazdunski M: Differentiation of the fast Na+ channel in embryonic heart cells: Interaction of the channel with neurotoxin. Proc Natl Acad Sei USA 78: 5248–5352, 1981.

    Google Scholar 

  66. Fujii S, Ayer RK Jr, De Haan RL: Differentiation of transmembrane ionic currents in the early embryonic chick heart. Prog in Develop Biol (Part A), Alan R. Liss, 1986, pp 353–356.

    Google Scholar 

  67. Sperelakis N: Electrical properties of embryonic heart cells. In: De Mello WC (ed) Electrical Phenomena in the Heart. New York: Academic Press, 1972, pp 1–61.

    Google Scholar 

  68. McDonald TF, Sachs HG, De Haan RL: Development of sensitivity to tetrodotoxin in beating chick embryo hearts, single cells, and aggregates. Science 176: 1248–1250, 1972.

    Article  PubMed  CAS  Google Scholar 

  69. McDonald TF, Sachs HG: Electrical activity in embryonic heart cell aggregates. Prlügers Arch 354: 151–164, 1975.

    Article  CAS  Google Scholar 

  70. De Haan RL, McDonald TF, Sachs HG: Development of tetrodotoxin sensitivity of embryonic chick heart cells in vitro. In: Lieberman T, Sano T (eds) Developmental and Physiological Correlates of Cardiac Muscle. New York: Raven Press, 1976, pp 155–168.

    Google Scholar 

  71. McLean MJ, Lapsley RA, Shigenobu K, Murad R, Sperelakis N: High cyclic AMP levels in young embryonic chick hearts. Dev Biol 42: 196–201, 1975.

    Article  PubMed  CAS  Google Scholar 

  72. Renaud J-F, Sperelakis N, Le Douarin G: Increase of cyclic AMP levels induced by isoproterenol in cultured and non-cultured chick embryonic hearts. J Mol Cell Cardiol 10: 281–286, 1978.

    Article  PubMed  CAS  Google Scholar 

  73. Thakkar JK, Sperelakis N: Changes in cyclic nucleotide levels during embryonic development of chick hearts. J Devel Physiol 9: 497–505, 1987.

    CAS  Google Scholar 

  74. Reporter M: An ATP pool with rapid turnover, within the cell membrane. Biochem Biophys Res Commun 48: 598–604, 1972.

    Article  CAS  Google Scholar 

  75. Novak E, Drummond Gl, Skala J, Hahn P: Development changes in cyclic AMP, protein kinase, Phosphorylase kinase, Phosphorylase in liver, heart and skeletal muscle of the rat. Arch Biochem Biophys 150: 511–518, 1972.

    Article  PubMed  CAS  Google Scholar 

  76. Zalin RJ, Montague W: Changes in cyclic AMP, adrenylate cyclase and protein kinase levels during the development of embryonic chick skeletal muscle. Exp Cell Res 93: 55–62, 1975.

    Article  PubMed  CAS  Google Scholar 

  77. Sperelakis N, Pappano AJ: Physiology and pharmacology of developing heart cells. In: Papp JG (ed) International Encyclopedia of Pharmacology and Therapeutics, Vol 22. Oxford: Pergamon, 1983, pp 1–39.

    Google Scholar 

  78. Haddox MK, Roeske WR, Russell DH: Independent expression of cardiac type I and II cyclic AMP-dependent protein kinase during murine embryoge-nesis and postnatal development. Biochim Biophys Acta 585: 527–534, 1979.

    PubMed  CAS  Google Scholar 

  79. Chen F-CM, Yamamura HI, Roeske WR: Adenly-ate cyclase and beta adrenergic receptor development in the mouse heart. J Pharmacol Exp Ther 222: 7–13, 1982.

    PubMed  CAS  Google Scholar 

  80. Guidotti G, Kanemeishi D, Foa PP: Chick embryo heart as a tool for studying cell permeability and insulin action. Am J Physiol 201: 863–868, 1961.

    PubMed  CAS  Google Scholar 

  81. Guidotti G, Loreti L, Gaja G, Foa PP: Glucose uptake in the developing chick embryo heart. Am J Physiol 211: 981–987, 1966.

    PubMed  CAS  Google Scholar 

  82. Kutchai H, King SL, Martin M, Daves ED: Glucose uptake by chicken embryo hearts at various stages of development. Dev Biol 55: 92–102, 1977.

    Article  PubMed  CAS  Google Scholar 

  83. Guidotti G, Foa PP: Development of an insulin-sensitive glucose transport system in chick embryo hearts. Am J Physiol 201: 869–872, 1961.

    PubMed  CAS  Google Scholar 

  84. Elsas LJ, Wheeler FB, Dannes DJ, De Haan RL: Amino acid transport by aggregates of cultured chicken hearts: Effect of insulin. J Biol Chem 250: 9381–9390, 1975.

    PubMed  CAS  Google Scholar 

  85. Herman BA, Fernandez BS: Developmental changes in membrane fluidity of cultured myogenic cells (abstr). Physiologist 19: 223, 1976.

    Google Scholar 

  86. Harris W, Days R, Johnson C, Flinkelstein I, Stall-worth J, Hubert C: Studies on avian heart pyruvate kinase during development. Biochem Biophys Res Commun 75: 1117–1121, 1977.

    Article  PubMed  CAS  Google Scholar 

  87. Cardenas JM, Bandman E, Strohman RC: Hybrid isozymes of pyruvate kinase appear during avian cardiac development. Biochem Biophys Res Commun 80: 593–599, 1978.

    Article  PubMed  CAS  Google Scholar 

  88. Harary I: Biochemistry of cardiac development: In vivo and in vitro studies. In: Berne RM, Sperelakis N (eds) Handbook of Physiology: The Cardiovascular System. Vol 1: The Heart. Bethesda: American Physiological Society, 1979, pp 43–60.

    Google Scholar 

  89. Coffey R, Chendelin V, Newburgh R: Glucose utilization by chick embryo heart homogenates. J Gen Physiol 48: 105–112, 1964.

    Article  PubMed  CAS  Google Scholar 

  90. Paul J: In: Wilmer ED (ed) Cells and Tissues in Culture, Vol 1. New York: Academic Press, 1965, pp 239–276.

    Google Scholar 

  91. Seltzer JL, McDougal DB: Enzyme levels in chick embryo heart and brain from 1–21 days of development. Dev Biol 42: 95–105, 1975.

    Article  PubMed  CAS  Google Scholar 

  92. Warshaw JB: Cellular energy metabolism during fetal development. IV. Fatty acid activation, acyl transfer and fatty acid oxidation during development of the chick and rat. Dev Biol 28: 537–544, 1972.

    Article  PubMed  CAS  Google Scholar 

  93. Fine IH, Kaplan NV, Kuftinec D: Developmental changes of mammalian lactic dehydrogenase. Biochemistry 4: 116–124, 1963.

    Article  Google Scholar 

  94. Cahn RD, Kaplan NO, Levine L, Zwilling E: Nature and development of lactic dehydrogenase. Science 136: 962–969, 1962.

    Article  PubMed  CAS  Google Scholar 

  95. Cahn RD: Developmental changes in embryonic enzyme patterns: The effect of oxidative substrates on lactic dehydrogenase in beating chick embryonic heart cell cultures. Dev Biol 9: 327–346, 1964.

    Article  CAS  Google Scholar 

  96. Ziter FA: Creatine kinase in developing skeletal and cardiac muscle of the rat. Exp Neurol 43: 539–546, 1974.

    Article  PubMed  CAS  Google Scholar 

  97. Sperelakis N, Lehmkuhl D: Effects of temperature and metabolic poisons on membrane potentials of cultured heart cells. Am J Physiol 213: 719–724, 1967.

    PubMed  CAS  Google Scholar 

  98. Vleugels A, Carmeliet E, Bosteels S, Zaman M: Differential effects of hypoxia with age on the chick embryonic hearts: Changes in membrane potential, intracellular K and Na, K efflux and glycogen. Pflügers Arch 365: 159–166, 1976.

    Article  CAS  Google Scholar 

  99. Thy rum PT: Reduced transmembrane calcium flow as a mechanism for the hypoxic depression of cardiac contractility. J Int Res Commun 1: lb, 1973.

    Google Scholar 

  100. Hibbs RG: Electron microscopy of developing cardiac muscle in chick embryos. Am J Anat 99: 17–52, 1956.

    Article  PubMed  CAS  Google Scholar 

  101. Sperelakis N, Shigenobu K: Organ-cultured chick embryonic hearts of various ages. I: Electrophysiology. J Mol Cell Cardio 16: 449–471, 1974.

    Google Scholar 

  102. Shigenobu K, Sperelakis N: Failure of development of fast Na+ channels during organ culture of young embryonic chick hearts. Dev Biol 39: 326–330, 1976.

    Google Scholar 

  103. Renaud JF, Sperelakis N: Electrophysiological properties of chick embryonic heart grafted and organ cultured in vitro. J Mol Cell Cardiol 8: 889–900, 1976.

    Article  PubMed  CAS  Google Scholar 

  104. McLean MJ, Renaud JF, Sperelakis N, Niu MC: mRNA induction of fast Na+ channels in cultured cardiac myoblasts. Science 191: 297–299, 1976.

    Article  PubMed  CAS  Google Scholar 

  105. Sperelakis N, McLean MJ, Renaud JF, Niu MC: Membrane differentiation of cardiac myoblasts induced in vitro by an RNA-enriched fraction from adult heart. In: Niu MC, Chuang HH (eds) The Role of RNA in Development and Reproduction (Second International Symposium, Peking, China, 23–30 April 1980). New York: Science Press, Beijing and Van Nostrant Reinhold, 1981, pp 730–771.

    Google Scholar 

  106. McLean MJ, Renaud JF, Niu MC, Sperelakis N: Membrane differentiation of cardiac myoblasts induced in vitro by an RNA-enriched fraction from adult heart. Exp Cell Res 110: 1–14, 1977.

    Article  PubMed  CAS  Google Scholar 

  107. Kojima M, Sperelakis N: Development of slow Ca2+-Na+ channels during organ culture of young embryonic chick hearts. J Develop Physiol 7: 355–363, 1985.

    CAS  Google Scholar 

  108. Sperelakis N, Lehmkuhl D: Effect of current on trans-membrane potentials in cultured chick heart cells. J Gen Physiol 47: 895–927, 1964.

    Article  PubMed  CAS  Google Scholar 

  109. Sperelakis N: Cultured heart reaggregate model for studying cardiac toxicology. Proceedings of the Conference on Cardiovascular Toxicology, Washington, DC Environ Health Perspect 26: 243–267, 1978.

    CAS  Google Scholar 

  110. Sperelakis N, Bkaily G: Cultured cell models for studying problems in cardiac toxicology. In: Atterwill, CK and Steele CE (eds) In Vitro Methods in Toxicology. Cambridge: Cambridge University Press, 1987, pp 77–113.

    Google Scholar 

  111. Jones JK, Pauli K, Proskauer CC, Jones R, Lepesch-kin E, Rush S: Ultrasctructural changes produced in cultured myocardial cells by electric shock (abstr). Fed Proc 34: 972, 1975.

    Google Scholar 

  112. Renaud JF, Scana AM Kazazoglou T, Lombet A, Romez G, Lazdunski M: Normal serum and lipoprotein-deficient serum give different expressions of excitability, corresponding to different stages of differentiation, in chick cardiac cells in culture. Proc Natl Acad Sei USA: 7768–7772, 1983.

    Google Scholar 

  113. Josephson I, Renaud JF, Vogel S, McLean M, Sperelakis N: Mechanisms of the histamine-induced positive inotropic action in cardiac muscle. Eur J Pharmacol 35: 393–398, 1976.

    Article  PubMed  CAS  Google Scholar 

  114. Vogel S, Sperelakis N, Josephson I, Brooker G: Fluoride stimulation of slow Ca++ current in cardiac muscle. J Mol Cell Cardiol 9: 461–475, 1977.

    Article  PubMed  CAS  Google Scholar 

  115. Sperelakis N, Lehmkuhl D: Insensitivity of cultured chick heart cells to autonomic agents and tetrodotoxin. Am J Physiol 209: 693–698, 1965.

    PubMed  CAS  Google Scholar 

  116. Sperelakis N, Pappano AJ: Increase in PNa and PK of cultured heart cells produced by veratridine. J Gen Physiol 53: 97–114, 1969.

    Article  PubMed  CAS  Google Scholar 

  117. Sperelakis N: Effects of cardiotoxic agents on the electrical properties of myocardial cells. In: Balazs T (ed) Cardiac Toxicology, Vol 1. Boca Raton, FL: CRC Press, pp 39–108, 1981.

    Google Scholar 

  118. Catterall WA: Activation of the action potential Na+ ionophore of cultured neuroblastoma cells by veratridine and batrachotoxin. J Biol Chem 250: 4053–4059, 1975.

    PubMed  CAS  Google Scholar 

  119. Pang DC, Sperelakis N: Veratridine stimulation of calcium uptake by chick embryonic hearts cell in culture. J Mol Cell Cardiol 14: 703–709, 1982.

    Article  PubMed  CAS  Google Scholar 

  120. Romey G, Lazdunski M: Lipid-soluble toxins thought to be specific for Na+ channels block Ca2+ channels in neuronal cells. Nature 297: 79–80, 1982.

    Article  PubMed  CAS  Google Scholar 

  121. Fabiato A, Fabiato F: Calcium and cardiac excitation-contraction coupling. Am Rev Physiol 41: 473–484, 1979.

    Article  CAS  Google Scholar 

  122. Schneider JA, Sperelakis N: Slow Ca++ and Na+ fetal development. IV. Fatty acid activation, acyl transfer and fatty acid oxidation during development of the chick and rat. Dev Biol 28: 537–544, 1972.

    Article  Google Scholar 

  123. Watanabe AM, Besch HR Jr: Cyclic adenosine monophosphate modulation of slow calcium influx channels in guinea pig hearts. Circ Res 35: 316–324, 1974.

    CAS  Google Scholar 

  124. Pappano AJ, Biegon RL: Mechanisms for muscarinic inhibition of calcium-dependent action potentials and contractions in developing ventricular muscle: The role of cyclic AMP. In: Hoffman BF, Lieberman M, Paes de Carvalho AP (eds) Normal and Abnormal Conduction of the Heartbeat. Mt Kisco, NY: Futura, 1983, pp 461–482.

    Google Scholar 

  125. Sperelakis N, Schneider JA: A metabolic control mechanism for calcium ion influx that may protect the ventricular myocardial cell. Am J Cardiol 37: 1079–1085, 1976.

    Article  PubMed  CAS  Google Scholar 

  126. Reuter H: Localization of beta adrenergic receptors, and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle. J Physiol (Lond) 242: 429–451, 1974.

    PubMed  CAS  Google Scholar 

  127. Josephson I, Sperelakis N: 5’-guanylimidodipho-sphate stimulation of slow Ca++ current in myocardial cells. J Mol Cell Cardiol 19: 1157–1166, 1978.

    Article  Google Scholar 

  128. Vogel S, Sperelakis N: Induction of slow action potentials by microiontophoresis of cyclic AMP into heart cells. J Mol Cell Cardiol 13: 51–64, 1981.

    Article  PubMed  CAS  Google Scholar 

  129. Bkaily G, Sperelakis N: Injection of guanosine 5’-cyclic monophosphate into heart cells blocks calcium slow channels. Am J Physiol 248 (Heart Circ Physiol 17): H745–H749, 1985.

    Google Scholar 

  130. Pappano AJ, Hartigan PM, Coutu MD: Acetylcholine inhibits the positive inotropic effect of cholera toxin in ventricular muscle. Am J Physiol 243 (Heart Circ Physiol 12): H343–H441, 1982.

    Google Scholar 

  131. Li T, Sperelakis N: Stimulation of slow action potentials in guinea pig papillary muscle cells by intracellular injection of cyclic AMP, Gpp(NH)p, and cholera toxin. Circ Res 52: 111–117, 1983.

    PubMed  CAS  Google Scholar 

  132. Isenberg G: Is potassium conductance of cardiac Purkinje fibers controlled by [Ca++]i? Nature 243: 273–274, 1975.

    Article  Google Scholar 

  133. Chesnais JM, Coraboeuf E, Sauviat MP, Vassas JM: Sensitivity to H, Li and Mn ions of the slow inward sodium current in frog atrial fibres. J Mol Cell Cardiol 7: 627–642, 1975.

    Article  PubMed  CAS  Google Scholar 

  134. Vogel S, Sperelakis N: Blockade of myocardial slow inward current at low pH. Am J Physiol 233: C99–C103, 1977.

    PubMed  CAS  Google Scholar 

  135. Belardinelli L, Vogel SM, Sperelakis N, Rubio R, Berne RM. Restoration of inward slow current in hypoxic heart muscle by alkaline pH. J Mol Cell Cardiol 11: 877–892, 1979.

    Article  PubMed  CAS  Google Scholar 

  136. Sperelakis N: Regulation of calcium slow channels in myocardial cells by cyclic nucleotides and phosphorylation. In: Solaro RJ, (ed) Protein Phosphorylation in Heart Muscle. Boca Raton, FL: CRC Press, 1986, pp 55–83.

    Google Scholar 

  137. Tsien RW, Giles W, Greengard P: Cyclic AMP mediates the effects of adrenaline on cardiac Purkinje fibers. Nature (New Biol) 240: 181–183, 1972.

    CAS  Google Scholar 

  138. Reuter H, Scholz H: The regulation of the calcium conductance of cardiac muscle by adrenaline. J Physiol (Lond) 264: 49–62, 1977.

    PubMed  CAS  Google Scholar 

  139. Sperelakis N, Belardinelli L, Vogel SM: Electrophysiological aspects during myocardial ischemia. In: Proceedings of the 8th World Congress of Cardiology (Tokyo 1978). Amsterdam: Excerpta Medica, 1979, pp 229–236.

    Google Scholar 

  140. Greengard P: Cyclic Nucleotides, Phosphorylated Proteins, and Neuronal Function. New York: Raven Press, 1978.

    Google Scholar 

  141. Rinaldi ML, Capony JP, Demaille JC: The cyclic AMP-dependent modulation of cardiac sarcolemmal slow calcium channels. J Mol Cell Cardiol 14: 279–289, 1982.

    Article  PubMed  CAS  Google Scholar 

  142. Bkaily G, Sperelakis N: Injection of protein kinase inhibitor into cultured heart cells blocks calcium slow channels. Am J Physiol (Heart & Circ Physiol) 246: H630–H634, 1984.

    Google Scholar 

  143. Wahler GM, Sperelakis N: Intracellular injection of cyclic GMP depresses cardiac slow action potentials. J Cyclic Nucleotide & Protein Phosphorl Res 10: 83–95, 1985.

    CAS  Google Scholar 

  144. Bkaily G, Sperelakis, N: Injection of guanosine 5’-cyclic monophosphate into heart cells blocks calcium slow channels. Am J Physiol 248 (Heart Circ Physiol 17): H745–H749, 1985.

    Google Scholar 

  145. Riccioppo-Neto F, Sperelakis N: Effects of lidocaine, procaine, procainamide and quinidine on electrophysiologic properties of cultured embryonic chick hearts. Br J Pharmacol 86: 817–826, 1986.

    Google Scholar 

  146. Coyle DE, Sperelakis N: Bupivacaine and lidocaine blockade of calcium mediated action potentials in guinea pig ventricular muscle. J Pharmacol Exp Ther, 1987, in press.

    Google Scholar 

  147. Josephson I, Sperelakis N: Local anesthetic blockade of Ca2+-mediated action potentials in cardiac muscle. Eur J Pharmacol 40: 201–208, 1976.

    Article  PubMed  CAS  Google Scholar 

  148. Sperelakis N, Pappano A: Physiology and pharmacology of developing heart cells. In: Papp JG (ed) International Encyclopedia of Pharmacology and Therapeutics. Oxford: Pergamon Press; and in Pharmacol & Therapeutics 22: 1–39, 1983.

    Google Scholar 

  149. Sperelakis N, McLean MJ: The electrical properties of embryonic chick cardiac cells. In: Longo LD, Reneau DD (eds) Fetal and Newborn Cardiovascular Physiology. Vol 1: Developmental Aspects. New York: Garland, 1978, pp 191–236.

    Google Scholar 

  150. Sperelakis N, McLean MJ: Electrical properties of cultured chick heart cells. In: Dhalla NS, Sano T (eds) Recent Advances in Studies on Cardiac Structure and Metabolism, Vol 12. Baltimore: University Park Press, 1978, pp 645–666.

    Google Scholar 

  151. Yamada S, Yamamura HI, Roeske WR: Ontogeny of α1-adrenergic receptors in the mammalian myocardium. Eur J Pharmacol 68: 217–221, 1980.

    Article  PubMed  CAS  Google Scholar 

  152. Chen F-CM, Yamamura HI, Roeske WR: Ontogeny of mammalian myocardial ß-adrenergic receptors. Eur J Pharmacol 58: 255–264, 1979.

    Article  PubMed  CAS  Google Scholar 

  153. Roeske WR, Yamamura HI: Maturation of mammalian myocardial muscarinic cholinergic receptors. Life Sei 23: 127–132, 1978.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sperelakis, N. (1989). Developmental Changes in Membrane Electrical Properties of the Heart. In: Sperelakis, N. (eds) Physiology and Pathophysiology of the Heart. Developments in Cardiovascular Medicine, vol 90. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0873-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0873-7_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8222-8

  • Online ISBN: 978-1-4613-0873-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics