Skip to main content

Excitation-Contraction Coupling: Relationship of Slow Inward Current to Contraction

  • Chapter
  • 311 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 90))

Abstract

Although transient increases in calcium (Ca) concentration near the myofilaments underlie phasic contractile events, the source of this activator Ca is not the same for all muscle cells. In skeletal muscle, the activator Ca comes nearly exclusively from the cisternae of the sarcoplasmic reticulum (SR), whereas in the frog heart it appears to come from extracellular locations. Mammalian cardiac muscle lies between these two extremes in that contraction is mainly dependent on Ca released from the SR, but there is a requirement for Ca influx across the sarcolemma to trigger the release {1}. This flux of Ca passes through voltage-gated ionic channels (Ca channels). Since these channels open at potentials positive to −50 mV, ISi flows during the plateau of the cardiac action potential and is therefore well placed to participate in the excitation-contraction coupling process. This chapter examines the role of ISi in contraction, with particular emphasis being given to voltage-clamp experiments on mammalian ventricular muscle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Langer GA: Sodium-calcium exchange in the heart. Ann Rev Physiol 44: 435–449, 1982.

    Article  CAS  Google Scholar 

  2. Noble D: Sodium-calcium exchange and its role in generating electric current. In: Nathan RD (ed) Cardiac Muscle: The regulation of excitation and contraction. Orlando: Academic Press, 1986, pp. 171–200.

    Google Scholar 

  3. Lederer WJ, Vaughan-Jones RD, Eisner DA, Sheu SS, Cannel MB: The regulation of tension in heart muscle by intracellular sodium. In: Nathan RD (ed) Cardiac Muscle: The regulation of excitation and contraction. Orlando: Academic Press, 1986, pp. 217–235.

    Google Scholar 

  4. Bassingthwaite G, Reuter H: Calcium movements and excitation-contraction coupling in cardiac cells. In: de Mello WC (ed) Electrical Phenomena in the Heart. New York: Academic Press, 1972, pp. 353–393.

    Google Scholar 

  5. Morad M, Goldman Y: Excitation-contraction coupling in heart muscle: Membrane control of development of tension. Prog Biophys Mol Biol 27: 257–313, 1973.

    Article  Google Scholar 

  6. Chapman RA: Control of cardiac contractility at the cellular level. Am J Physiol 245: H535–H552, 1983.

    PubMed  CAS  Google Scholar 

  7. Fabiato A, Fabiato F: Calcium and cardiac excitation-contraction coupling. Ann Rev Physiol 41: 473–484, 1979.

    Article  CAS  Google Scholar 

  8. Fozzard HA: Slow inward current and contraction. In: Zipes DP, Bailey JC, Elharrar V (eds) The Slow Inward Current and Cardiac Arrhythmias. The Hague: Martinus Nijhoff, 1980, pp. 173–203.

    Google Scholar 

  9. Gibbons WR: Cellular control of cardiac contraction. In: Fozzard HA et al. (eds) The Heart and Cardiovascular System. New York: Raven Press, 1986, pp. 747–778.

    Google Scholar 

  10. New W, Trautwein W: The ionic nature of slow inward current and its relation to contraction. Pflügers Arch 334: 24–38, 1972.

    Article  PubMed  CAS  Google Scholar 

  11. Reuter H, Scholz H: A study of the ion selectivity and the kinetic properties of the calcium dependent slow inward current in mammalian cardiac muscle. J Physiol (Lond) 264: 17–47, 1977.

    CAS  Google Scholar 

  12. Lee KS, Tsien RW: Reversal of current through calcium channels in dialysed single heart cells. Nature 297: 498–501, 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Trautwein W, McDonald TF, Tripathi O: Calcium conductance and tension in mammalian ventricular muscle. Pflügers Arch 354: 55–74, 1975.

    Article  PubMed  CAS  Google Scholar 

  14. Carmeliet E, Vereecke J: Electrogenesis of the action potential and automaticity. In: Berne RM, Sperelakis N, Geiger SR (eds) Handbook of Physiology. I. The Cardiovascular System. Baltimore: The American Physiological Society, Williams and Wilkins, 1979, pp. 269–334.

    Google Scholar 

  15. Coraboeuf E: Voltage clamp studies of the slow inward current. In: Zipes DP, Bailey JC, Elharrar V (eds) The Slow Inward Current and Cardiac Arrhythmias. The Hague: Martinus Nijhoff, 1980, pp. 25–95.

    Google Scholar 

  16. McDonald TF: The slow inward calcium current in the heart. Ann Rev Physiol 44: 425–434, 1982.

    Article  CAS  Google Scholar 

  17. Tsien RW: Calcium channels in excitable cell membranes. Ann Rev Physiol 45: 341–358, 1983.

    Article  CAS  Google Scholar 

  18. Isenberg G, Klöckner U: Calcium currents of isolated bovine ventricular myocytes are fast and of large amplitude. Pflügers Arch 395: 30–41, 1982.

    Article  PubMed  CAS  Google Scholar 

  19. Lee KS, Tsien RW: High selectivity of calcium chan–nels in single dialysed heart cells of the guinea-pig. J Physiol (Lond) 354: 253–272, 1984.

    CAS  Google Scholar 

  20. Hess P, Tsien RW: Mechanism of ion permeation through calcium channels. Nature (Lond) 309: 453–456, 1984.

    Article  CAS  Google Scholar 

  21. McDonald TF, Cavalié A, Trautwein W, Pelzer D: Voltage-dependent properties of macroscopic and elementary calcium channel currents in guinea pig ventricular myocytes. Pflügers Arch 406: 437 - 448, 1986.

    Article  PubMed  CAS  Google Scholar 

  22. Bers DM: Early transient depletion of extracellular Ca during individual cardiac muscle contractions. Am J Physiol 244: H462–H468, 1983.

    PubMed  CAS  Google Scholar 

  23. Isenberg G, Wendt-Gallitelli MF: Extra- and intracellular lanthanum: Modified calcium distribution, inward currents and contractility in guinea pig ventricular preparations. Pflügers Arch 405: 310–322, 1985.

    Article  PubMed  Google Scholar 

  24. Tung L, Morad M: A comparative electrophysiological study of enzymatically isolated single cells and strips of frog ventricle. Pflügers Arch 405: 274–284, 1985.

    Article  PubMed  CAS  Google Scholar 

  25. Reuter H, Stevens CF, Tsien RW, Yellen G: Properties of single calcium channels in cardiac cell culture. Nature (Lond) 297: 501–504, 1982.

    Article  CAS  Google Scholar 

  26. Cavalié A, Pelzer D, Trautwein W: Fast and slow gating behaviour of single calcium channels in cardiac cells: Relation to activation and inactivation of calcium-channel current. Pflügers Arch 406: 241–258, 1986.

    Article  PubMed  Google Scholar 

  27. Pelzer D, Cavalié A, McDonald TF, Trautwein W: Macroscopic and elementary currents through cardiac calcium channels. In: Luttgau HC (ed) Membrane Control of Cellular Activity, Progress in Zoology. 33: 83–98, 1987.

    Google Scholar 

  28. Antoni H, Jacob R, Kaufmann R: Mechanische reak-tionen des frosch und säugetiermyokards bei Veränderung der aktionspotential-dauer durch konstante gleichsttomimpulse. Pflügers Arch 306: 33–57, 1969.

    Article  PubMed  CAS  Google Scholar 

  29. Wood E, Heppner RL, Weidmann S: Inotropic effects of electric currents. Circ Res 24: 409–445, 1969.

    PubMed  CAS  Google Scholar 

  30. Fabiato A, Baumgarten CM: Methods for detecting calcium release from the sarcoplasmic reticulum of skinned cardiac cells and the relationship between calculated transsarcolemmal calcium movements and calcium release. In: Sperelakis N (ed) Function of the Heart in Normal and Pathological States. The Hague: Martinus Nijhoff, 1988.

    Google Scholar 

  31. Fabiato A, Fabiato F: Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat and frog hearts and from fetal and new-born rat ventricles. Ann NY Acad Sci 307: 491–522, 1978.

    Article  PubMed  CAS  Google Scholar 

  32. Fabiato A: Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle. J Gen Physiol 78: 457–497, 1981.

    Article  PubMed  CAS  Google Scholar 

  33. 33- Fabiato A: Rapid ionic modifications during the aequorin—detected calcium transient in a skinned canine cardiac Purkinje cell. J Gen Physiol 85: 189–246, 1985.

    Article  PubMed  CAS  Google Scholar 

  34. Fabiato A: Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 85: 247–289, 1985.

    Article  PubMed  CAS  Google Scholar 

  35. Fabiato A: Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 85: 291–320, 1985.

    Article  PubMed  CAS  Google Scholar 

  36. Beeler GW, Reuter H: Relation between membrane potential, membrane currents, and activation of contraction in ventricular muscle fibres. J Physiol (Lond) 207: 211–229, 1970.

    CAS  Google Scholar 

  37. Reuter H: Time and voltage-dependent contractile responses in mammalian cardiac muscle. Eur J Cardiol 112: 177–181, 1973.

    Google Scholar 

  38. Gibbons WR, Fozzard HA: Voltage dependence and time dependence of contraction in sheep cardiac Purkinje fibers. Circ Res 28: 446–460, 1971.

    PubMed  CAS  Google Scholar 

  39. 39- Trautwein W: The slow inward current in mammalian myocardium. Eur J Cardiol 112: 169–175, 1973.

    Google Scholar 

  40. McDonald TF, Nawrath H, Trautwein W: Membrane currents and tension in cat ventricular muscle treated with cardiac glycosides. Circ Res 37: 674–682, 1975.

    PubMed  CAS  Google Scholar 

  41. Grossman A, Furchgott RF: The effect of various drugs on calcium exchange in the isolated guinea-pig left auricle. J Pharmacol Exp Ther 145: 162–172, 1964.

    PubMed  CAS  Google Scholar 

  42. Reuter H: The dependence of slow inward current in Purkinje fibres on the extracellular calcium concentration. J Physiol (Lond) 192: 479–492, 1967.

    CAS  Google Scholar 

  43. Reuter H: Localization of beta adrenergic receptors and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle. J Physiol (Lond) 242: 429–451, 1974.

    CAS  Google Scholar 

  44. Ikemoto Y, Goto M: Nature of the negative inotropic effect of acetylcholine on the myocardium. Proc Jpn Acad 51: 501–505, 1975.

    CAS  Google Scholar 

  45. Giles W, Noble SJ: Changes in membrane currents in bullfrog atrium produced by acetylcholine. J Physiol (Lond) 261: 103–123, 1976.

    CAS  Google Scholar 

  46. Ten Eick R, Nawrath H, Trautwein W: On the mechanism of the negative inotropic effect of acetylcholine. Pflügers Arch 361: 207–213, 1976.

    Article  PubMed  CAS  Google Scholar 

  47. Hino N, Ochi R: Effect of acetylcholine on membrane currents in guinea-pig papillary muscle. J Physiol (Lond) 307: 183–197, 1980.

    CAS  Google Scholar 

  48. Ochi R: Decrease in calcium conductance by acetylcholine in mammalian ventricular muscle. In: The Mechanism of Gated Calcium Transport Across Biological Membranes. New York: Academic Press, 1981, pp. 79–86.

    Google Scholar 

  49. Hesheler J, Kameyama M, Trautwein W: On the mechanism of muscarinic inhibition of the cardiac Ca current. Pflügers Arch 407: 182–189, 1986.

    Article  Google Scholar 

  50. Trautwein W, Osterrieder W: Mechanisms of β-adrenergic and cholinergic control of Ca and K currents in the heart. In: Nathan RD (ed) Cardiac Muscle: The Regulation of Excitation and Contrac¬tion. Orlando: Academic Press, 1986, pp. 87–128.

    Google Scholar 

  51. Kameyama M, Hofmann F, Trautwein W: On the mechanism of ß-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflügers Arch 405: 285–293, 1985.

    Article  PubMed  CAS  Google Scholar 

  52. Richard S, Nerbonne JM, Nargeot J, Lester HA, Gamier D: Photochemically produced intracellular concentration jumps of cAMP mimic the effects of catecholamines on excitation-contraction coupling in frog atrial fibers. Pflügers Arch 403: 312–317, 1984.

    Article  Google Scholar 

  53. Schramm M, Thomas G, Towart R, Frankowiak G: Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Mature 303: 535–537, 1983.

    CAS  Google Scholar 

  54. Sanguinetti MC, Kass RS: Regulation of cardiac calcium channel current and contractile activity by the dihydropyridine Bay K 8644. J Mol Cell Cardiol 16: 667–670, 1984.

    Article  PubMed  CAS  Google Scholar 

  55. Marban E, Tsien RW: Enhancement of calcium during digitalis inotropy in mammalian heart: Positive feed-back regulation by intracellular calcium? J Physiol (Lond) 329: 589–614, 1982.

    CAS  Google Scholar 

  56. Vassalle M: Cardiac glycosides: Regulation of force and rhythm. In: Nathan RD (ed) Cardiac Muscle: The Regulation of Excitation and Contraction. Orlando: Academic Press, 1986, pp. 237–267.

    Google Scholar 

  57. Fischmeister R, Brocas-Randolph M, Lechêne P, Argibay JA, Vassort G: A dual effect of cardiac glycosides on Ca current in single cells of frog heart. Pflügers Arch 406: 340–342, 1986.

    Article  PubMed  CAS  Google Scholar 

  58. Katzung BG, Reuter H, Porzig H: Lanthanum inhibits Ca inward current but not Na-Ca exchange in cardiac muscle. Experientia 29: 1073–1075, 1973.

    Article  PubMed  CAS  Google Scholar 

  59. Vassort G, Rougier O: Membrane potential and slow inward current dependence of frog cardiac mechanical activity. Pflügers Arch 331: 191–203, 1972.

    Article  PubMed  CAS  Google Scholar 

  60. McDonald TF, Pelzer D, Trautwein W: Does the calcium current modulate the contraction of the accompanying beat? A study of E-C coupling in mammalian ventricular muscle using cobalt ions. Circ Res 49: 576–583, 1981.

    PubMed  CAS  Google Scholar 

  61. Nawrath H, Ten Eick RE, McDonald TF, Trautwein W: On the mechanism underlying the action of D600 on slow inward current and tension in mammalian myocardium. Circ Res 40: 408–414, 1977.

    PubMed  CAS  Google Scholar 

  62. Trautwein W, Pelzer D, McDonald TF, Osterrieder W: AQA 39, a new bradycardiac agent which blocks myocardial calcium channels in a frequency- and voltage-dependent manner. Naunyn-Schmiederg’s Arch Pharmacol 317: 228–232, 1981.

    Article  CAS  Google Scholar 

  63. McDonald TF, Pelzer D, Trautwein W: On the mechanism of slow calcium channel block in heart. Pflügers Arch 385: 175–179, 1980.

    Article  PubMed  CAS  Google Scholar 

  64. Schwartz A, Taira N (eds): Calcium channel-blocking drugs: A novel intervention for the treatment of cardiac disease. Circ Res 52, Supp 1, 1983.

    Google Scholar 

  65. Sperelakis N, Caulfield JB (eds): Calcium Antagonists. Mechanisms of Action on Cardiac Muscle and Vascular Smooth Muscle. Boston: Martinus Nijhoff, 1984.

    Google Scholar 

  66. Boyett MR, Jewell BR: Analysis of the effects of changes in rate and rhythm upon electrical activity in the heart. Prog Biophys Mol Biol 36: 1–52, 1980.

    Article  PubMed  CAS  Google Scholar 

  67. Carmeliet E: Repolarization and frequency in cardiac cells. J Physiol (Paris) 73: 903–923, 1977.

    CAS  Google Scholar 

  68. Gibbons WR, Fozzard HA: Relationships between voltage and tension in sheep cardiac Purkinje fibers. J Gen Physiol 65: 345–365, 1975.

    Article  PubMed  CAS  Google Scholar 

  69. Gibbons WR, Fozzard HA: Slow inward current and contraction in sheep cardiac Purkinje fibers. J Gen Physiol 65: 367–383, 1975.

    Article  PubMed  CAS  Google Scholar 

  70. Simurda J, Simurdova M, Braveny P, Sumbera J: Slow inward current and action potentials of papillary muscles under non-steady-state conditions. Pflügers Arch 362: 209–218, 1976.

    Article  PubMed  CAS  Google Scholar 

  71. Simurda J, Simurdova M, Braveny P, Sumbera J: Activity-dependent changes of slow inward current in ventricular heart muscle. Pflügers Arch 391: 277–283, 1981.

    PubMed  CAS  Google Scholar 

  72. Isenberg G: Ca entry and contraction as studied in isolated bovine ventricular myocytes. Z Naturforsch 37: 502–512, 1982.

    CAS  Google Scholar 

  73. Mitchell MR, Powell T, Terrar DA, Twist VW: Influence of a change in stimulation rate on action potentials, currents and contractions in rat ventricular cells. J Physiol 364: 113–130, 1985.

    PubMed  CAS  Google Scholar 

  74. Wier WG: Calcium transients during excitation-contraction coupling in mammalian heart: Aequorin signals of canine Purkinje fibers. Science 207: 1085–1087, 1980.

    Article  PubMed  CAS  Google Scholar 

  75. Wier WG, Isenberg G: Intracellular (Ca2+] transients in voltage clamped cardiac Purkinje fibers. Pflügers Arch 392: 284–290, 1982.

    Article  PubMed  CAS  Google Scholar 

  76. Blinks JR, Wier WG, Hess P, Prendergast FG: Measurement of Ca2+ concentrations in living cells. Prog Biophys Mol Biol 40: 1–114, 1982.

    Article  PubMed  CAS  Google Scholar 

  77. Allen DG, Blinks JR: Calcium transients in aequorin-injected frog cardiac muscle. Nature 273: 509 - 513, 1978.

    Article  PubMed  CAS  Google Scholar 

  78. Allen DG, Kurihara S: Calcium transients in mammalian ventricular muscle. Eur Heart J 1: Suppl A: 5–15, 1980.

    Google Scholar 

  79. Wong, AYK: A model of excitation-contraction coupling of mammalian cardiac muscle. J Theor Biol 90: 37–61, 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

McDonald, T.F. (1989). Excitation-Contraction Coupling: Relationship of Slow Inward Current to Contraction. In: Sperelakis, N. (eds) Physiology and Pathophysiology of the Heart. Developments in Cardiovascular Medicine, vol 90. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0873-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0873-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8222-8

  • Online ISBN: 978-1-4613-0873-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics