Skip to main content

Cell Coupling and Healing-Over in Cardiac Muscle

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 90))

Abstract

As in many other tissues the internal milieu of cardiac fibers is separated from the extracellular fluid by an insulating surface layer characterized by a high electrical resistance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Engelmann TW: Vergleichende Untersuchungen zur lehre von der muskel- und nervenelektricität. Pflügers Arch 15: 116–148, 1877.

    Article  Google Scholar 

  2. Heilbrünn LV: Dynamics of living protoplasm. Heilbrunn LV (ed). New York: Academic Press, 1956.

    Google Scholar 

  3. Rothschuh KE: Ueber den funktionellen aufbau des herzens aus elektrophysiologischen dementen and ueber den mechanisms der erregungsleitung in hetzen. Prlügers Arch 253: 238–251, 1951.

    Article  CAS  Google Scholar 

  4. De Mello WC: Membrane sealing in frog skeletal muscle fibres. Proc Natl Acad Sei USA 70: 982–984, 1973.

    Article  Google Scholar 

  5. Blioch ZL, Glagoleva JM, Lieberman EA, Nenashev VA: A study of the mechanism of quantal transmitter release at a chemical synapse. J Physiol (Lond) 199: 11–35, 1968.

    PubMed  CAS  Google Scholar 

  6. Weidmann S: The electrical constants of Purkinje fibres. J Physiol (Lond) 118: 348–360, 1952.

    PubMed  CAS  Google Scholar 

  7. Woodbury JW, Crill WE: On the problem of impulse conduction in the atrium. In: Florey E (ed) Nervous Inhibition. Oxford: Pergamon, 1961, pp 124–125.

    Google Scholar 

  8. Barr L, Dewey MM, Berger W: Propagation of action potentials and the nexus in cardiac muscle. J Gen Physiol 48: 797–823, 1965.

    Article  PubMed  CAS  Google Scholar 

  9. De Mello WC: Effect of intracellular injection of calcium and strontium on cell communication in heart. J Physiol 250: 231–245, 1975.

    PubMed  Google Scholar 

  10. sWeidmann S: The diffusion of tadiopotassium across intercalated discs of mammalian cardiac muscle. J Physiol (Lond) 187: 323–342, 1966.

    PubMed  CAS  Google Scholar 

  11. Imanaga I: Cell-to-cell diffusion of Procion Yellow in sheep and calf Purkinje fibres. J Membr Biol 16: 381–388, 1974.

    Article  PubMed  CAS  Google Scholar 

  12. Weingart R: The permeability to tetraethylammo-nium ions of the surface membrane and the intercalated disks of the sheep and calf myocardium. J Physiol (Lond) 240: 741–762, 1974.

    PubMed  CAS  Google Scholar 

  13. Tsien R, Weingart R: Inotropic effect of cyclic AMP in calf ventricular muscle studied by a cut end method. J Physiol (Lond) 260: 117–141, 1976.

    PubMed  CAS  Google Scholar 

  14. Pollack GH: Intercellular coupling in the atrioventricular node and other tissues of the heart. J Physiol (Lond) 255: 275–298, 1976.

    PubMed  CAS  Google Scholar 

  15. De Mello WC: Effect of 2–4 dinitrophenol on intercellular communication in mammalian cardiac fibres. Prlügers Arch 380: 267–276, 1979.

    Article  Google Scholar 

  16. Stewart WC: Functional connections between cells as revealed by dye-coupling with a high fluorescent naphthalimide tracer. Cell 14: 741–759, 1978.

    Article  PubMed  CAS  Google Scholar 

  17. Bennett MVL, Spira ME, Spray DC: Permeability of gap junctions between embryonic cells of Fundulus: A reevaluation. Dev Biol 65: 114–125, 1978.

    Article  PubMed  CAS  Google Scholar 

  18. De Mello WC, Motta G, Chapeau M: A study on the healing-ovet of myocardial cells of toads. Circ Res 24: 475–487, 1969.

    PubMed  Google Scholar 

  19. Déleze J: Calcium ions and the healing-over of heart fibres. In: Taccardi B, Marchetti G(eds) Electrophysiology of tne« heart. London: Pergamon, 1965, pp 147–148.

    Google Scholar 

  20. De Mello WC: The healing-over process in cardiac and other muscle fibers. In: De Mello WC (ed) Electrical Phenomena in the Heart. New York: Academic Press, 1972, pp 323–351.

    Google Scholar 

  21. Rose B, Loewenstein WR: Calcium ion distribution in cytoplasm visualized by aequorin: Diffusion in cytosol testricted by energized sequestering. Science 190: 1204–1206, 1975.

    Article  PubMed  CAS  Google Scholar 

  22. Griepp EB, Revel JP: Gap junctions in development. In: De Mellow WC (ed) Intercellular Communication. New York: Plenum Press, 1977, pp 1–32.

    Google Scholar 

  23. De Mello WC: Effect of intracellular injection of La3+and Mn2+on electrical coupling of heart cells. Cell Biol Int Rep 3: 113–119, 1979.

    Article  PubMed  Google Scholar 

  24. Reuter H, Seitz N: The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol (Lond) 195: 451–470, 1968.

    PubMed  CAS  Google Scholar 

  25. Baker PF, Blaustein MP, Hodgkin AL, Steinhardt RA: The influence of calcium on sodium efflux in squid axons, J Physiol (Lond) 200: 431–458, 1969.

    PubMed  CAS  Google Scholar 

  26. Blaustein MP, Hodgkin AL: The effect of cyanide on the efflux of calcium from squid axons. J Physiol (Lond) 200: 497–527, 1969.

    PubMed  CAS  Google Scholar 

  27. De Mello WC: Electrical uncoupling in heart fibres produced by intracellular injection of Na or Ca. Fed Pore 17: 3, 1974.

    Google Scholar 

  28. De Mello WC: Influence of the sodium pump on intracellular communication in heart fibres: Effect of intracellular injection of sodium ion on electrical coupling. J Physiol (Lond) 263: 171–197, 1976.

    PubMed  Google Scholar 

  29. Weingart R: The action of ouabain on intercellular coupling and conduction velocity in mamalian ventricular muscle. J Physiol (Lond) 264: 341–365, 1977.

    PubMed  CAS  Google Scholar 

  30. De Mello WC: Factors involved on the control of junctional conductance in heart. Proc Int Union Physiol Sei 12: 319, 1977.

    Google Scholar 

  31. De Mello WC: Intercellular communication in cardiac muscle. Cir Res 50: 2–35, 1982.

    Google Scholar 

  32. Turin L, Warner AE: Carbon dioxide reversibly abolishes ionic communication between cells of early am-phybian embryon. Nature (Lond) 270: 56–57, 1977.

    Article  PubMed  Google Scholar 

  33. De Mello WC: On the decoupling action of ouabain in cardiac fibers.Fed Proc 22: 4, 1979.

    Google Scholar 

  34. De Mello WC: Influence of intracellular injection of H+ on the electrical coupling in cardiac Purkinje fibres. Cell Biol Int Rep 4: 51–57, 1980.

    Article  PubMed  Google Scholar 

  35. Weingart R, Reber W: Influence of internal pH on riof Purkinje fibres from mammalian heart. Experientia 35: 929, 1979.

    Google Scholar 

  36. Rose B, Rick R: Intracellular pH, intracellular free Ca, and junctional cell-cell coupling. J Membr Biol 44: 377–415, 1978.

    Article  PubMed  CAS  Google Scholar 

  37. Lea TJ, Ashley CC: Increase in free Ca2+in muscle after exposure to C02. Nature (Lond) 275: 236–238, 1978.

    Article  PubMed  CAS  Google Scholar 

  38. Hess P, Weingart W: Intracellular free calcium modified by pH; in sheep Purkinje fibres. J Physiol (Lond) 307: 60, 1980.

    Google Scholar 

  39. Spray DC, Harris AL, Bennett MVL: Gap junctional conductance is a simple and sensitive function of intracellular pH. Science 211: 712–715, 1981.

    Article  PubMed  CAS  Google Scholar 

  40. Ellis D, Thomas RC: Direct measurements of the intracellular pH of mammalian cardiac muscle. J Physiol (Lond) 262: 755–771, 1976.

    PubMed  CAS  Google Scholar 

  41. Goldberg N: Cyclic nucleotides and cell function. In: Weismann G, Claiborne R (eds) Cell Membranes: Biochemistry, Cell Biology and Pathology. New York: HP Publishing, 1975, 185 pp.

    Google Scholar 

  42. Rasmussen H: Ions as “second messengers”. In: Weismann G, Claiborne R (eds) Cell Membranes: Biochemistry, Cell Biology and Pathology. New York: HP Publishing, 1975, 203 pp.

    Google Scholar 

  43. Hax Werner MA, Van Venrooij Ger EPM, Vossenberg Joost BJ: Cell communication: A cyclic AMP mediated phenomenon. J Membr Biol 19: 253–266, 1974.

    Article  Google Scholar 

  44. Estapé E, De Mello WC: Effect of theophylline on the spread of electrotonic activity in heart. Fed Proc 41: 1505, 1982.

    Google Scholar 

  45. Greengard P: Possible role for cyclic nucleotides and phosphorylated membrane proteins in postsynaptic actions of neurotransmitters. Nature 260: 101–108, 1976.

    Article  PubMed  CAS  Google Scholar 

  46. Namm DH, Mayer SE, Maltbie M: The role of potassium and calcium ions in the effect of epinephrine on cardiac cyclic adenosine 3’-5’ monophosphate, Phosphorylase kinase and Phosphorylase. Mol Pharmacol 4: 522–530, 1968.

    CAS  Google Scholar 

  47. Endoh M, Brodde OE, Reinhardt D, Schumman HJ: Frequency dependence of cyclic AMP in mammalian myocardium. Nature 261: 716–717, 1976.

    Article  PubMed  CAS  Google Scholar 

  48. Reuter H: Properties of two inward membrane currents in the heart. Ann Rev Physiol 41: 413–424, 1979.

    Article  CAS  Google Scholar 

  49. Sperelakis N: Changes in membrane electrical properties during development of the heart. In: Zipes DP, Bailey JC, Elharrar V (eds) The Slow Inward Current and Cardiac Arrhythmias. The Hague: Martinus Nijhoff, 1980, 221 pp.

    Google Scholar 

  50. De Mello WC: Cell-to-cell diffusion of fluorescein in heart fibers. Fed Proc 37: 3, 1978.

    Google Scholar 

  51. James TN, Scherf L: Ultrastructure of the atrioventricular node. Circulation 37: 1049–1070, 1968.

    PubMed  CAS  Google Scholar 

  52. Masson-Pevet M: The fine structure of cardiac pacemaker cells in the sinus node and in tissue culture. Thesis. Amsterdam: Rodopi.

    Google Scholar 

  53. De Mello WC: Passive electrical properties of the atrioventricular node. Pflügers Arch 371: 135–139, 1977.

    Article  PubMed  Google Scholar 

  54. Mendez C, Moe GK: Atrioventricular transmission. In: De Mello WC (ed) Electrical phenomena in the heart. New York: Academic Press, 1972, pp 263–291.

    Google Scholar 

  55. Bredikis J, Bukauskas F, Veteikis R: Decreased intercellular coupling after prolonged rapid stimulation in rabbit atrial muscle. Circ Res 49: 815–820, 1981.

    PubMed  CAS  Google Scholar 

  56. De Mello W C: Effect of intracellular injection of cAMP on the electrical coupling of mammalian cardiac cells. Biochem Biophys Res Comm 119: 1001–1007, 1984.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

De Mello, W.C. (1989). Cell Coupling and Healing-Over in Cardiac Muscle. In: Sperelakis, N. (eds) Physiology and Pathophysiology of the Heart. Developments in Cardiovascular Medicine, vol 90. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0873-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0873-7_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8222-8

  • Online ISBN: 978-1-4613-0873-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics