Skip to main content

Developmental Changes in Alpha-Adrenergic Modulation of Cardiac Rhythm

  • Chapter
Physiology and Pathophysiology of the Heart

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 90))

Abstract

Until relatively recently, the role of the autonomic nervous system in the control of cardiac rhythm was thought to be rather straightforward {l}. The parasympathetic nervous system and its mediator, acetylcholine, were thought to exert an inhibitory function (depressing automaticity and atrioventricular conduction), and the sympathetic nervous system, along with epinephrine and norepinephrine, were thought to be excitatory, enhancing automaticity and speeding atrioventricular conduction. In the context of cardiac rhythm modulation, per se, the important sympathetic actions were thought to be beta adrenergic; only a minor role — if any — was consigned to the alpha adrenergic system. The major complicating factor in the picture was that of accentuated antagonism, whereby the parasympathetic limb of the autonomic system was shown to have enhanced effects in the presence of preexisting sympathetic tone {l, 2}.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pappano AJ: Ontogenetic development of autonomic neuroeffector transmission and transmitter reactivity in embryonic and fetal hearts. Pharmacol Rev 29: 3–33, 1977.

    PubMed  CAS  Google Scholar 

  2. Levy MN: Sympathetic-parasympathetic interactions in the heart. Circ Res 29: 437–445, 1971.

    PubMed  CAS  Google Scholar 

  3. Kitzes MC, Berns MW: Electrical activity of rat myocardial cells in culture: La3+-induced alterations. Am J Physiol 237: C87–C95, 1979.

    PubMed  CAS  Google Scholar 

  4. Hall EK: Acetylcholine and epinephrine effects on the embryonic rat heart. J Cell Comp Physiol 49: 187–200, 1957.

    Article  CAS  Google Scholar 

  5. Wildenthal K: Maturation of responsiveness to cardioactive drugs: Differential effects of acetylcholine, norepinephrine, theophylline, tyramine, glucagon, and dibutyryl cAMP on attial rate in hearts of fetal mice. J Clin Inves 52: 2250–2258, 1973.

    Article  CAS  Google Scholar 

  6. Adolph EF: Ontogeny of heart-rate controls in hamster, rat, and guinea pig. Am J Physiol 220: 1896–1902, 1971.

    PubMed  CAS  Google Scholar 

  7. Nawayhid B, Brinkman III CR, Su C, Bevan JA, Assali NS: Systemic and pulmonary hemodynamic responses to adrenergic and cholinergic agonists during fetal development. Biol Neonate 26: 301–317, 1975.

    Article  Google Scholar 

  8. Woods JR Jr, Dandavino A, Murayama K, Brink-man III CR, Assali NS: Autonomic control of cardiovascular functions during neonatal development and in adult sheep. Circ Res 40: 401–407, 1977.

    CAS  Google Scholar 

  9. Culver NG, Fischman DA: Pharmacological analysis of sympathetic function in the embryonic chick heart. Am J Physiol 232: R116–R123, 1977.

    PubMed  CAS  Google Scholar 

  10. Buckley NM, Gootman PM, Yellin L, Brazeau P: Age-related cardiovascular effects of catecholamines in anesthetized piglets. Circ Res 45: 282–292, 1979.

    PubMed  CAS  Google Scholar 

  11. Rockson SG, Homey CJ, Quinn P, Manders WT, Haber E, Vatner SF: Cellular mechanisms of impaired adrenergic responsiveness in neonatal dogs. J Clin Invest 67: 319–327, 1981.

    Article  PubMed  CAS  Google Scholar 

  12. Pappano AJ: Development of autonomic neuroeffector transmission in the chick embryo heart. In: Developmental and Physiological Cotrelates of Cardiac Muscle. New York: Raven Press, 1976, pp 235–248.

    Google Scholar 

  13. Higgins D, Pappano AJ: Developmental changes in the sensitivity of the chick embryo ventricle to beta adrenergic agonist during adrenergic innervation. Circ Res 48: 245–253, 1981.

    PubMed  CAS  Google Scholar 

  14. Siedler FJ, Slotkin TA: Presynaptic and postsynaptic control of heart rate in the pre-weaning rat. Br J Pharmac 65: 431–434, 1979.

    Google Scholar 

  15. Standen NB: The postnatal development of adrenoceptor responses to agonists and electrical stimulation in rat isolated atria. Br J Pharmac 64: 83–89, 1978.

    CAS  Google Scholar 

  16. Alexander RW, Galper JB, Neer EJ, Smith TW: Non-co-ordinate development of beta-adrenergic receptors and adenylate cyclase in chick heart. Biochem J 204: 825–830, 1982.

    PubMed  CAS  Google Scholar 

  17. Stanton HC, Mersmann HJ: Development of cardiac beta-adrenergic receptors in swine (abstr). Fed Proc 38: 361, 1979.

    Google Scholar 

  18. Chen F-CM, Yamamura HI, Roeske WR: Ontogeny of mammalian myocardial beta-adrenergic receptors. Eur J Pharmacol 58: 255–264, 1979.

    Article  PubMed  CAS  Google Scholar 

  19. Danilo P Jr., Rosen MR, Hordof AJ: Effects of acetylcholine on the ventricular specialized conducting system of neonatal and adult dogs. Circ Res 43: 777–784, 1978.

    CAS  Google Scholar 

  20. Rosen M, Danslo P, Robinson R, Shah A, Steinberg S: Sympathetic neural and a adrenergic modulation of arrhythmias. Ann NY Acad Sei, in press.

    Google Scholar 

  21. Glowinski J, Axelrod J, Kopin I, Wurtman RJ: Physiological disposition of [3H]-norepinephrine in the developing rat. J Pharmacol Exp Ther 146: 48–53, 1964.

    PubMed  CAS  Google Scholar 

  22. Mackenzie E, Standen NB: The postnatal development of adrenoceptor responses in isolated papillary muscle from rat. Pflügers Arch 383: 185–187, 1980.

    Article  PubMed  CAS  Google Scholar 

  23. Lipp JA, Rudolph AM: Sympathetic nerve development in the rat and guinea-pig heart. Biol Neonate 21: 76–82, 1982.

    Google Scholar 

  24. Romanoff AL: The Avian Embryo: Structural and Functional Development. New York: The MacMillan Co, 1960.

    Google Scholar 

  25. Walker D: Functional development of the autonomic innervation of the human fetal heart. Biol Neonate 25: 31–43, 1975.

    CAS  Google Scholar 

  26. Gyevai A: Comparative histochemical investigations concerning prenatal and postnatal Cholinesterase activity in the hearts of chickens and rats. Acta Biol Acad Sei Hung 20: 253–262, 1969.

    CAS  Google Scholar 

  27. Higgins D, Pappano AJ: Development of transmitter secretory mechanisms by adrenergic neurons in the embryonic chick heart ventricle. Dev Biol 87: 148–162, 1981.

    Article  PubMed  CAS  Google Scholar 

  28. Gauthier P, Nadeau RA, de Champlain J: The development of sympathetic innervation and the functional state of the cardiovascular system in the newborn dog. Can J Physiol Pharmacol 53: 763–776, 1975.

    Article  PubMed  CAS  Google Scholar 

  29. Geis WP, Tatooles CJ, Priola DV, Friedman WF: Factors influencing neurohumoral control of the heart in the newborn dog. Am J Physiol 228: 1685–1689. 1975.

    PubMed  CAS  Google Scholar 

  30. Lebowitz EA, Novick JS, Rudolph AM: Development of myocardial sympathetic innervation in the fetal lamb. Ped Res 6: 887–893, 1972.

    Article  CAS  Google Scholar 

  31. Comline RS, Silver M: Development of activity in the adrenal medulla of the foetus and newborn animal. Br Med Bull 22: 16–20, 1966.

    PubMed  CAS  Google Scholar 

  32. Fisher DA, Klein AH: Thyroid development and disorders of the thyroid function in the newborn. N Engl J Med 304: 702–712, 1981.

    Article  PubMed  CAS  Google Scholar 

  33. Cheek DB: Fetal and Postnatal Cellular Growth: Hormones and Nutrition. New York: John Wiley and Sons, 1975.

    Google Scholar 

  34. Drugge ED, Rosen MR, Robinson RB: Neuronal regulation of the development of the cardiac alpha adrenergic chronotropic response. Circ Res 57: 415–423, 1985.

    PubMed  CAS  Google Scholar 

  35. Drachman DB: Trophic functions of the neuron. Ann NY Acad Sei 228: 1–423, 1974.

    Google Scholar 

  36. Drugge ED, Robinson RB: Trophic influence of sympathetic neurons on the cardia alpha adrenergic response requires close nerve-muscle association. Dev Phatmacol Thet 10: 47–52, 1988.

    Google Scholar 

  37. Lundberg JM, Hokfelt T, Anggard A, Kimmel J, Goldstein M, Markey K: Coexistence of an avian pancreatic polypeptide (APP) immunoreactive substance and catecholamines in some peripheral and central neurons. Acta Physiol Scand 110: 107–109, 1980.

    Article  PubMed  CAS  Google Scholar 

  38. Lundberg JM, Hokfelt T: Coexistence of peptides and classical neurotransmitters. In: D Bousfield (ed) Trends in Neuro-sciences. New York: Elsevier Science 1983, pp 325–333.

    Google Scholar 

  39. Furness JB, Costa M, Papka RE, Delia NG, Murphy R: Neuropepitides contained in peripheral cardiovascular nerves. Clin and Exper Hypertension — Theory and Practice A6 (1 & 2): 91–106, 1984.

    Article  CAS  Google Scholar 

  40. Hanley MR, Benton HP, Lightman SL, Todd K, Bone EA, Fretten P, Palmer S, Kirk CJ, Michell RH: A vasopressin-like peptide in the mammalian sympathetic nervous system. Nature 309 (5965): 258–261, 1984.

    Article  PubMed  CAS  Google Scholar 

  41. Schubert P, Kreutzberg GW: Axonal transport of adenosine and uridine derivates and transfer to postsynaptic neurons. Brain Res 76: 526–530, 1974.

    Article  PubMed  CAS  Google Scholar 

  42. Manning DR, Gilman AG: The regulatory components of adenylate cyclase and transducin. A family of structurally homologous guanine nucleotide-binding proteins. J Biol Chem 258: 7059–7063, 1983.

    CAS  Google Scholar 

  43. Sternweis PC, Robishaw JD: Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J Biol Chem 259: 23806–12813, 1984.

    Google Scholar 

  44. Gierschik P, Falloon J, Milligan G, Pines M, Gallin JI, Spiegel A: Immunochemical evidence for a novel pertussis toxin-substrate in human neutrophils. J Biol Chem 261: 8058–8062, 1986.

    PubMed  CAS  Google Scholar 

  45. Steinberg SF, Drugge ED, Bilezikian JP, Robinson RB: Innervated cardiac myocytes acquire a pertussis toxin-specific regulatory protein functionally linked to the alphai-receptor. Science 230: 186–188, 1985.

    Article  PubMed  CAS  Google Scholar 

  46. Rosen MR, Steinberg SF, Chow Y-K, Bilezikian JP, Danilo P Jr: The role of a pertussis-toxin sensitive protein in the modulation of canine Purkinje fiber automaticity. Circ Res 62: 315–323, 1988.

    PubMed  CAS  Google Scholar 

  47. Rosen MR, Hordof AJ, Ilvento JP, Danilo P Jr: Effects of adrenergic amines on electrophysiological properties and automaticity of neonatal and adult canine Purkinje fibers: Evidence for alpha- and beta-adrenergic actions. Circ Res 40: 390–400, 1977.

    PubMed  CAS  Google Scholar 

  48. Posner P, Farrar E, Lambert C: Inhibitory effects of catecholamines in canine cardiac Purkinje fibers. Am J Physiol 231: 1415–1420, 1976.

    PubMed  CAS  Google Scholar 

  49. Mary-Rabine L, Hordof A, Bowman F, Malm J, Rosen MR: Alpha and beta adrenergic effects on human atrial specialized conducting fibers. Circulation 57: 84–90, 1978.

    PubMed  CAS  Google Scholar 

  50. Hordof AJ, Rose E, Danilo P Jr, Rosen MR: Alpha and beta adrenergic effects of epinephrine on ventricular pacemakers in dogs. Am J Physiol 242: 677–682, 1982.

    Google Scholar 

  51. Hewett KW, Rosen MR: Developmental changes in the rabbit sinus node action potential and its response to adrenergic agonists. J Pharmacol Exp Ther 235:308–312, 1985.

    PubMed  CAS  Google Scholar 

  52. Amerini S, Piazzesi G, Giotti A, Mugelli A: Alpha adrenoceptor stimulation enhances automaticity in barium treated cardiac Purkinje fibers. Arch Int Pharmacodyn Ther 270: 97–105, 1984.

    PubMed  CAS  Google Scholar 

  53. Shah A, Cohen IS, Rosen MR: Stimulation of cardiac alpha receptors increases Na/K pump current and decreases gK via a pertussis toxin-sensitive pathway. Biophys J 54: 219–225, 1988.

    Article  PubMed  CAS  Google Scholar 

  54. Reder RF, Danilo P Jr, Rosen MR: Developmental changes in alpha adrenergic effects on canine Purkinje fiber automaticity. Dev Pharmacol Ther 7: 94–108, 1984.

    PubMed  CAS  Google Scholar 

  55. Robinson RB: Models of cardiac development: Transplants, organ culture, cell dispersion and cell culture. In: Legato MJ (ed) The Developing Heart. Boston: Kluwer-Nijhoff, 1985, pp 69–94.

    Google Scholar 

  56. Kupfer E, Robinson RB, Bilezikian JP: Identification of alphai adrenergic receptors in cultured rat myocardial cells with a new iodinated alphai adrenergic antagonist [125I] IBE 2254. Circ Res 51: 250–254, 1982.

    PubMed  CAS  Google Scholar 

  57. Rosen MR, Weiss RM, Danilo P Jr: Effects of alpha adrenergic agonists and blockers on Purkinje fiber transmembrane potentials and automaticity in the dog. J Pharmacol Exp Ther 231 (3): 566–571, 1984.

    PubMed  CAS  Google Scholar 

  58. Buchthal SD, Bilezikian JP, Danilo P Jr: Alphar adrenergic receptors on the adult, neonatal, and fetal canine heart. Devel Pharm Ther 10: 90–96, 1987.

    CAS  Google Scholar 

  59. Cheny JB, Cornett LE, Goldfein A, Roberts JM: Decreased concentration of myocardial alpha adreno-receptors with increasing age in foetal lambs. Br J Pharmacol 70: 515–517, 1980.

    Google Scholar 

  60. Noguchi A, Whitset JA, Dickman L: Ontogeny of myocardial alpha! adrenergic receptor in rat. Dev Pharmacol 3: 179–188, 1981.

    CAS  Google Scholar 

  61. Williams RS, Dukes DF, Lefkowitz RJ: Subtype specificity of alpha-adrenergic receptors in rat heart. J Cardiovasc Pharmacol 3: 522–531, 1981.

    Article  PubMed  CAS  Google Scholar 

  62. Lefkowitz RJ, Steidel JM, Caron MG: Adenylate cyclase—coupled beta-adrenergic receptors. Ann Rev Biochem 52: 159–186, 1983.

    Article  PubMed  CAS  Google Scholar 

  63. Abdel-Latif, AA: Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers. Pharmacol Rev 38: 227–272, 1986.

    PubMed  CAS  Google Scholar 

  64. Williamson JR: Role of inositol lipid breakdown in the generation of intracellular signals. Hypertension 8: 140–156, 1986.

    Google Scholar 

  65. Brown JH, Buxton IL, Brunton LL: Alphai-adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes. Circ Res 57: 532–537, 1985.

    PubMed  CAS  Google Scholar 

  66. Litosch I, Fain JN: Regulation of phosphoinositide breakdown by guanine nucleotides. Life Sei 39: 187–194, 1986.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rosen, M.R., Robinson, R.B., Cohen, I.S., Bilezikian, J.P. (1989). Developmental Changes in Alpha-Adrenergic Modulation of Cardiac Rhythm. In: Sperelakis, N. (eds) Physiology and Pathophysiology of the Heart. Developments in Cardiovascular Medicine, vol 90. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0873-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0873-7_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8222-8

  • Online ISBN: 978-1-4613-0873-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics