Skip to main content

Mechanisms of Adrenergic and Cholinergic Regulation of Myocardial Contractility

  • Chapter
Physiology and Pathophysiology of the Heart

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 90))

Abstract

The autonomic nervous system is the major system extrinsic to the heart that regulates myocardial contractility. This system can be subdivided on the basis of anatomy, functional effects, and neurotransmitters released from postganglionic nerves into two major divisions, sympathetic and parasympathetic nervous systems (fig. 20-1). In general, an increase in sympathetic nerve activity stimulates the heart (i.e., increases heart rate, conduction velocity through the specialized conducting tissues, and myocardial contractility), whereas augmentation of parasympathetic activity is inhibitory. The heart is innervated by sympathetic nerves and the vagus, which is the parasympathetic innervation. The neurotransmitter released from preganglionic nerves in both the sympathetic and parasympathetic nervous systems is acetylcholine. Norepinephrine is the neurotransmitter that is released from postganglionic sympathetic nerves that innervate the heart. The transmitter released from postganglionic parasympathetic (vagal) nerve endings is acetylcholine (fig. 20-1). Both norepinephrine and acetylcholine produce their effects locally in the immediate area into which they are released, that is, they function as neurotransmitters. Epinephrine is a catecholamine that is released from the adrenal medulla and travels via the circulation to the heart and thus functions as a hormone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levy MN, Martin PJ: Neural control of the heart. In: Handbook of Physiology — The Cardiovascular System. I. Bethesda: American Physiological Society, 1979, pp 581–620.

    Google Scholar 

  2. Watanabe AM, Jones LR, Manalan AS, Besch HR Jr: Cardiac autonomic receptors: Recent concepts from radiolabelled ligand studies. Circ Res 50: 161–174, 1982.

    PubMed  CAS  Google Scholar 

  3. Stiles GL, Caron MG, Lefkowitz RJ: ß-adrenergic receptors: Biochemical mechanisms of physiologic regulation. Physiol Reviews 64: 661–743, 1984.

    CAS  Google Scholar 

  4. Levitski A: ß-adrenergic receptors and their mode of coupling to adenylate cyclase. Physiol Rev 66: 819–854, 1986.

    Google Scholar 

  5. Birnbaumer L, Codina J, Mattera R, Cenone RA, Hildebrandt JD, Sunyer T, Rojas F, Caron MG, Lefkowitz RJ, Iyengar R: Regulation of hormone receptors and adenylyl cyclases by guanine nucleotide binding N proteins. Ree Prog Hormone Res 41: 41–99, 1985.

    CAS  Google Scholar 

  6. Hancock AA, De Lean AL, Lefkowitz RJ: Quantitative resolution of ß-adrenergic receptor subtypes by selective ligand binding: Application of a computerized model fitting technique. Mol Pharmacol 16: 1–9, 1980.

    Google Scholar 

  7. Carlsson E, Dahlof C, Hedberg A, Tangstrand B: Differentiation of cardiac chronotropic and inotropic of ß-adrenoeeptor agonists. Naunyn-Schmiedeberg’s Arch Pharmacol 300: 101–105, 1977.

    CAS  Google Scholar 

  8. Liang BT, Frame LH, Molinoff, PB: ß2-adrenergic receptors contribute to catecholamine-stimulated shortening of action potential duration in dog atrial muscle. Proc Natl Acad Sei USA 82: 4521–4525, 1985.

    CAS  Google Scholar 

  9. Jones LR, Maddock SW, Besch HR Jr: Unmasking effect of alamethicin on the (Na+, K+)-ATPase, ß-adrenergic receptor-coupled adenylate cyclase, and cAMP-dependent protein kinase activities of cardiac sarcolemmal vesicles. J Biol Chem 255: 9971–9980, 1980.

    PubMed  CAS  Google Scholar 

  10. Manalan AS, Jones LR: Characterization of the intrinsic cAMP-dependent protein kinase activity and endogenous substrates in highly purified cardiac sarcolemmal vesicles. J Biol Chem 257: 10052–10062, 1982.

    PubMed  CAS  Google Scholar 

  11. Fräser J, Nadeau, J, Robertson D, Wood AJJ: Regulation of human leukocyte beta receptors by endigenous catecholamines: Relationship of leukocyte beta receptor density to the cardiac sensitivity to isoproterenol. J Clin Invest 67: 1777–1784, 1981.

    PubMed  Google Scholar 

  12. Bristow MR, Ginsburg R, Minobe W, Cunbicciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, and Stinson EG: Decreased catecholamine sensitivity and ß-adrenergic receptor density in failing human hearts. N Engl J Med 307: 205–211, 1982.

    PubMed  CAS  Google Scholar 

  13. Thomas JA, Marks BH: Plasma norepinephrine in congestive heart failure. Am J Cardiol 41: 233–43, 1978.

    PubMed  CAS  Google Scholar 

  14. McMonnaughey MM, Jones LR, Watanabe AM, Besch HR Jr, Williams LT, Lefkowitz RJ:Thyroxineand propylthiouracil effects on α- and ß-adrenergic receptor number, ATPase activities, and sialic acid content of rat cardiac membrane vesicles. J Cardiovasc Pharmacol 1; 609–623, 1979.

    Google Scholar 

  15. Williams LT, lefkowitz RJ, Watanabe AM, Hathaway DR, Besch HR Jr: Thyroid hormone regulation of ß-adrenergic receptor number. J Biol Chem 252: 2767–2769, 1977.

    Google Scholar 

  16. Ginsberg AM, Clutter WE, Shah SD, Cryer PE: Triiodothyronine-induced thyrotoxicosis increases mononuclear leukocyte ß-adrenergic receptot density in man. J Clin Invest 67: 1785–1791, 1981.

    PubMed  CAS  Google Scholar 

  17. Sibley DR, Lefkowitz RJ: Molecular mechanisms of receptor desensitization using the ß-adrenergic receptot-coupled adenylate cyclase system as a model. Nature 317: 124–429, 1985.

    PubMed  CAS  Google Scholar 

  18. Strasser RH, Sibley DR, Lefkowitz RJ: A novel catecholamine activated adenosine cyclic 3’,5’-phosphate independent pathway fot ß-adrenergic receptor phosphorylation in wild-type and mutant S49 lymphoma cells: Mechanism of homologous desensitization of adenylate cyclase. Biochemistry 25: 1371–1377, 1986.

    PubMed  CAS  Google Scholar 

  19. Besch HR Jr, Jones LR, Fleming JW, Watanabe AM: Parallel unmasking of latent Na+, K+-ATPase and adenylate cyclase activities in catdiac satcolemmal vesicles: A new use of the channel-fotming iono-phore alamethicin. J Biol Chem 252: 7905–7908, 1977.

    PubMed  CAS  Google Scholar 

  20. Ross EM, Gilman AG: Biochemical properties of hormone-sensitive adenylate cyclase. Ann Rev Biochem 49: 533–564, 1980.

    PubMed  CAS  Google Scholar 

  21. Drummond Gl: Resolution and properties of the catalytic subunit of cardiac adenylate cyclase. J Mol Cell Cardiol 17: 183–194, 1985.

    Google Scholar 

  22. Seamon KB, Daly JW: Guanosine 5’-(ß, y-imido) triphosphate inhibition of forskolin-activated adenylate cyclase is mediated by the putative inhibitory guanine nucleotide regulatory protein. J Biol Chem 257: 11591–11596, 1982.

    PubMed  CAS  Google Scholar 

  23. Smith SK, Limbird LL:Evidence that human platelet α-adrenergic receptors coupled to inhibition of adenylate cyclase are not associated with the subunit of adenylate cyclase ADP-ribosylated by choleta toxin. J Biol Chem 257: 10471–10478, 1982.

    PubMed  CAS  Google Scholar 

  24. Hildebrandt JD, Hanoune J, Birnbaumer L: Guanine nucleotide inhibition of cyc S49 mouse lymphoma cell membrane adenylate cyclase. J Biol Chem 257: 14723–14725, 1982.

    PubMed  CAS  Google Scholar 

  25. Watanabe AM, McConnaughey MM, Strawridge RA, Fleming JW, Jones LR, Besch HR Jr: Muscarinic cholinergic receptor modulation of ß-adrenergic receptor affinity for catecholamine. J Biol Chem 253: 4833–4836, 1978.

    PubMed  CAS  Google Scholar 

  26. Gilman AG :G proteins and dual control of adenylate cyclase. Cell 36: 577–579, 1984.

    PubMed  CAS  Google Scholar 

  27. Ueda K, Hayaishi O: ADP-ribosylätion. Ann Rev Biochem 54: 73–100, 1985.

    PubMed  CAS  Google Scholar 

  28. Cerione RA, Staniszewski C, Gietschick P, Codina J, Somers RL, Birnbaumer L, Spiegel AM, Caron MG, Lefkowitz RJ: Mechanism of guanine nucleotide regulatory protein-mediated inhibition of adenylate cyclase. J Biol Chem 261: 9514–9520, 1986.

    PubMed  CAS  Google Scholar 

  29. Fleming JW, Strabridge RA, Watanabe AM: Muscarinic receptor regulation of cardiac adenylate cyclase activity. J Mol Cell Cardiol 19: 47–61, 1987.

    PubMed  CAS  Google Scholar 

  30. Krebs EG, Beavo JA: Phosphorylation-dephosphorylation of enzymes. Ann Rev Biochem 48: 923–959, 1979.

    PubMed  CAS  Google Scholar 

  31. Corbin JD, Sudgen PH, Lincoln TM, Keely SL: Compartmentalization of adenosine 3’5’-monophosphate and adenosine 3’:5’-monophosphate-dependent protein kinase in heart tissue. J Biol Chem 252: 3854–3861, 1977.

    PubMed  CAS  Google Scholar 

  32. Hayes JS, Brunton LL, Mayer SE: Selective activation of particulate cAMP-dependent protein kinase by isoproterenol and prostaglandin Ei. J Biol Chem 255: 5113–5119, 1980.

    PubMed  CAS  Google Scholar 

  33. Buxton ILO, Brunton LL: compartments of cyclic AMP and protein kinase in mammalian cardiomyo-cytes. J Biol Chem 258: 10233–10239, 1983.

    PubMed  CAS  Google Scholar 

  34. Stull JT, Mayer SE: Biochemical mechanisms of adrenergic and cholinergic regulation of myocardial contractility. In: Handbook of Physiology. The Cardiovascular System. Bethesda: American Physiological Society, 1979, pp 741–774.

    Google Scholar 

  35. England PJ: Studies on the phosphorylation of the inhibitory subunit of troponin during modification of contraction in perfused rat heart. Biochem J 160: 295–304, 1976.

    PubMed  CAS  Google Scholar 

  36. Brunton LL, Hayes JS, Mayer SE: Hormonally specific phosphorylation of cardiac troponin I and activation of glycogen Phosphorylase. Nature 280: 78–80, 1979.

    PubMed  CAS  Google Scholar 

  37. Robertson SP, Johnson JD, Holroyde MJ, Kranias EG, Potter JD, Solaro RJ: The effect of troponin I phosphorylation in the Ca2+-binding properties of the Ca2+-regulatory site of bovine cardiac troponin. J Biol Chem 257: 260–263, 1980.

    Google Scholar 

  38. Jeacocke SA, England PJ: Phosphorylation of a myofibrillar protein of Mr 150,000 in perfused rat heart, and the tentative identification of this as C-protein. FEBS Lett 122: 129–132, 1980.

    PubMed  CAS  Google Scholar 

  39. Hartzel HC, Titus L: Effects of cholinergic and adrenergic agonists on phosphorylation of a 165,000-dalton myofibrillar protein in intact cardiac muscle. J Biol Chem 257: 2111–2121, 1982.

    Google Scholar 

  40. Hartzell HC: Phosphorylation of C-protein in intact amphibian catdiac muscle: Correlation between 32P incorporation and twitch relaxation. J Gen Physiol 83: 563–588, 1984.

    PubMed  CAS  Google Scholar 

  41. Hartzell HC, Glass DB: Phosphorylation of purified cardiac muscle C-protein by purified cAMP-dependent protein kinase and endogenous Ca2+-calmodulin-dependent protein kinases. J Biol Chem 259: 15587–15596, 1984.

    PubMed  CAS  Google Scholar 

  42. Winegrad S, Weisberg A, Lin LE, McClellan G: Adrenergic regulation of myosin adenosine triphosphatase activity. Circ Res 58: 83–95, 1986.

    PubMed  CAS  Google Scholar 

  43. Kirchberger MA, Tada M: Effects of adenosine 3’:5’-monophosphate-dependent protein kinase on sarcoplasmic reticulum isolated from cardiac and slow and fast contracting skeletal muscles. J Biol Chem 251: 725–729, 1976.

    PubMed  CAS  Google Scholar 

  44. Tada M, Katz AM: Phosphorylation of the sarcoplasmic reticulum and sarcolemma. Ann Rev Physiol 44: 401–423, 1982.

    CAS  Google Scholar 

  45. Jones LR, Simmerman HKB, Wilson WW, Gurd FRN, Wegener AD: Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum. J Biol Chem 260: 7721–7730, 1985.

    PubMed  CAS  Google Scholar 

  46. Fujii J, Ueno A, Katsuhiko K, Tanaka S, Kadoma M, Tada M: Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban. J Clin Invest 79: 301–304, 1987.

    PubMed  CAS  Google Scholar 

  47. Suzuke T, Wang JH: Stimulation of bovine sarcoplasmic reticulum Ca2+ pump and blocking of phospholamban phosphorylation and dephosphorylation by a phospholamban monoclonal antibody. J Biol Chem 261: 7018–7023, 1986.

    Google Scholar 

  48. Le Peuch CJ, Guilleaux JC, De Maille JC: Phospholamban phosphorylation in the perfused rat heart is not solely dependent in beta adrenergic stimulation. FEBS Lett 114: 165–168, 1980.

    PubMed  Google Scholar 

  49. Kranias EG, Solaro RJ: Phosphorylation of troponin I and phospholamban during catecholamine stimulation of rabbit heart. Nature 298: 182–184, 1982.

    PubMed  CAS  Google Scholar 

  50. Lindemann JP, Jones LR, Hathaway DR, Henry BG, Watanabe AM: ß-adrenergic stimulation of phospholamban phosphorylation and Ca2+-ATPase activity in guinea pig ventricles. J Biol Chem 258: 464–471, 1984.

    Google Scholar 

  51. Mirro MJ, Bailey JC, Watanabe AM: Role of cyclic AMP in regulation of the slow inward current. In: Role of the Slow Inward Current in Cardiac Electro-physiology. The Hague: Martinus Nijhoff, 1980, pp 111–126.

    Google Scholar 

  52. Watanabe AM, Besch HR Jr: Cyclic adenosine monophosphate modulation of slow calcium influx channels in guinea pig hearts. Circ Res 35: 316–324, 1974.

    CAS  Google Scholar 

  53. Sperelakis N: Phosphorylation hypothesis of the myocardial slow channels and control of Ca2+ influx. In: Cardiac Electrophysiology and Arrhythmias. New York: Grune and Stratton, 1985, pp 123–135.

    Google Scholar 

  54. Reuter H: Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301: 569–574, 1983.

    PubMed  CAS  Google Scholar 

  55. Li T, Sperelakis N: Stimulation of slow action potentials in guinea pig papillary muscle cells by intracellular injection of cAMP, Gpp (NH)p, and cholera toxin. Circ Res 52: 111–117, 1983.

    PubMed  CAS  Google Scholar 

  56. Osterreider W, Brum G, Hescheler J, Trautwein W, Hofmann F, Flockerzi V: Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current. Nature 298: 576–578, 1982.

    Google Scholar 

  57. Brum G, Flockerzi V, Hofmann F, Osterrieder W, Trautwein W: Injection of catalytic subunit of cAMP-dependent protein kinase into isolated cardiac myocytes. Pflügers Arch 398: 147–154, 1983.

    PubMed  CAS  Google Scholar 

  58. Bean BP, Nowycky MC, Tsien RW: ß-adrenergic modulation of calcium channels in frog ventricular heart cells. Nature 307: 371–375, 1984.

    PubMed  CAS  Google Scholar 

  59. Kameyama M, Hofmann F, Trautwein W: On the mechanism of ß-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflügfers Arch 405: 285–293, 1985.

    CAS  Google Scholar 

  60. Kameyama M, Hescheler J, Hofmann F, Trautwein W: Modulation of Ca current during the phosphorylation cycle in the guinea pig heart. Pflügers Arch 407: 123–128, 1986.

    PubMed  CAS  Google Scholar 

  61. Kameyama M, Hescheler J, Mieskes G, Trautwein W: The protein-specific phosphatase antagonizes the ß-adrenergic increase of the cardiac Ca current. Pflügers Arch 407: 461–463, 1986.

    PubMed  CAS  Google Scholar 

  62. Jones LR, Presti CF, Lindemann JP: Protein phosphorylation and the cardiac sarcolemma. In: Protein Phosphorylation in Heart Muscle. Boca Raton, FL: CRC Press, 1986, pp 85–103.

    Google Scholar 

  63. Campbell KP, Lipshutz GM, Denney GH: Direct photoaffinity labeling of the high affinity nitrendi-pine-binding site in subcellular membrane fractions isolated ftom canine myocardium. J Biol Chem 259: 5384–5387, 1984.

    PubMed  CAS  Google Scholar 

  64. Williams LT, Jones LR: Specific binding of the calcium antagonist {3H}nitrendipine to subcellular fractions isolated from canine myocardium. J Biol Chem 258: 5344–5347, 1983.

    PubMed  CAS  Google Scholar 

  65. Walsh DA, Clippinger MS, Sivaramakrishnan S, McCullough TE: Cyclic adenosine monophosphate dependent and independent phosphorylation of sarcolemmal proteins in perfused rat heart. Biochemistry 18: 871–877, 1979.

    PubMed  CAS  Google Scholar 

  66. Huggins JP, England PJ: Sarcolemmal phospholamban is phosphorylated in isolated rat hearts perfused with isoprenaline. FEBS Lett 163: 297–302, 1983.

    PubMed  CAS  Google Scholar 

  67. Presti CF, Jones LR, Lindemann JP: lsoproterenol-induced phosphorylation of a 15-kilodalton sarcolemmal protein in intact myocardium. J Biol Chem 260: 3860–3867, 1985.

    PubMed  CAS  Google Scholar 

  68. Lindemann JP: α-adrenergic stimulation of sarcolemmal protein phosphorylation and slow responses in intact myocardium. J Biol Chem 261: 4860–4867, 1986.

    PubMed  CAS  Google Scholar 

  69. Tada M, Inui M, Yamada M, Kadoma M, Kuzuya T, Abe H, Kakiuchi S: Effects of phospholamban phosphorylation catalyzed by adenosine 3’, 5’-monophosphate- and calmodulin-dependent protein kinases on calcium transport ATPase of cardiac sarcoplasmic reticulum. J Mol Cell Cardiol 15: 335–346, 1982.

    Google Scholar 

  70. Kirchberger MA, Antonetz T: Calmodulin-mediated regulation of calcium transport and (Ca2+ + Mg2+)-activated ATPase activity in isolated cardiac sarcoplasmic reticulum. J Biol Chem 257: 5685–5691, 1982.

    PubMed  CAS  Google Scholar 

  71. Simmerman HKB, Collins JH, Theibert JL, Wegener AD, Jones LR: Sequence analysis of phospholamban: Indentification of phosphorylation sites and two major structural domains. J Biol Chem 261: 13333–13341, 1986.

    PubMed  CAS  Google Scholar 

  72. Lindemann JP, Watanabe AM: Phosphorylation of phospholamban in intact myocardium: Role of Ca2+-calmodulin-dependent mechanisms. J Biol Chem 260: 4516–4525, 1985.

    PubMed  CAS  Google Scholar 

  73. Scholz H: Effects of ß- and a-adrenoreceptor activators and adrenergic transmitter releaseing agents on the mechanical activity of the heart. In: Handbook of Experimental Pharmacology, Vol 54/1. Berlin: Springer-Verlag, 1980, pp 651–733.

    Google Scholar 

  74. Benfey BG: Function of myocardial a-adrenoceptors. Life Sei 31: 101–112, 1982.

    CAS  Google Scholar 

  75. Miura Y, Inui J: Multiple effects of α-adrenoceptor stimulation on the action potential of the rabbit atrium. Naunyn-Schmideberg’s Arch Pharmacol 325: 47–53, 1984.

    CAS  Google Scholar 

  76. Bruckner R, Scholz H: Effects of a-adrenoreceptor stimulation with phenylephrine in the presence of propranolol on force of contraction, slow inward current and cyclic AMP content in the bovine heart. Br J Pharmac 82: 223–232, 1984.

    CAS  Google Scholar 

  77. Williams RS, Lefkowitz RJ: (X-adrenergic receptors in rat myocardium: Identification by binding of [3H]dihydroergocryptine. Circ Res 43: 721–727, 1978.

    PubMed  CAS  Google Scholar 

  78. Karliner JS, Barnes P, Hamilton CA, Dollery CT: Alphai-adrenergic receptors in guinea pig myocardium: Identification by binding of a new radioligand, (3H)-prazosin. Biochem Biophys Res Commun 90: 142–149, 1979.

    PubMed  CAS  Google Scholar 

  79. Karliner JS, Barnes P, Brown M, Dollery C: Chronic heart failure in the guinea pig increases cardiac arand ß-adrenoeeptors. Eur J Pharmacol 67: 115–118, 1980.

    PubMed  CAS  Google Scholar 

  80. Berridge MJ: Inositol trisphosphate and diacylgly-cerol as second messengers. Biochem J 220: 345–360, 1984.

    PubMed  CAS  Google Scholar 

  81. Williamson JR, Cooper RH, Joseph SK, Thomas AP: Inositol trisphosphate and diacylglycerol as intracellular second messengers in liver. Am J Physiol 248: C203–C216, 1985.

    PubMed  CAS  Google Scholar 

  82. Brown JH, Jones LG: Phosphoinositide metabolism in the heart. In: Phosphoinositides and Receptor Mechanisms. New York: Alan R Liss, 1986, pp 245–270.

    Google Scholar 

  83. Nishizuka Y: The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308: 693–698, 1984.

    PubMed  CAS  Google Scholar 

  84. Volpe P, Salviati G, Di Virgilio F, Pozzan T: Inositol-1, 4, 5 trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. Nature 316: 347–349, 1985.

    PubMed  CAS  Google Scholar 

  85. Nosek TM, Williams MF, Zeigler ST, Godt RE:Inositol trisphosphate enhances calcium release in skinned cardiac and skeletal muscle. Am J Physiol 250: C807–C811, 1986.

    PubMed  CAS  Google Scholar 

  86. Movsesian MA, Thomas AP, Williamson JR: Inositol trisphosphate does not release Ca2+ from permeabilized cardiac myocytes and sarcoplasmic reticulum. FEBS Lett 185: 328–332, 1984.

    Google Scholar 

  87. Wise BC, Raynor RL, Kuo JF: Phospholipid-sensitive Ca2+-dependent protein kinase from heart. I. Purification and general properties. J Biol Chem 257: 8481–8488, 1982.

    CAS  Google Scholar 

  88. Iwasa Y, Hosey MM: Phosphorylation of cardiac sarcolemma proteins by the calcium-activated phos-pholipid-dependent protein kinase. J Biol Chem 259: 534–540, 1984.

    PubMed  CAS  Google Scholar 

  89. Presti CF, Scott BT, Jones LR: Identification of an endogenous protein kinase C activity and its intrinsic 15-kilodalton substrate in purified canine cardiac sarcolemmal vesicles. J Biol Chem 260: 13879–13889, 1985.

    PubMed  CAS  Google Scholar 

  90. Loffelholz K, Pappano AJ: The parasympathetic neuroeffector junction of the heart. Pharmacol Rev 37: 1–24, 1985.

    PubMed  CAS  Google Scholar 

  91. Levy MN: Sympathetic-parasympathetic interactions in the heart. Circ Res 29: 437–445, 1971.

    PubMed  CAS  Google Scholar 

  92. Birdsall NJM, Hulme EC: Biochemical studies on muscarinic acetylcholine receptors. J Neurochem 27: 7–16, 1976.

    PubMed  CAS  Google Scholar 

  93. Ehlert FJ, Roeske WR, Yamamura HI: The nature of muscarinic receptor binding. In: Handbook of Psychopharmacology. New York: Plenum, 1983, pp 241–283.

    Google Scholar 

  94. Mattera R, Pitts BJR, Entman ML, Birhbaumer L: Guanine nucleotide regulation of a mammalian myocardial muscarinic receptor system. J Biol Chem 260: 7410–7421, 1985.

    PubMed  CAS  Google Scholar 

  95. Brown JH, Goldstein D, Masters SB: The putative Mi muscarinic receptor does not regulate phosphoinositide hydrolysis. Mol Pharmacol 27: 525–531, 1985.

    PubMed  CAS  Google Scholar 

  96. Manalan AS, Werth DK, Jones LR, Watanabe AM: Enrichment, solubilization, and partial characterization of digitonin-solubilized muscarinic receptors derived from canine ventricular myocardium. Circ Res 52: 664–676, 1983.

    PubMed  CAS  Google Scholar 

  97. Florio VA, Sternweiss PC: Reconstitution of resolved muscarinic cholinergic receptors with purified GTP-binding proteins. J Biol Chem 260: 3477–3483, 1985.

    PubMed  CAS  Google Scholar 

  98. Kurose H, Katada T, Haga T, Haga K, Ichiyama A, Ui M: Functional interactioin of purified muscarinic receptors with purified inhibitory guanine nucleotide regulatory proteins reconstituted in phospholipid vesicles. J Biol Chem 261: 6423–6428, 1986.

    PubMed  CAS  Google Scholar 

  99. Haga K, Haga T, Ichiyama A, Katada T, Kurose H, Ui M: Functional reconstitution of purified muscarinic receptors and inhibitory guanine nucleotide regulatory protein. Nature 316: 731–733, 1985.

    PubMed  CAS  Google Scholar 

  100. Galper JB, Smith TW: Properties of muscarinic acetylcholine receptors in heart cell cultures. Proc Natl Acad Sei USA 75: 5831–5835, 1978.

    CAS  Google Scholar 

  101. Roskoski R Jr, Reinhardt RR, Enseleit W, Johnson WD, Cook PD: Cardiac cholinergic muscarinic receptors: Changes in multiple affinity forms with down regulation. J Pharmacol Exp Ther 232: 754–759, 1985.

    CAS  Google Scholar 

  102. Halvorsen SW, Nathanson NM: In vivo regulation of muscarinic acetylcholine receptor number and function in embryonic chick heart. J Biol Chem 256: 7941–7948, 1981.

    PubMed  CAS  Google Scholar 

  103. Kwatra MM, Hosey MM: Phosphorylation of the cardiac muscarinic receptor in intact chick heart and its regulation by a muscarinic agonist. J Biol Chem 261: 12429–12432, 1986.

    PubMed  CAS  Google Scholar 

  104. Sharma VK, Banerjee SP: Muscarinic cholinergic receptors in rat heart: Effect of thyroidectomy. J Biol Chem 252: 7444–7446, 1977.

    PubMed  CAS  Google Scholar 

  105. Ten Eick R, Nawrath H, McDonald TF, Trautwein W: On the negative inotropic effect of acetylcholine. Pflügers ARch 361: 207–213, 1976.

    PubMed  Google Scholar 

  106. Trautwein W: Generation and conduction of impulses in the heart as affected by drugs. Pharmacol Rev 15: 277–332, 1963.

    PubMed  CAS  Google Scholar 

  107. Inoue D, Hachisu M, Pappano AJ: Acetylcholine increases resting membrane potassium conductance in atrial but not ventricular muscle during muscarinic inhibition of Ca++-dependent action potentials in chick heart. Circ Res 53: 158–167, 1983.

    PubMed  CAS  Google Scholar 

  108. Martin JM, Hunter DD, Nathanson NM: Islet activating protein inhibits physiological responses evoked by cardiac muscarinic acetylcholine receptors. Role of guanosine triphosphate binding proteins in regulation of potassium permeability. Biochemistry 24: 7521–7525, 1985.

    CAS  Google Scholar 

  109. Breitwieser G, Szabo G: Uncoupling of cardiac muscarinic and ß-adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature 317: 538–540, 1985.

    PubMed  CAS  Google Scholar 

  110. Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B: GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317: 536–538, 1985.

    PubMed  CAS  Google Scholar 

  111. Kurachi Y, Nakajima T, Sugimoto T: Acetylcholine activation of K+ channels in cell-free membrane of atrial cells. Am J Physiol 251: H681–H684, 1986.

    PubMed  CAS  Google Scholar 

  112. Yatani A, Codina J, Brown AM, Birnbaumer L: Direct activation of mamalian atrial muscarinic potassium channels by GTP regulatory protein Gk. Science 235: 207–211, 1987.

    PubMed  CAS  Google Scholar 

  113. Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE: The ßy subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325: 321–326, 1987.

    PubMed  CAS  Google Scholar 

  114. Goldberg ND, Haddox MK: Cyclic GMP metabolism and involvement in biological regulation. Ann Rev Biochem 46: 823–896, 1977.

    PubMed  CAS  Google Scholar 

  115. Linden J, Brooker G: The questionable role of cyclic guanosine 3’: 5’— monophosphate in heart. Biochem Pharmacol 28: 3351–3360, 1979.

    PubMed  CAS  Google Scholar 

  116. Krause EG, Halle W, Wollenberger A: Effect of direct dibutyryl cyclic GMP on cultured beating rat heart cells. Adv Cyclic Nucleotide Res 1: 301–305, 1972.

    PubMed  CAS  Google Scholar 

  117. Tuganowski W, Kopec P, Kopyta M, Wezowska J: Iontophoretic application of autonomic mediators and cyclic nucleotides in sinus node cells. Naunyn-Schmiedeberg’s Arch Pharmacol 299: 65–67, 1977.

    CAS  Google Scholar 

  118. Kohlhardt M, Haap K: 8-bromo-guanosine-3’,5’-monophosphate mimics the effect of acetylcholine on slow response action potential and contractile force in mammalian atrial myocardium. J Mol Cell Cardiol 10: 573–586, 1978.

    PubMed  CAS  Google Scholar 

  119. Nawrath H: Does cyclic GMP mediate the negative inotropic effect of acetylcholine in the heart? Nature 267: 72–74, 1977.

    PubMed  CAS  Google Scholar 

  120. Watanabe AM, Besch HR Jr: Interaction between cyclic adenosine monophosphate and cyclic guanosine monophosphate in guinea pig ventricular myocardium. Circ Res 37: 309–317, 1975.

    PubMed  CAS  Google Scholar 

  121. Watanabe AM, Hathaway DR, Besch HR Jr: Mechanism of cholinergic antagonism of the effects of isoproterenol on hearts from hyperthyroid rats. In: Kobayashi T, Sano T, Dhalla N (eds) Recent Advances in Studies on Cardiac Structure and Metabolism, Vol 11. Baltimore: University Park Press, 1978, pp 423–429.

    Google Scholar 

  122. Ong SH, Steiner AL: Localization of cyclic GMP and cyclic AMP in cardiac and skeletal muscle: Im-munocytochemicaldemonstration. Science 195:183–185, 1977.

    PubMed  CAS  Google Scholar 

  123. Mirro MJ, Harper JF, Steiner AL: Compartmentation of cGMP in sinus node: Subcellular localization by immunocytochemistry. Circulation 62: III-239, 1980.

    Google Scholar 

  124. Lincoln TM, Keely SL: Regulation of the cardiac cyclic GMP-dependent protein kinase. Biochem Biophys Acta 676: 230–244, 1981.

    PubMed  CAS  Google Scholar 

  125. Mirro MJ, Bailey JC, Watanabe AM: Dissociation between the electrophysiological properties and total tissue cyclic GMP content of guinea pig atria. Circ Res 45: 225–233, 1979.

    PubMed  CAS  Google Scholar 

  126. Pappano AJ, Hartigen PM, Coutu MD: Acetylcholine inhibits the positive inotropic effect of cholera toxin in ventricular muscle. Am J Physiol 243: H434–H441, 1982.

    PubMed  CAS  Google Scholar 

  127. Revtyak G, Jones LR, Watanabe AM, Besch HR Jr: Canine myocardial guanylate cyclase: Differential activation of sarcolemmal and cytoplasmic forms. Pharmacologist 20: 147, 1978.

    Google Scholar 

  128. Lindemann JP, Besch HR Jr, Watanabe AM: Indirect and direct effects of the divalent cation inophore A23187 on guinea pig and rat ventricular myocardium. Circ Res 44: 472–482, 1979.

    PubMed  CAS  Google Scholar 

  129. Wallach F, Pastan I: Stimulation of membranous guanylate cyclase by concentrations of calcium that are in the physiological range. Biochem Biophys Res Commun 72: 859–865, 1976.

    PubMed  CAS  Google Scholar 

  130. Quist E: Evidence for a carbachol stimulated phosphatidylinositol effect in heart. Biochem Pharmacol 31: 3130–3133, 1982.

    PubMed  CAS  Google Scholar 

  131. Brown SL, Brown JH: Muscarinic stimulation of phosphatidylinositol metabolism in atria. Mol Pharmacol 24: 351–356, 1983.

    PubMed  CAS  Google Scholar 

  132. Brown JH, Buxton IL, Brunton LL: (Xi-adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes. Circ Res 57: 532–537, 1985.

    PubMed  CAS  Google Scholar 

  133. Brown JH, Brown SL: Agonists differentiate muscarinic receptors that inhibit cyclic AMP formation from those that stimulate phosphoinösitide metabolism. J Biol Chem 259: 3777–3781, 1984.

    PubMed  CAS  Google Scholar 

  134. Brown BS, Poison JB, Krzanowski JJ, Wiggins JR: Influence of isoproterenol and methylisobutylxanthine on the contractile and cyclic nucleotide effects of methancholine in isolated rat atria. J Pharmacol Exp Ther 212: 325–332, 1980.

    PubMed  CAS  Google Scholar 

  135. Bailey JC, Watanabe AM, Besch HR Jr, Lathrop DR: Acetylcholine antagonism of the electrophysiological effects of isoproterenol on canine cardiac Purkinje fibers. Circ Res 44: 378–383, 1979.

    PubMed  CAS  Google Scholar 

  136. Inui J, Imamura H: Effects of acetylcholine on calcium-dependent electrical and mechanical response in the guinea-pig papillary muscle partially depolarized by potassium. Naunyn-Schmiedeberg’s Arch Pharmacol 299: 1–7, 1977.

    CAS  Google Scholar 

  137. Hescheler J, Kameyama M, Trautwein W:On the mechanism of muscarinic inhibition of the cardiac Ca current. Pfiugers Arch 407: 182–189, 1986.

    CAS  Google Scholar 

  138. Hartzell HC, Fischmeister R: Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature 323: 273–275, 1986.

    PubMed  CAS  Google Scholar 

  139. Gardner RM, Allen DO: The relationship between cyclic nucleotide levels and glycogen Phosphorylase in isolated rat hearts perfused with epinephrine and acetylcholine. J Pharmacol Exp Ther 202: 346–353 1977.

    PubMed  CAS  Google Scholar 

  140. Murad F, Chi YM, Rail TW, Sutherland EW: Adenyl cyclase. J Biol Chem 237: 1233–1238, 1962.

    CAS  Google Scholar 

  141. La Raia PJ, Sonnenblick EH: Autonomic control of cardiac cAMP. Circ Res 28: 377–384, 1971.

    Google Scholar 

  142. Meester WD, Hardman HF: Blockade of the positive inotropic actions of epinephrine and theophylline by acetylcholine. J Pharmacol Exp Ther 158: 241–247, 1967.

    PubMed  CAS  Google Scholar 

  143. Biegon RL, Epstein PM, Pappano AJ: Muscarinic antagonism of the effects of a phosphodiesterase inhibitor (methylisobutylxanthine) in embryonic chick ventricle. J Pharmacol Exp Ther 215: 348–356, 1980.

    PubMed  CAS  Google Scholar 

  144. Keely SL Jr, Lincoln TM, Corbin JD: Interaction of acetylcholine and epinephrine on heart cyclic AMP-dependent protein kinase. Am J Physiol 234: H432–H438, 1978.

    CAS  Google Scholar 

  145. Lindemann JP, Watanabe AM: Muscarinic cholinergic inhibition of ß-adrenergic stimulation of phospholamban phosphorylation and Ca2+- transport in guinea pig ventricles. J Biol Chem 260: 13122–13129, 1985.

    PubMed  CAS  Google Scholar 

  146. Iwasa Y, Hosey MM: Cholinergic antagonism of ß-adrenergic stimulation of cardiac membrane protein phosphorylation in situ. J Biol Chem 258: 4571–4575, 1983.

    PubMed  CAS  Google Scholar 

  147. Manalan, AS, Besch HR Jr, Watanabe AM: Characterization of [3H] (±) Carazolol binding to ß-adrenergic receptors: Application to study of ß-adrenergic receptor subtypes in canine ventricular myocardium and lung. Circ Res 49: 326–336, 1981.

    PubMed  CAS  Google Scholar 

  148. Mirro MJ, Manalan AS, Bailey JC, Watanabe AM: Anticholinegic effects of disopyramide and quinidine on guinea pig myocardium: Mediation by direct muscarinic receptor blockade. Circ Res 47: 855–865, 1980.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lindemann, J.P., Watanabe, A.M. (1989). Mechanisms of Adrenergic and Cholinergic Regulation of Myocardial Contractility. In: Sperelakis, N. (eds) Physiology and Pathophysiology of the Heart. Developments in Cardiovascular Medicine, vol 90. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0873-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0873-7_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8222-8

  • Online ISBN: 978-1-4613-0873-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics