Skip to main content

Influences of the Glassy and Rubbery States on the Thermal, Mechanical, and Structural Properties of Doughs and Baked Products

  • Chapter
Dough Rheology and Baked Product Texture

Abstract

The technological importance of the glass transition in amorphous polymers and the characteristic temperature at which it occurs (the glass transition temperature, Tg) is well known as a key aspect of synthetic polymer science (Ferry, 1980; Rowland, 1980; Sears and Darby, 1982). Eisenberg (1984) has stated that “the glass transition is perhaps the most important single parameter which one needs to know before one can decide on the application of the many noncrystalline [synthetic] polymers that are now available.” Especially in the last several years, a growing number of food scientists have followed the compelling lead of the synthetic polymers field by increasingly recognizing the practical significance of the glass transition as a physicochemical event that can govern food processing, product properties, quality, and stability (Slade, 1984; Slade and Levine, 1984a, 1984b, 1987a, 1987b, 1988a-e; Franks, 1985a, 1985b; Blanshard, 1986, 1987, 1988; Levine and Slade, 1986, 1987, 1988a-f; Blanshard and Franks, 1987; Schenz, 1987; Slade et al., 1988; Simatos and Karel, 1988; Karel and Langer, 1988; Marsh and Blanshard, 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abboud, A. M., Hoseney, R. C., and Rubenthaler, G. L. 1985. Factors affecting cookie flour quality. Cereal Chem. 62:130–133.

    Google Scholar 

  • Ablett, S., Attenburrow, G. E., and Lillford, P. J. 1986. Significance of water in the baking process. In Chemistry and Physics of Baking, ed. J. M. V. Blanshard, P. J. Frazier, and T. Galliard, pp. 30–41, London: Royal Society of Chemistry.

    Google Scholar 

  • Ablett, S., Barnes, D. J., Davies, A. P., Ingman, S. J., and Patient, D. W. 1988. C13 and pulse NMR spectroscopy of wheat proteins. J. Cereal Sci. 7:11–20.

    CAS  Google Scholar 

  • Alfonso, G. C., and Russell, T. P. 1986. Kinetics of crystallization in semicrys-talline Jamorphous polymer mixtures. Macromolecules 19:1143–1152.

    CAS  Google Scholar 

  • Apicella, A., and Hopfenberg, H. B. 1982. Water-swelling behavior of EVA copolymer. J. Appl. Polym. Sci 27:1139–1148.

    CAS  Google Scholar 

  • Asquith, R. S., and Leon, N. H. 1977. Chemical reactions of keratin fibers. In Chemistry of Natural Protein Fibers, ed. R. S. Asquith, pp. 193–265, New York: Plenum Press

    Google Scholar 

  • Atkins, A. G. 1987. Basic principles of mechanical failure in biological systems. In Food Structure and Behaviour, ed. J. M. V. Blanshard and P. Lillford, pp. 149–176, London: Academic Press.

    Google Scholar 

  • Atwell, W. A., Hood, L. F., Lineback, D. R., Varriano-Marston, E., and Zobel, H. F. 1988. Terminology and methodology associated with basic starch phenomena. Cereal Foods World 33:306–311.

    Google Scholar 

  • Bair, H. E. 1985. Curing behavior of epoxy resin above and below Tg. Polym. Prep. 26:10.

    CAS  Google Scholar 

  • Baro, M. D., Clavaguera, N., Bordas, S., Clavaguera-Mora, M. T., and Casa-Vazquez, J. 1977. Evaluation of crystallization kinetics by DTA. J. Thermal Anal. 11:271–276.

    CAS  Google Scholar 

  • Batres, L. V., and White, P. J. 1986. Interaction of amylopectin with monoglycerides in model systems. J. Amer. Oil Chem. Soc. 63:1537–1540.

    CAS  Google Scholar 

  • Batzer, H., and Kreibich, U. T. 1981. Influence of water on thermal transitions in natural polymers and synthetic polyamides. Polym. Bull. 5:585–590.

    CAS  Google Scholar 

  • Benjamin, E. J., Ke, C. I., Cochran, S. A., Hynson, R., Veach, S. K., and Simon, S. J. I. 1985. Frozen Bread Dough Product. European patent 145,367.

    Google Scholar 

  • Berens, A., and Hopfenberg, H. B. 1980. Induction and measurement of glassy state relaxations by vapor sorption methods. Stud. Phys. Theoret. Chem. 10:77–94.

    CAS  Google Scholar 

  • Bernardin, J. E. 1975. Rheology of concentrated gliadin solutions. Cereal Chem. 52:136r–145r.

    Google Scholar 

  • Bernardin, J. E., and Kasarda, D. D. 1973. Hydrated protein fibrils from wheat endosperm. Cereal Chem. 50:529–536.

    CAS  Google Scholar 

  • Biliaderis, C. G. 1983. DSC in food research—review. Food Chem. 10:239–265.

    CAS  Google Scholar 

  • Biliaderis, C. G., and Galloway, G. 1989. Crystallization habit of amylose-V complexes: structure-property relationships. Carbohydr. Polym. 10: in press.

    Google Scholar 

  • Biliaderis, C. G., Maurice, T. J., and Vose, J. R. 1980. Starchgelatinizationphenomena studied by DSC. J. Food Sci. 45:1669–1680.

    Google Scholar 

  • Biliaderis, C. G., Page, C. M., and Maurice, T. J. 1986a. Non-equilibrium melting of amylose-V complexes. Carbohydr. Polym. 6:269–288.

    CAS  Google Scholar 

  • Biliaderis, C.G., Page, C.M., and Maurice, T. J. 1986b. Multiple melting transitions of starchJmonoglyceride systems. Food Chem. 22:279–295.

    CAS  Google Scholar 

  • Biaderis, C. G., Page, C. M., Slade, L., and Sirett, R. R. 1985. Thermal behavior of amylose-lipid complexes. Carbohydr. Polym. 5:367–389.

    Google Scholar 

  • Biliaderis, C. G., Page, C. M., Maurice, T. J., and Juliano, B. O. 1986. Thermal characterization of rice starches: A polymeric approach to phase transitions of granular starch. J. Agric. Food Chem. 34:6–14.

    CAS  Google Scholar 

  • Billmeyer, F. W. 1984. Textbook of Polymer Science, 3rd ed., New York: Wiley-Interscience.

    Google Scholar 

  • Biros, J., Madan, R. L., and Pouchly, J. 1979. Heat capacity of water-swollen polymers above and below 0°C. Collection Czech. Chem. Commun. 44:3566–3573.

    CAS  Google Scholar 

  • Bizot, H., Buleon, A., Mouhoud-Riou, N., and Multon, J. L. 1985. Water vapor sorption hysteresis on potato starch. In Properties of Water in Foods, ed. D. Simatos and J. L. Multon, pp. 83–93, Dordrecht, Holland: Martinus Nijhoff.

    Google Scholar 

  • Blanshard, J. M. V. 1979. Physicochemical aspects of starch gelatinization. In Polysaccharides in Food, ed. J. M. V. Blanshard and J. R. Mitchell, pp. 139–152, London:Butterworths.

    Google Scholar 

  • Blanshard, J. M. V. 1986. Significance of the structure and function of the starch granule in baked products. In Chemistry and Physics of Baking, ed. J. M. V. Blanshard, P. J. Frazier, and T. Galliard, pp. 1–13, London: Royal Society of Chemistry.

    Google Scholar 

  • Blanshard, J. M. V. 1987. Starch granule structure and function: physicochemical approach. In Starch: Properties and Potential, ed. T. Galliard, pp. 16–54, Chichester, U. K.: Wiley.

    Google Scholar 

  • Blanshard, J. M. V. 1988. Elements of cereal product structure. In Food Structure—Its Creation and Evaluation, ed. J. R. Mitchell and J. M. V. Blanshard, pp. 313–330, London: Butterworths.

    Google Scholar 

  • Blanshard, J. M. V., and Franks, F. 1987. Ice crystallization and its control in frozen food systems. In Food Structure and Behaviour, ed. J. M. V. Blanshard and P. Lillford, pp. 51–65, London: Academic Press.

    Google Scholar 

  • Bloksma, A. H. 1978. Rheology and chemistry of dough. In Wheat Chemistry and Technology, 2nd ed., ed. Y. Pomeranz, pp. 523–584, St. Paul, MN: American Association of Cereal Chemists.

    Google Scholar 

  • Bloksma, A. H. 1986. Rheological aspects of structural changes during baking. In Chemistry and Physics of Baking, ed. J. M. V. Blanshard, P. J. Frazier, and T. Galliard, pp. 170–178, London: Royal Society of Chemistry.

    Google Scholar 

  • Bloksma, A. H., and Bushuk, W. 1988. Rheology and chemistry of dough. In Wheat Science and Technology, 3rd ed., Vol. 2, Chap. 4, pp. 131–217, ed. Y. Pomeranz, St. Paul, MN: American Association of Cereal Chemists.

    Google Scholar 

  • Blum, F. D., and Nagara, B. 1986. Solvent mobility in gels of atactic polystyrene. Polym. Prep. 27(1):211–212.

    CAS  Google Scholar 

  • Bone, S., and Pethig, R. 1982. Dielectric studies of the binding of water to lysozyme. J. Mol Biol. 157:571–575.

    CAS  Google Scholar 

  • Bone, S., and Pethig, R. 1985. Dielectric studies of protein hydration and hydration-induced flexibility. J. Mol. Biol. 181:323–326.

    CAS  Google Scholar 

  • Bonner, D. C., and Prausnitz, J. M. 1974. Thermodynamic properties of some concentrated polymer solutions. J. Polym. Sci. Polym. Phys. Ed. 12:51–73.

    CAS  Google Scholar 

  • Borchard, W., Bremer, W., and Keese, A. 1980. State diagram of the water-gelatin system. Colloid Polym. Sci. 258:516–526.

    CAS  Google Scholar 

  • Boyer, R. F., Baer, E., and Hiltner, A. 1985. Concerning gelation effects in atactic polystyrene solutions. Macromolecules 18:427–434.

    CAS  Google Scholar 

  • Bradbury, J. H. 1973. Structure and chemistry of keratin fibers. In Advances in Protein Chemistry, ed. C. B. Anfinsen, J. T. Edsall, and F. M. Richards, Vol. 27, pp. 111–211, New York: Academic Press.

    Google Scholar 

  • Braudo, E. E., Belavtseva, E. M., Titova, E. F., Plashchina, I. G., Krylov, V. L., Tolstoguzov, V. B., Schierbaum, F. R., and Richter, M. 1979. Struktur und Eigenschaften von Maltodextrin-Hydrogelen. Staerke 31:188–194.

    CAS  Google Scholar 

  • Braudo, E. E., Plashchina, I. G., and Tolstoguzov, V. B. 1984. Structural characterization of thermoreversible anionic polysaccharide gels by their elastoviscous properties. Carbohydr. Polym. 4:23–48.

    CAS  Google Scholar 

  • Bryan, W. P. 1987a. Thermodynamics of water-biopolymer interactions: irreversible sorption by two uniform sorbent phases. Biopolymers 26:387–401.

    CAS  Google Scholar 

  • Bryan, W. P. 1987b. Thermodynamic models for water-protein sorption hysteresis. Biopolymers, in press.

    Google Scholar 

  • Brydson, J. A. 1972. The glass transition, melting point, and structure. In Polymer Science, ed. A. D. Jenkins, pp. 194–249, Amsterdam, The Netherlands: North Holland.

    Google Scholar 

  • Buchanan, D. R., and Walters, J. P. 1977. Glass transition temperatures of polyamide textile fibers. Text. Res. J. 47:398–406.

    CAS  Google Scholar 

  • Buleon, A., Duprat, F., Booy, F. P., and Chanzy, H. 1984. Single crystals of amylase with a low degree of polymerization. Carbohydr. Polym. 4:161–173.

    CAS  Google Scholar 

  • Buleon, A., Bizot, H., Delage, M. M., and Pontoire, B. 1987. Comparison of X-ray diffraction and sorption properties of hydrolyzed starches. Carbohydr. Polym. 7:461–482.

    CAS  Google Scholar 

  • Bulpin, P. V., Cutler, A. N., and Dea, I. C. M. 1984. Thermally-reversible gels from low-DE maltodextrins. In Gums and Stabilizers for the Food Industry, Vol. 2, ed. G. O. Phillips, D. J. Wedlock, and P. A. Williams, pp. 475–484, Oxford, U.K.: Pergamon.

    Google Scholar 

  • Burghoff, H. G., and Pusch, W. 1980. Thermodynamic state of water in cellulose acetate membranes. Polym. Eng. Sci. 20:305–309.

    CAS  Google Scholar 

  • Burros, B. C., Young, L. A., and Carroad, P. A. 1987. Kinetics of corn meal gela-tinization at high temperature and low moisture. J. Food Sci. 52:1372–1380.

    Google Scholar 

  • Bushuk, W. 1984. Flour Proteins: Structure and Functionality in Dough and Bread, abstract 115, American Association of Cereal Chemists 69th Annual Meeting, Minneapolis, MN.

    Google Scholar 

  • Cakebread, S. H. 1969. Factors affecting the shelf life of high boilings. Manufact. Confect. 49:41–44.

    Google Scholar 

  • Cantor, C.R., and Schimmel, P. R. 1980. Biophysical Chemistry: Part I—The Conformation of Biological Macromolecules, San Francisco, CA: W. H. Freeman.

    Google Scholar 

  • Chan, R. K., Pathmanathan, K., and Johari, G. P. 1986. Dielectric relaxations in the liquid and glassy states of glucose and its water mixtures. J. Phys. Chem. 90:6358–6362.

    CAS  Google Scholar 

  • Chungcharoen, A., and Lund, D. B. 1987. Influence of solutes and water on rice starch gelatinization. Cereal Chem. 64:240–243.

    CAS  Google Scholar 

  • Cole, B. A., Levine, H., McGuire, M. T., Nelson, K. J., and Slade, L. 1983. Soft, Frozen Dessert Formulation. U.S. patent 4,374,154.

    Google Scholar 

  • Cole, B. A., Levine, H., McGuire, M. T., Nelson, K. J., and Slade, L. 1984. Soft, Frozen Dessert Formulation. U.S. patent 4,452,824.

    Google Scholar 

  • Cowie, J. M. G. 1973. Polymers: Chemistry and Physics of Modern Materials, New York: Intertext.

    Google Scholar 

  • D’Arcy, R. L., and Watt, I. C. 1981. Water vapor sorption isotherms on macromolecular substrates. In Water Activity: Influences on Food Quality, ed. L. B. Rockland and G. F. Stewart, pp. 111–142, New York: Academic Press.

    Google Scholar 

  • Davies, A. P. 1986. Protein functionality in bakery products. In Chemistry and Physics of Baking, ed. J. M. V. Blanshard, P. J. Frazier, and T. Galliard, pp. 89–104, London: Royal Society of Chemistry.

    Google Scholar 

  • Derbyshire, W. 1982. Dynamics of water in heterogeneous systems with emphasis on subzero temperatures. In Water: A Comprehensive Treatise, Vol. 7, ed. F. Franks, pp. 339–430, New York: Plenum Press.

    Google Scholar 

  • Dickerson, R. E., and Geis, I. 1969. The Structure and Action of Proteins, New York: W. A. Benjamin.

    Google Scholar 

  • Doescher, L. C., Hoseney, R. C, and Milliken, G. A. 1987. Mechanism for cookie dough setting. Cereal Chem. 64:158–163.

    Google Scholar 

  • Doescher, L. C, Hoseney, R. C, Milliken, G. A., and Rubenthaler, G. L. 1987. Effect of sugars and flours on cookie spread evaluated by time-lapse photography. Cereal Chem. 64:163–167.

    Google Scholar 

  • Domszy, R. C., Alamo, R., Edwards, C. O., and Mandelkern, L. 1986. Thermoreversible gelation and crystallization of homopolymers and copolymers. Macromolecules 19:310–325.

    CAS  Google Scholar 

  • Donelson, J. R. 1988. The contribution of high-protein fractions from cake and cookie flours to baking performance. Cereal Chem. 65:389–391.

    Google Scholar 

  • Donovan, J. W. 1979. Phase transitions of the starch-water system. Biopolymers 18:263–275.

    CAS  Google Scholar 

  • Donovan, J. W. 1985. DSC in food research. In Proceedings 14th NATAS Conference, pp. 328–333, San Francisco: NATAS.

    Google Scholar 

  • Donovan, J. W., Lorenz, K., and Kulp, K. 1983. DSC of heat-moisture treated wheat and potato starches. Cereal Chem. 60:381–387.

    Google Scholar 

  • Downton, G. E., Flores-Luna, J. L., and King, C. J. 1982. Mechanism of stickiness in hygroscopic, amorphous powders. Ind. Eng. Chem. Fundam. 21:447–451.

    CAS  Google Scholar 

  • Dreese, P. C., Faubion, J. M., and Hoseney, R. C. 1988a. Effect of different heating and washing procedures on dynamic rheological properties of wheat gluten. Cereal Foods World 33:225–228.

    Google Scholar 

  • Dreese, P. C., Faubion, J. M., and Hoseney, R. C. 1988b. Dynamic rheological properties of flour, gluten, and gluten-starch doughs. I. Cereal Chem. 65:348–353.

    Google Scholar 

  • duCros, D. L. 1987. Glutenin proteins and gluten strength in durum wheat. J. Cereal Sci. 5:3–12.

    CAS  Google Scholar 

  • Durning, C. J., and Tabor, M. 1986. Mutual diffusion in concentrated polymer solutions under a small driving force. Macromolecules 19:2220–2232.

    CAS  Google Scholar 

  • Edwards, S. F., Lillford, P. J., and Blanshard, J. M. V. 1987. Gels and networks in practice and theory. In Food Structure and Behaviour, ed. J. M. V. Blanshard and P. Lillford, pp. 1–12, London: Academic Press.

    Google Scholar 

  • Eisenberg, A. 1984. The glassy state and the glass transition. In Physical Properties of Polymers, ed. J. E. Mark, A. Eisenberg, W. W. Graessley, L. Mandelkern, and J. L. Koenig, pp. 55–95, Washington, D.C.: American Chemical Society.

    Google Scholar 

  • Eliasson, A. C. 1985. Retrogradation of starch as measured by DSC. In New Approaches to Research on Cereal Carbohydrates, ed. R. D. Hill and L. Munck, pp. 93–98, Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Eliasson, A. C. 1986. On the effects of surface active agents on the gelatinization of starch—A calorimetric investigation. Carbohydr. Polym. 6:463–476.

    CAS  Google Scholar 

  • Ellis, H. S., and Ring, S. G. 1985. Study of some factors influencing amylose gelation. Carbohydr. Polym. 5:201–213.

    CAS  Google Scholar 

  • Ellis, T. S. 1988. Moisture-induced plasticization of amorphous polyamides and their blends. J. Appl. Polym. Sci. 36:451–466.

    CAS  Google Scholar 

  • Ellis, T. S., Jin, X., and Karasz, F. E. 1984. Water-induced plasticization behavior of semi-crystalline polyamides. Polym. Prep. 25(2): 197–198.

    CAS  Google Scholar 

  • Escoubes, M., and Pineri, M. 1980. Comparison of weight and energy changes in the absorption of water by collagen and keratin. In Water in Polymers, ed. S. P. Rowland, ACS Symposium Series 127, pp. 235–252, Washington, D.C.: American Chemical Society.

    Google Scholar 

  • Evans, I. D. 1986. Investigation of starch/surfactant interactions using viscosimetry and DSC. Staerke 38:227–235.

    CAS  Google Scholar 

  • Ewart, J. A. D. 1987. Calculated molecular weight distribution for glutenin. J. Sci. Food Agric. 38:277–289.

    CAS  Google Scholar 

  • Ewart, J. A. D. 1988. Thiols in flour and breadmaking quality. Food Chem. 28:207–218.

    CAS  Google Scholar 

  • Fearn, T., and Russell, P. L. 1982. Kinetic study of bread staling by DSC—effect of loaf specific volume. J. Sci. Food Agric. 33:537–548.

    Google Scholar 

  • Ferry, J. D. 1948. Mechanical properties of substances of high molecular weight. J. Amer. Chem. Soc. 70:2244–2249.

    CAS  Google Scholar 

  • Ferry, J. D. 1980. Viscoelastic Properties of Polymers, 3rd ed., New York: Wiley.

    Google Scholar 

  • Finch, J. T. 1975. Electron microscopy of proteins. In The Proteins, 3rd ed., Vol. 1, ed. H. Neurath, R. H. Hill, and C. L. Boeder, pp. 413–497, New York: Academic Press.

    Google Scholar 

  • Finney, J. L., and Poole, P. L. 1984. Protein hydration and enzyme activity: role of hydration-induced conformation and dynamic changes in activity of lysozyme. Comments Mol. Cell. Biophys. 2:129–151.

    CAS  Google Scholar 

  • Finney, K. F., Morris, V. H., and Yamazaki, W. T. 1950. Micro versus macro cookie baking procedures for evaluating cookie quality of wheat varieties. Cereal Chem. 27:30–49.

    CAS  Google Scholar 

  • Flink, J. M. 1983. Structure and structure transitions in dried carbohydrate materials. In Physical Properties of Foods, ed. M. Pelegand E. B. Bagley, pp. 473–521, Westport, Conn.: AVI.

    Google Scholar 

  • Flory, P. J. 1953. Principles of Polymer Chemistry, Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Flory, P. J. 1974. Introductory lecture—Gels and gelling processes. Faraday Disc. Chem. Soc. 57:7–18.

    CAS  Google Scholar 

  • Flory, P. J., and Weaver, E. S. 1960. Phase transitions in collagen and gelatin systems. J. Amer. Chem. Soc. 82:4518.

    CAS  Google Scholar 

  • Forsyth, M., and MacFarlane, D. R. 1986. Recrystallization revisited. Cryo-Letters 7:367–378.

    CAS  Google Scholar 

  • Franks, F. 1982. The properties of aqueous solutions at subzero temperatures. In Water: A Comprehensive Treatise, ed. F. Franks, Vol. 7, pp. 215–338, New York: Plenum Press.

    Google Scholar 

  • Franks, F. 1983a. Solute-water interactions: Do polyhydroxy compounds alter the properties of water? Cryobiology 20:335.

    CAS  Google Scholar 

  • Franks, F. 1983b. Bound water: Fact and fiction. Cryo-Letters 4:73–74.

    Google Scholar 

  • Franks, F. 1985a. Biophysics and Biochemistry at Low Temperatures, Cambridge: Cambridge University Press.

    Google Scholar 

  • Franks, F. 1985b. Complex aqueous systems at subzero temperatures. In Properties of Water in Foods, ed. D. Simatos and J. L. Multon, pp. 497–509, Dordrecht, Holland: Martinus Nijhoff.

    Google Scholar 

  • Franks, F. 1985c. Water Activity and Biochemistry—Specific Ionic and Molecular Effects. Presented at Discussion Conference on “Water Activity: A Credible Measure of Technological Performance and Physiological Stability?”, Faraday Division, Royal Society of Chemistry, July 1–3, Cambridge, UK.

    Google Scholar 

  • Franks, F. 1986. Unfrozen water: Yes; Unfreezable water: Hardly; Bound water: Certainly not. Cryo-Letters 7:207.

    Google Scholar 

  • Franks, F. 1987. Nucleation: A maligned and misunderstood concept. Cryo-Letters 8:53–55.

    Google Scholar 

  • Franks, F., Reid, D. S., and Suggett, A. 1973. Conformation and hydration of sugars and related compounds in dilute aqueous solution. J. Solution Chem. 2:99–118.

    CAS  Google Scholar 

  • Franks, F., Asquith, M. H., Hammond, C. C., Skaer, H. B., and Echlin, P. 1977. Polymeric cryoprotectants in the preservation of biological ultrastructure, I. J. Microsc. 110:223–238.

    CAS  Google Scholar 

  • Fraser, R. D. B., MacRae, T. P., and Rogers, G. E. 1972. Keratins—Their Composition, Structure and Biosynthesis, Springfield, IL: Charles C Thomas.

    Google Scholar 

  • Frazier, P. J., and Muller, H. G. 1967. Birefringence of stretched gluten. Cereal Chem. 44:558–559.

    CAS  Google Scholar 

  • French, D. 1984. Organization of starch granules. In Starch: Chemistry and Technology, 2nd ed., ed. R. L. Whistler, J. N. BeMiller, and E. F. Paschall, pp. 183–247, Orlando, FL: Academic Press.

    Google Scholar 

  • Friedman, M. 1973. Amino Acids, Peptides and Proteins, New York: Pergamon Press.

    Google Scholar 

  • Fuzek, J. F. 1980. Glass transition temperature of wet fibers: Its measurement and significance. In Water in Polymers, ed. S. P. Rowland, ACS Symposium Series 127, pp. 515–530, Washington, D.C.: American Chemical Society.

    Google Scholar 

  • Gaeta, S., Apicella, A., and Hopfenberg, H. B. 1982. Kinetics and equilibria associated with the absorption and desorption of water and LiCl in an ethylene-vinyl alcohol copolymer. J. Membr. Sci. 12:195–205.

    CAS  Google Scholar 

  • Gaines, C. S., Donelson, J. R., and Finney, P. L. 1988. Effects of damaged starch, chlorine gas, flour particle size, and dough holding time and temperature on cookie dough handling properties and cookie size. Cereal Chem. 65:384–389.

    Google Scholar 

  • Ghiasi, K., Hoseney, R. C., and Varriano-Marston, E. 1983. Effects of flour components and dough ingredients on starch gelatinization. Cereal Chem. 60:58–61.

    Google Scholar 

  • Ghiasi, K., Hoseney, R. C., Zeleznak, K., and Rogers, D. E. 1984. Effect of waxy barley starch and reheating on firmness of bread crumb. Cereal Chem. 61:281–285.

    CAS  Google Scholar 

  • Gidley, M. J. 1987. Factors affecting crystalline type of native starches and model materials. Carbohydr. Res. 161:301–304.

    CAS  Google Scholar 

  • Gidley, M. J., and Bulpin, P. V. 1987. Crystallization of maltaoses as models of the crystalline forms of starch. Carbohydr. Res. 161:291–300.

    CAS  Google Scholar 

  • Gidley, M. J., Bulpin, P. V., and Kay, S. 1986. Effect of chain length on amylase retrogradation. In Gums and Stabilizers for the Food Industry 3, ed. G. O. Phillips, D. J. Wedlock, and P. A. Williams, pp. 167–176, London: Elsevier.

    Google Scholar 

  • Graessley, W. W. 1984. Viscoelasticity and flow in polymer melts and concentrated solutions. In Physical Properties of Polymers, ed. J. E. Mark, A. Eisenberg, W. W. Graessley, L. Mandelkern, and J. L. Koenig, pp. 97–153, Washington, D.C.: American Chemical Society.

    Google Scholar 

  • Guegov, Y. 1981. Phase transitions of water in products of plant origin at low temperatures. Adv. Food Res. 27:297–360.

    Google Scholar 

  • Guilbot, A., and Godon, B. 1984. Le Pain Rassis. Cah. Nut Diet. 19:171–181.

    CAS  Google Scholar 

  • Hill, A. S., Skerritt, J. H., and Watson, A. R. 1988. Simple and Rapid Test Method for Gluten in Starches, Bakery Raw Materials and Processed Foods, abstract 66, American Association of Cereal Chemists 73nd Annual Meeting, San Diego, CA.

    Google Scholar 

  • Hiltner, A., and Baer, E. 1986. Reversible gelation of macromolecular systems. Polym. Prep. 27(1):207.

    CAS  Google Scholar 

  • Hizukuri, S. 1986. Polymodal distribution of chain lengths of amylopectins and its significance. Carbohydr. Res. 147:342–347.

    CAS  Google Scholar 

  • Hoeve, C. A. J. 1980. The structure of water in polymers. In Water in Polymers, ed. S. P. Rowland, ACS Symposium Series 127, pp. 135–146, Washington, D.C.: American Chemical Society.

    Google Scholar 

  • Hoeve, C. A. J., and Hoeve, M. B. J. A. 1978. The glass point of elastin as a function of diluent concentration. Organ. Coat. Plast. Chem. 39:441–443.

    CAS  Google Scholar 

  • Hopfenberg, H. B., Apicella, A., and Saleeby, D. E. 1981. Factors affecting water sorption in and solute release from EVA copolymers. J. Membr. Sci. 8:273–282.

    CAS  Google Scholar 

  • Hoseney, R. C. 1984. DSC of starch. J. Food Qual. 6:169–182.

    CAS  Google Scholar 

  • Hoseney, R. C. 1986a. Component interaction during heating and storage of baked products. In Chemistry and Physics of Baking, ed. J. M. V. Blanshard, P. J. Frazier, and T. Galliard, pp. 216–226, London: Royal Society of Chemistry.

    Google Scholar 

  • Hoseney, R. C. 1986b. Principles of Cereal Science and Technology, p. 238, St. Paul, MN: American Association of Cereal Chemists.

    Google Scholar 

  • Hoseney, R. C., Zeleznak, K., and Lai, C. S. 1986. Wheat gluten: A glassy polymer. Cereal Chem. 63:285–286.

    Google Scholar 

  • Huang, W. J., Frick, T. S., Landry, M. R., Lee, J. A., Lodge, T. P., and Tirrell, M. 1987. Tracer diffusion measurement in polymer solutions near Tg by forced Rayleigh scattering. AICHE J. 33:573–582.

    CAS  Google Scholar 

  • Imberty, A., and Perez, S. 1988. A revisit to the three-dimensional structure of B-type starch. Biopolymers 27:1205–1221.

    CAS  Google Scholar 

  • Jane, J. L., and Robyt, J. 1984. Structure studies of amylose-V complexes and retrograded amylose. Carbohydr. Res. 132:105–118.

    CAS  Google Scholar 

  • Jankowski, T., and Rha, C. K. 1986a. Retrogradation of starch in cooked wheat. Staerke 38:6–9.

    CAS  Google Scholar 

  • Jankowski, T., and Rha, C. K. 1986b. DSC study of wheat grain cooking process. Staerke 38:45–48.

    CAS  Google Scholar 

  • Jin, X., Ellis, T. S., and Karasz, F. E. 1984. The effect of crystallinity and crosslinking on the depression of the glass transition temperature in nylon 6 by water. J. Polym. Sci. Polym. Phys. Ed. 22:1701–1717.

    CAS  Google Scholar 

  • Jolley, J. E. 1970. The microstructure of photographic gelatin binders. Photogr. Sci. Eng. 14:169–177.

    CAS  Google Scholar 

  • Juliano, B. O. 1982. Properties of rice starch in relation to varietal differences in processing characteristics of rice grain. J. Jap. Soc. Starch Sci. 29:305–317.

    CAS  Google Scholar 

  • Kainuma, K., and French, D. 1972. Naegeli amylodextrin and its relationship to starch granule structure. II. Role of water in crystallization of B-starch. Biopolymers 11:2241–2250.

    CAS  Google Scholar 

  • Kakivaya, S. R., and Hoeve, C. A. J. 1975. The glass transition of elastin. Proc. Nat. Acad. Sci. (USA) 72:3505–3507.

    CAS  Google Scholar 

  • Karel, M. 1985. Effects of water activity and water content on mobility of food components, and their effects on phase transitions in food systems. In Properties of Water in Foods, ed. D. Simatos and J. L. Multon, pp. 153–169, Dordrecht, Holland: Martinus Nijhoff.

    Google Scholar 

  • Karel, M. 1986. Control of lipid oxidation in dried foods. In Concentration and Drying of Foods, ed. D. MacCarthy, pp. 37–51, London: Elsevier.

    Google Scholar 

  • Karel, M., and Flink, J. M. 1983. Some recent developments in food dehydration research. In Advances in Drying, Vol. 2, ed. A. S. Mujumdar, pp. 103–153, Washington, D.C.: Hemisphere.

    Google Scholar 

  • Karel, M., and Langer, R. 1988. Controlled release of food additives. In Flavor Encapsulation, ed. S. J. Risch and G. A. Reineccius, ACS Symposium Series 370, pp. 177–191, Washington, D.C.: American Chemical Society.

    Google Scholar 

  • Kasarda, D. D., Bernardin, J. E., and Gaffield, W. 1968. Gliadin and glutenin fractions of wheat gluten. Biochemistry 7:3950–3957.

    CAS  Google Scholar 

  • Kasarda, D. D., Nimmo, C. C., and Kohler, G. O. 1978. Proteins and amino acid composition of wheat fractions. In Wheat Chemistry and Technology, 2nd ed., ed. Y. Pomeranz, pp. 227–299, St. Paul, MN: American Association of Cereal Chemists.

    Google Scholar 

  • Keinath, S. E., and Boyer, R. F. 1981. Thermomechanical analysis of Tg and T > Tg transitions in polystyrene. J. Appl. Polym. Sci. 26:2077–2085.

    CAS  Google Scholar 

  • Kelley, S. S., Rials, T. G., and Glasser, W. G. 1987. Relaxation behavior of the amorphous components of wood. J. Materials Sci. 22:617–624.

    CAS  Google Scholar 

  • Khan, K., and Bushuk, W. 1979. Structure of wheat gluten in relation to functionality in breadmaking. In Functionality and Protein Structure, ed. A. Pour-El, ACS Symposium Series 92, pp. 191–206, Washington, D.C.: American Chemical Society.

    Google Scholar 

  • Kollman, P. 1978. Affinity of metal cations for peptide amides. Chem. Phys. Lett. 55:555–559.

    CAS  Google Scholar 

  • Kowblansky, M. 1985. Calorimetric investigation of inclusion complexes of amylose with long-chain aliphatic compounds. Macromolecules 18:1776–1779.

    CAS  Google Scholar 

  • Krimm, S., and Bandekar, J. 1986. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. In Advances in Protein Chemistry, Vol. 38, pp. 181–364, ed. C. B. Anfinsen, J. T. Edsall, and F. M. Richards, New York: Academic Press.

    Google Scholar 

  • Krueger, B. R., Knutson, C. A., Inglett, G. E., and Walker, C. E. 1987. DSC study on effect of annealing on gelatinization behavior of corn starch. J. Food Sci. 52:715–718.

    CAS  Google Scholar 

  • Krusi, H., and Neukom, H. 1984. Untersuchungen uber die Retrogradation der Starke in Konzentrierten Weizenstarkegelen. Starke 36:300–305.

    Google Scholar 

  • Kuge, T., and Kitamura, S. 1985. Annealing of starch granules—Warm water treatment and heat-moisture treatment. J. Jap. Soc. Starch Sci. 32:65–83.

    CAS  Google Scholar 

  • Kulp, K., and Ponte, J. G. 1981. Staling of white pan bread: Fundamental causes. CRC Crit. Rev. Food Sci. Nutr. 15:1–48.

    CAS  Google Scholar 

  • Kulp, K., and Olewnik, M. 1984. Starch Functionality in Cookie Systems, abstract 83, American Association of Cereal Chemists 69th Annual Meeting, Minneapolis, MN.

    Google Scholar 

  • Kuprianoff, J. 1958. Fundamental aspects of the dehydration of foodstuffs. In Conference on Fundamental Aspects of the Dehydration of Foodstuffs, pp. 14–23. Society of the Chemical Industry, Aberdeen, Scotland, March 25–27.

    Google Scholar 

  • Kwak, Y. T., and Winter, W. T. 1988. Low temperature exotherm in starchJwater systems: A retrogradation marker. J. Appl. Polym. Sci. 35:2091–2098.

    CAS  Google Scholar 

  • Labuza, T. P. 1985. Water binding of humectants. In Properties of Water in Foods, ed. D. Simatos and J. L. Multon, pp. 421–445, Dordrecht, Holland: Martinus Nijhoff.

    Google Scholar 

  • l’Anson, K. J., Miles, M. J., Morris, V. J., Ring, S. G., and Nave, C. 1988. Study of amylose gelation using synchrotron X-ray source. Carbohydr. Polym. 8:45–53.

    Google Scholar 

  • Larson, R. W., Lou, W. C., DeVito, V. C., and Neidinger, K. A. 1983. Frozen Bread Dough Product and Process. U.S. patent 4,406,911.

    Google Scholar 

  • Larson, R. W., Lou, W. C., DeVito, V. C., and Neidinger, K. A. 1984. Frozen Bread Dough Product and Process. U.S. patent 4,450,177.

    Google Scholar 

  • Lasztity, R. 1986. Recent results in the investigation of the structure of the gluten complex. Die Nahrung 30:235–244.

    CAS  Google Scholar 

  • Lelievre, J. 1976. Theory of gelatinization in a starch-water-solute system. Polymer 17:854–858.

    CAS  Google Scholar 

  • Lenchin, J. M., Trubiano, P. C., and Hoffman, S. 1985. Converted Starches for Use as a Fat- or Oil-Replacement in Foodstuffs. U.S. patent 4,510,166.

    Google Scholar 

  • Leubner, I. H. 1987. Crystal nucleation under diffusion-controlled conditions. J. Phys. Chem. 91:6069–6073.

    CAS  Google Scholar 

  • Levine, H., and Slade, L. 1986. A polymer physicochemical approach to the study of commercial starch hydrolysis products. Carbohydr. Polym. 6:213–244.

    CAS  Google Scholar 

  • Levine, H., and Slade, L. 1987. Water as a plasticizer: Physicochemical aspects of low-moisture polymeric systems. In Water Science Reviews, Vol. 3, ed. F. Franks, pp. 79–185, Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Levine, H., and Slade, L. 1988a. Interpreting the behavior of low-moisture foods. In Water and Food Quality, ed. T. M. Hardman, pp. 71–134, London: Elsevier.

    Google Scholar 

  • Levine, H., and Slade, L. 1988b. Thermomechanical properties of small carbohydrate-water glasses and “rubbers”: Kinetically-metastable systems at subzero temperatures. J. Chem. Soc. Faraday Trans. 184:2619–2633.

    Google Scholar 

  • Levine, H., and Slade, L. 1988c. Principles of cryostabilization technology from structure-property relationships of water-soluble food carbohydrates—a review. Cryo-Letters 9:21–63.

    CAS  Google Scholar 

  • Levine, H., and Slade, L. 1988d. A food polymer science approach to the practice of cryostabilization technology. Comments Agric. Food Chem. 1:315–396.

    Google Scholar 

  • Levine, H., and Slade, L. 1988e. Cryostabilization technology: Thermoanalytical evaluation of food ingredients and systems. In Thermal Analysis of Foods, ed. C. Y. Ma and V. R. Harwalkar, London: Elsevier, in press.

    Google Scholar 

  • Levine, H., and Slade, L. 1988f. Collapse phenomena—A unifying concept for interpreting the behavior of low-moisture foods. In Food Structure—Its Creation and Evaluation, ed. J. R. Mitchell and J. M. V. Blanshard, pp. 149–180, London: Butterworths.

    Google Scholar 

  • Lillford, P. J. 1988. The polymerJwater relationship—Its importance for food structure. In Food Structure—Its Creation and Evaluation, ed. J. R. Mitchell and J. M. V. Blanshard, pp. 75–92, London: Butterworths.

    Google Scholar 

  • Lindstrom, T., and Slade, L. 1983. A Frozen Dough for Bakery Products. U.S. patent 4,374,151.

    Google Scholar 

  • Lioutas, T. S., Baianu, I. C, and Steinberg, M. P. 1986. O-17 and deuterium NMR studies of lysozyme hydration. Arch. Biochem. Biophys. 247:68–75.

    CAS  Google Scholar 

  • Lookhart, G. L., Menkovska, M., and Pomeranz, Y. 1987. Changes in the Gliadin Fraction(s) During Breadmaking: Isolation and Characterization by HPLC and PAGE, abstract 24, American Association of Cereal Chemists, 72nd Annual Meeting, Nashville, TN.

    Google Scholar 

  • Longton, J., and LeGrys, G. A. 1981. DSC studies on crystallinity of aging wheat starch gels. Staerke 33:410–414.

    CAS  Google Scholar 

  • Lund, D. B. 1983. Applications of DSC in foods. In Physical Properties of Foods, ed. M. Peleg and E. B. Bagley, pp. 125–143, Westport, Conn.: AVI.

    Google Scholar 

  • Lund, D. B. 1984. Influence of time, temperature, moisture, ingredients, and processing conditions on starch gelatinization. CRC Crit. Revs. Food Set. Nutr. 20:249–273.

    CAS  Google Scholar 

  • Luyet, B. 1939. Ice recrystallization in frozen aqueous solutions of sugars and polyols. J. Phys. Chem. 43:881–885.

    CAS  Google Scholar 

  • Luyet, B. 1960. On various phase transitions occurring in aqueous solutions at low temperatures. Ann. NY Acad. Sci. 85:549–569.

    CAS  Google Scholar 

  • Luyet, B., and Rasmussen, D. H. 1968. Study by DTA of the temperatures of instability of rapidly cooled solutions of glycerol, ethylene glycol, sucrose, and glucose. Biodynamica 10:167–192.

    Google Scholar 

  • Ma, C. -Y., and Harwalkar, V. R. 1988. Thermal Analysis of Foods, London: Elsevier

    Google Scholar 

  • MacKenzie, A. P. 1975. Collapse during freeze drying—Qualitative and quantitative aspects. In Freeze Drying and Advanced Food Technology, ed. S. A. Goldlith, L. Rey, and W. W. Rothmayr, pp. 277–307, New York: Academic Press.

    Google Scholar 

  • MacKenzie, A. P. 1977. Non-equilibrium freezing behavior of aqueous systems. Phil. Trans. Roy. Soc. Lond. B278:167–189.

    Google Scholar 

  • MacKenzie, A. P., and Rasmussen, D. H. 1972. Interactions in the water-PVP system at low temperatures. In Water Structure at the Water-Polymer Interface, ed. H. H. G. Jellinek, pp. 146–171, New York: Plenum Press.

    Google Scholar 

  • Magnuson, K. M. 1985. Uses and functionality of vital wheat gluten. Cereal Foods World 30:179–181.

    Google Scholar 

  • Mandelkern, L. 1986. Thermoreversible gelation and crystallization from solution. Polym. Prep. 27(1):206.

    CAS  Google Scholar 

  • Manley, D. J. R. 1983. Technology of Biscuits, Crackers and Cookies, p. 311, Chichester, U.K.: Ellis Horwood Ltd.

    Google Scholar 

  • Marsh, R. D. L., and Blanshard, J. M. V. 1988. The application of polymer crystal growth theory to the kinetics of formation of the B-amylose polymorph in a 50% wheat starch gel. Carbohydr. Polym. 9:301–317.

    CAS  Google Scholar 

  • Marshall, A. S., and Petrie, S. E. B. 1980. Thermal transitions in gelatin and aqueous gelatin solutions. J. Photogr. Sci. 28:128–134.

    CAS  Google Scholar 

  • Mashimo, S., Kuwabara, S., Yagihara, S., and Higasi, K. 1987. Dielectric relaxation time and structure of bound water in biological materials. J. Phys. Chem. 91:6337–6338.

    CAS  Google Scholar 

  • Matsukura, U., Matsunaga, A., and Kainuma, K. 1983. Contribution of amylose to starch retrogradation. J. Jap. Soc. Starch Sci. 30:106–113.

    CAS  Google Scholar 

  • Matsuoka, S., Williams, G., Johnson, G. E., Anderson, E. W., and Furukawa, T. 1985. Phenomenological relationship between dielectric relaxation and thermodynamic recovery processes near the glass transition. Macromolecules 18:2652–2663.

    CAS  Google Scholar 

  • Maurer, J. J. 1981. Elastomers. In Thermal Characterization of Polymeric Materials, ed. E. A. Turi, pp. 571–708, Orlando, FL: Academic Press.

    Google Scholar 

  • Maurice, T. J., Slade, L., Sirett, R. R., and Page, C. M. 1985. Polysaccharide-water interactions—Thermal behavior of rice starch. In Properties of Water in Foods, ed. D. Simatos and J. L. Multon, pp. 211–227, Dordrecht, Holland: Martinus Nijhoff.

    Google Scholar 

  • Mayer, E. 1988. Hyperquenching of water and dilute aqueous solutions into their glassy states: An approach to cryofixation. Cryo-Letters 9:66–77.

    CAS  Google Scholar 

  • Menkovska, M., Pomeranz, Y., Lookhart, G. L., and Shogren, M. D. 1987. Gliadin Fractions in Breadmaking: Differences in Flours Varying in Breadmaking Potential, abstract 141, American Association of Cereal Chemists 72nd Annual Meeting, Nashville, TN.

    Google Scholar 

  • Mestres, C., Colonna, P., and Buleon, A. 1988. Gelation and crystallization of maize starch after pasting, drum-drying, or extrusion cooking. J. Cereal Sci. 7:123–134.

    Google Scholar 

  • Miles, M. J., Morris, V. J., Orford, P. D., and Ring, S. G. 1985a. Roles of amylase and amylopectin in gelation and rétrogradation of starch. Carbohydr. Res. 135:271–281.

    CAS  Google Scholar 

  • Miles, M. J., Morris, V. J., Orford, P. D., and Ring, S. G. 1985b. Gelation of amylose. Carbohydr. Res. 135:257–269.

    CAS  Google Scholar 

  • Mitchell, J. R. 1980. The rheology of gels. J. Text. Stud. 11:315–337.

    CAS  Google Scholar 

  • Moore, W. R., and Hoseney, R. C. 1986. Effects of flour lipids on expansion rate and volume of bread baked in a resistance oven. Cereal Chem. 63:172–174.

    CAS  Google Scholar 

  • Morozov, V. N., and Gevorkian, S. G. 1985. Low-temperature glass transition in proteins. Biopolymers 24:1785–1799.

    CAS  Google Scholar 

  • Moy, P., and Karasz, F. E. 1980. The interactions of water with epoxy resins. In Water in Polymers, ed. S. P. Rowland, ACS Symposium Series 127, pp. 505–513, Washington, D.C.: American Chemical Society.

    Google Scholar 

  • Muhlethaler, K. 1961. Cellulose structure in the plant cell wall. In The Cell—Biochemistry, Physiology, Morphology, Vol. 2, Cells and Their Component Parts, ed. J. Brachet and A. E. Mirsky, pp. 85–134, New York: Academic Press.

    Google Scholar 

  • Nakazawa, F., Noguchi, S., Takahashi, J., and Takada, M. 1984. Thermal equilibrium state of starch-water mixture studied by DSC. Agric. Biol. Chem. 48:2647–2653.

    CAS  Google Scholar 

  • Nakazawa, F., Noguchi, S., Takahashi, J., and Takada, M. 1985. Retrogradation of gelatinized potato starch studied by DSC. Agric. Biol. Chem. 49:953–957.

    CAS  Google Scholar 

  • Neogi, P. 1983. Anomalous diffusion of vapors through solid polymers. Amer. Inst. Chem. Eng. J. 29:829–839.

    CAS  Google Scholar 

  • Ng, P. K. W., and Bushuk, W. 1987. Relationship Between High Molecular Weight Subunits of Glutenin and Breadmaking Quality, abstract 142, American Association of Cereal Chemists, 72nd Annual Meeting, Nashville, TN.

    Google Scholar 

  • Ohtsuki, L, Maruyama, K., and Ebashi, S. 1986. Regulatory and cytoskeletal proteins of vertebrate skeletal muscle. In Advances in Protein Chemistry, Vol. 38, pp. 1–67, ed. C. B. Anfinsen, J. T. Edsall, and F. M. Richards, New York: Academic Press.

    Google Scholar 

  • Osborne, T. B. 1907. The Proteins of the Wheat Kernel, Publ. No. 84, Washington, D.C.: Carnegie Institute.

    Google Scholar 

  • Otterburn, M. S. 1977. Chemistry and reactivity of silk. In Chemistry of Natural Protein Fibers, ed. R. S. Asquith, pp. 53–80, New York: Plenum Press.

    Google Scholar 

  • Pace, R. J., and Datyner, A. 1981. Temperature dependence of Langmuir sorption capacity factor in glassy polymers. J. Polym. Sci. Polym. Phys. Ed. 19:1657–1658.

    CAS  Google Scholar 

  • Paton, D. 1987. DSC of oat starch pastes. Cereal Chem. 64:394–399.

    CAS  Google Scholar 

  • Payne, P. I. 1987. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Ann. Rev. Plant Physiol. 38:141–153.

    CAS  Google Scholar 

  • Payne, P. I., and Holt, L. M. 1984. Genetic Analysis of Storage Protein Genes of Wheat, abstract 36, American Association of Cereal Chemists 69th Annual Meeting, Minneapolis, MN.

    Google Scholar 

  • Payne, P. I., Holt, L. M., Jarvis, M. G., and Jackson, E. A. 1985. Fractionation of endosperm proteins of bread wheat. Cereal Chem. 62:319–326.

    CAS  Google Scholar 

  • Pearson, A. M. 1987. Summary of “Collagen as a Food” symposium. In Advances in Meat Research, Vol. 4, ed. A. M. Pearson, T. R. Dutson and A. J. Bailey, pp. 377–383, Westport, Conn.: AVI.

    Google Scholar 

  • Petrie, S. E. B. 1975. The problem of thermodynamic equilibrium in glassy polymers. In Polymeric Materials: Relationships Between Structure and Mechanical Behavior, ed. E. Baer and S. V. Radcliffe, pp. 55–118, Metals Park, OH: American Society of Metals.

    Google Scholar 

  • Phillips, A. J., Yarwood, R. J., and Collett, J. H. 1986. Thermal analysis of freeze- dried products. Anal. Proceed. 23:394–395.

    CAS  Google Scholar 

  • Pikal, M. J. 1985. Use of laboratory data in freeze-drying process design. J. Parent. Sci. Technol. 39:115–138.

    CAS  Google Scholar 

  • Pikal, M. J., Shah, S., Senior, D., and Lang, J. E. 1983. Physical chemistry of freeze-drying. J. Pharmaceut. Sci. 72:635–650.

    CAS  Google Scholar 

  • Pomeranz, Y. 1978. Composition and functionality of wheat-flour components. In Wheat Chemistry and Technology, 2nd ed., ed. Y. Pomeranz, pp. 585–674, St. Paul, MN: American Association of Cereal Chemists.

    Google Scholar 

  • Pomeranz, Y., Lookhart, G. L., Rubenthaler, G. L., and Alberts, L. A. 1987. Changes in Gliadin Proteins During Cookie Making, abstract 140, American Association of Cereal Chemists, 72nd Annual Meeting, Nashville, TN.

    Google Scholar 

  • Poole, P. L., and Finney, J. L. 1983a. Sequential hydration of a dry globular protein. Biopolymers 22:255–260.

    CAS  Google Scholar 

  • Poole, P. L., and Finney, J. L. 1983b. Hydration-induced conformational and flexibility changes in lysozyme at low water content. Int. J. Biol Macromol. 5:308–310.

    CAS  Google Scholar 

  • Pouchly, J., Biros, J., and Benes, S. 1979. Heat capacities of water-swollen hydrophilic polymers above and below 0°C. Makromol. Chem. 180:745–760.

    CAS  Google Scholar 

  • Prime, R. B. 1981. Thermosets. In Thermal Characterization of Polymeric Materials, ed. E. A. Turi, pp. 435–569, Orlando, FL: Academic Press.

    Google Scholar 

  • Quinquenet, S., Grabielle-Madelmont, C, Ollivon, M., and Serpelloni, M. 1988. Influence of water on pure sorbitol polymorphism. J. Chem. Soc, Faraday Trans. 184:2609–2618.

    Google Scholar 

  • Rasmussen, D., and Luyet, B. 1969. Complementary study of some non-equilibrium phase transitions in frozen solutions of glycerol, ethylene glycol, glucose, and sucrose. Biodynamica 10:319–331.

    Google Scholar 

  • Reid, D. S. 1985. Correlation of the phase behavior of DMSO/NaCl/water and glycerol/NaCl/water as determined by DSC with their observed behavior on a cryomicroscope. Cryo-Letters 6:181–188.

    CAS  Google Scholar 

  • Reid, D. S., and Charoenrein, S. 1985. DSC studies of starch-water interaction in the gelatinization process. In Proceedings 14th NATAS Conference, San Francisco: NATAS, pp. 335–340.

    Google Scholar 

  • Reuther, F., Damaschun, G., Gernat, C, Schierbaum, F., Kettlitz, B., Radosta, S., and Nothnagel, A. 1984. Molecular gelation mechanism of maltodextrins investigated by wide-angle X-ray scattering. Colloid Polym. Sci. 262:643–647.

    CAS  Google Scholar 

  • Reutner, P., Luft, B., and Borchard, W. 1985. Compound formation and glassy solidification in the system gelatin-water. Colloid Polym. Sci. 263:519–529.

    CAS  Google Scholar 

  • Richardson, M. J. 1978. Quantitative DSC. In Developments in Polymer Characterization-1, ed. J. V. Dawkins, pp. 205–244, London: Applied Science.

    Google Scholar 

  • Richter, M., Schierbaum, F., Augustat, S., and Knoch, K. D. 1976a. Method of Producing Starch Hydrolysis Products for Use as Food Additives. U.S. patent 3,962,465.

    Google Scholar 

  • Richter, M., Schierbaum, F., Augustat, S., and Knoch, K. D. 1976b. Method of Producing Starch Hydrolysis Products for Use as Food Additives. U.S. patent 3,986,890.

    Google Scholar 

  • Ring, S. G. 1985a. Observations on crystallization of amylopectin from aqueous solution. Int. J. Biol. Macromol. 7:253–254.

    CAS  Google Scholar 

  • Ring, S. G. 1985b. Some studies on starch gelation. Staerke 37:80–83.

    CAS  Google Scholar 

  • Ring, S. G., and Orford, P. D. 1986. Recent observations on retrogradation of amylopectin. In Gums and Stabilizers for the Food Industry 3, ed. G. O. Phillips, D. J. Wedlock, and P. A. Williams, pp. 159–165, London: Elsevier.

    Google Scholar 

  • Ring, S. G., Colonna, P., l’Anson, K. J., Kalichevsky, M. T., Miles, M. J., Morris, V. J., and Orford, P. D. 1987. The gelation and crystallization of amylopectin. Carbohydr. Res. 162:277–293.

    CAS  Google Scholar 

  • Roussis, P. P. 1981. Diffusion of water vapor in cellulose acetate, I. Polymer 22:768–773.

    CAS  Google Scholar 

  • Rowland, S. P. 1980. Water in Polymers, ACS Symposium Series 127, Washington, D.C.: American Chemical Society.

    Google Scholar 

  • Russell, P. L. 1983. Kinetic study of bread staling by DSC. Staerke 35:277–281.

    CAS  Google Scholar 

  • Russell, P. L. 1987a. Gelatinization of starches of different amyloseJamylopectin content—A DSC study. J. Cereal Sci. 6:133–145.

    CAS  Google Scholar 

  • Russell, P. L. 1987b. Aging of gels from starches of different amyloseJamylopectin content studied by DSC. J. Cereal Sci. 6:147–158.

    CAS  Google Scholar 

  • Salmen, N. L., and Back, E. L. 1977. Influence of water on Tg of cellulose. Tappi 60:137–140.

    CAS  Google Scholar 

  • Saunders, S. R., and Slade, L. 1989. A new approach to time-lapse photography analysis for investigation of the mechanism of cookie baking. Part I. Methods development. J. Cereal Sci., in press.

    Google Scholar 

  • Scandola, M., Ceccorulli, G., and Pizzoli, M. 1981. Water clusters in elastin. Int. J. Biol. Macromol. 3:147–149.

    CAS  Google Scholar 

  • Schaefer, J., Garbow, J. R., Stejskal, E. O., and Lefelar, J. A. 1987. Plasticization of poly(butyral-co-vinyl alcohol). Macromolecules 20:1271–1278.

    CAS  Google Scholar 

  • Schenz, T. W. 1987. Glasses in Aqueous Systems. Paper presented at 24th Society of Cryobiology Meeting, Edmonton, Alberta, June 22–26.

    Google Scholar 

  • Schenz, T. W., Rosolen, M. A., Levine, H., and Slade, L. 1984. DMA of frozen aqueous solutions. In Proceedings of the 13th NATAS Conference, ed. A. R. McGhie, pp. 57–62, Philadelphia, PA: NATAS.

    Google Scholar 

  • Schofield, J. D. 1986. Flour proteins: Structure and functionality in baked products. In Chemistry and Physics of Baking, ed. J. M. V. Blanshard, P. J. Frazier, and T. Galliard, pp. 14–29, London: Royal Society of Chemistry.

    Google Scholar 

  • Schofield, J. D., Bottomley, R. C., LeGrys, G. A., Timms, M. F., and Booth, M. R. 1984. Effects of heat on wheat gluten. In Gluten Proteins, ed. A. Graveland and J. H. E. Moonen, pp. 81–90, Wageningen, Holland: TNO.

    Google Scholar 

  • Sears, J. K., and Darby, J. R. 1982. The Technology of Plasticizers, New York: Wiley-Interscience.

    Google Scholar 

  • Shalaby, S. W. 1981. Thermoplastic polymers. In Thermal Characterization of Polymeric Materials, ed. E. A. Turi, pp. 235–364, Orlando, FL: Academic Press.

    Google Scholar 

  • Shannon, J. C., and Garwood, D. L. 1984. Genetics and physiology of starch development. In Starch: Chemistry and Technology, ed. R. L. Whistler, J. N. BeMiller, and E. F. Paschall, 2nd ed., pp. 25–86, Orlando, FL: Academic Press.

    Google Scholar 

  • Sharpies, A. 1966. Introduction to Polymer Crystallization, London: Edward Arnold.

    Google Scholar 

  • Shiotsubo, T., and Takahashi, K. 1986. Changes in enthalpy and heat capacity associated with gelatinization of potato starch. Carbohydr. Res. 158:1–6.

    CAS  Google Scholar 

  • Sichina, W. J. 1988. Predicting mechanical performance and lifetime of polymeric materials. Amer. Lab. 20(l):42–52.

    CAS  Google Scholar 

  • Siljestrom, M., Bjorck, I., Eliasson, A. C., Lonner, C., Nyman, M., and Asp, N. G. 1988. Effects on polysaccharides during baking and storage of bread. Cereal Chem. 65:1–8.

    Google Scholar 

  • Simatos, D., and Karel, M. 1988. Characterization of the condition of water in foods—Physicochemical aspects. In Food Preservation by Moisture Control, ed. C. C. Seow, pp. 1–41, Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Skerritt, J. H., Temperley, L. G., and Lew, P. Y. 1988. Probing Cereal Grain Protein Structure using Monoclonal Antibodies (MCA), abstract 22, American Association of Cereal Chemists, 73rd Annual Meeting, San Diego, CA.

    Google Scholar 

  • Slade, L. 1984. Starch Properties in Processed Foods: Staling of Starch-Based Products, abstract 112, American Association of Cereal Chemists, 69th Annual Meeting, Minneapolis, MN.

    Google Scholar 

  • Slade, L., and Levine, H. 1984a. Thermal Analysis of Starch and Gelatin, abstract 152, American Chemical Society, Northeast Regional Meeting 14, June 12, Fairfield, CT.

    Google Scholar 

  • Slade, L., and Levine, H. 1984b. Thermal analysis of starch and gelatin. In Proceedings of the 13th NATAS Conference, p. 64, ed. A. R. McGhie, Philadelphia, PA: NATAS.

    Google Scholar 

  • Slade, L., and Levine, H. 1987a. Recent advances in starch retrogradation. In Industrial Polysaccharides—The Impact of Biotechnology and Advanced Methodologies, ed. S. S. Stivala, V. Crescenzi, and L C. M. Dea, pp. 387–430, New York: Gordon and Breach.

    Google Scholar 

  • Slade, L., and Levine, H. 1987b. Polymer-chemical properties of gelatin in foods. In Advances in Meat Research, Vol. 4, Collagen as a Food, ed. A. M. Pearson, T. R. Dutson, and A. Bailey, pp. 251–266, Westport, CT: AVI

    Google Scholar 

  • Slade, L., and Levine, H. 1988a. Non-equilibrium behavior of small carbohydrate-water systems. Pure Appl. Chem. 60:1841–1864.

    CAS  Google Scholar 

  • Slade, L., and Levine, H. 1988b. Non-equilibrium melting of native granular starch. I. Temperature location of the glass transition associated with gelatinization of A-type cereal starches. Carbohydr. Polym. 8:183–208.

    CAS  Google Scholar 

  • Slade, L., and Levine, H. 1988c. A food polymer science approach to aspects of starch gelatinization and retrogradation. In Frontiers in Carbohydrate Research: Food Applications, ed. J. N. Bemiller, London: Elsevier, in press.

    Google Scholar 

  • Slade, L., and Levine, H. 1988d. Thermal analysis of starch. In Scientific Conference Proceedings, pp. 169–244. Washington, D.C.: Corn Refiners Association.

    Google Scholar 

  • Slade, L., and Levine, H. 1988e. Structural stability of intermediate moisture foods—A new understanding? In Food Structure—Its Creation and Evaluation, ed. J. R. Mitchell and J. M. V. Blanshard, pp. 115–147, London: Butterworths.

    Google Scholar 

  • Slade, L., Oltzik, R., Altomare, R. E., and Medcalf, D. G. 1987. Accelerated Staling of Starch-Based Products. U.S. patent 4,657,770.

    Google Scholar 

  • Slade, L., Levine, H., and Finley, J. W. 1988. Protein-water interactions: Water as a plasticizer of gluten and other protein polymers. In Protein Quality and the Effects of Processing, ed. D. Phillips and J. W. Finley, pp. 9–124, New York: Marcel Dekker.

    Google Scholar 

  • Snyder, E. M. 1984. Industrial microscopy of starches. In Starch: Chemistry and Technology, 2nd ed., ed. R. L. Whistler, J. N. BeMiller, and E. F. Paschall, pp. 661–689, Orlando, FL: Academic Press.

    Google Scholar 

  • Soesanto, T., and Williams, M. C. 1981. Volumetrie interpretation of viscosity for concentrated and dilute sugar solutions. J. Phys. Chem. 85:3338–3341.

    CAS  Google Scholar 

  • Sperling, L. H. 1986. Introduction to Physical Polymer Science, New York: Wiley-Interscience.

    Google Scholar 

  • Starkweather, H. W. 1980. Water in nylon. In Water in Polymers, ed. S. P. Rowland, ACS Symposium Series 127, pp. 433–440, Washington, D.C.: American Chemical Society.

    Google Scholar 

  • Starkweather, H. W., and Barkley, J. R. 1981. Effect of water on secondary dielectric relaxations in nylon 66. J. Polym. Sci. Polym. Phys. Ed. 19:1211–1220.

    CAS  Google Scholar 

  • Suggett, A. 1976. Molecular motion and interactions in aqueous carbohydrate solutions. III. A combined NMR and dielectric relaxation strategy. J. Solution Chem. 5:33–46.

    CAS  Google Scholar 

  • Suggett, A., and Clark, A. H. 1976. Molecular motion and interactions in aqueous carbohydrate solutions. I. Dielectric Relaxation Studies. J. Solution Chem. 5:1–15.

    CAS  Google Scholar 

  • Suggett, A., Ablett, S., and Lillford, P. J. 1976. Molecular motion and interactions in aqueous carbohydrate solutions. II NMR studies. J. Solution Chem. 5:17–31.

    CAS  Google Scholar 

  • Sultan, W. J. 1976. Practical Baking, 3rd ed., p. 75, Westport, CT: AVI.

    Google Scholar 

  • Swift, J. A. 1977. Histology of keratin fibers. In Chemistry of Natural Protein Fibers, ed. R. S. Asquith, pp. 81–146, New York: Plenum Press.

    Google Scholar 

  • Tait, M. J., Suggett, A., Franks, F., Ablett, S., and Quiekenden, P. A. 1972. Hydration of monosaccharides: A study by dielectric and nuclear magnetic relaxation. J. Solution Chem. 1:131–151.

    CAS  Google Scholar 

  • Tatham, A. S., Shewry, P. R., Field, J. M., Kasarda, D. D., Forde, J., Forde, B. G., Fry, R. P., and Miflin, B. J. 1984. Contribution of High MW Gluten Polypeptides to Gluten Structure, abstract 34, American Association of Cereal Chemists 69th Annual Meeting, Minneapolis, MN.

    Google Scholar 

  • Tatham, A. S., Miflin, B. J., and Shewry, P. R. 1985. Beta-turn conformation in wheat gluten proteins and gluten elasticity. Cereal Chem. 62:405–412.

    CAS  Google Scholar 

  • Telloke, G. 1987. Puff pastry under the microscope. Chorleywood Digest 64:22.

    Google Scholar 

  • Thorn, F., and Matthes, G. 1986. Ice formation in binary aqueous solutions of ethylene glycol. Cryo-Letters 7:311–326.

    Google Scholar 

  • To, E. C., and Flink, J. M. 1978. “Collapse,” a structural transition in freeze-dried carbohydrates, Mil. J. Food Technol. 13:551–594.

    CAS  Google Scholar 

  • Tomka, I. 1986. Thermodynamic theory of polar polymer solutions. Polym. Prepr. 27(2):129.

    CAS  Google Scholar 

  • Tomka, I., Bohonek, J., Spuhler, A., and Ribeaud, M. 1975. Structure and formation of the gelatin gel. J. Photogr. Sci. 23:97–103.

    Google Scholar 

  • Tsourouflis, S., Flink, J. M., and Karel, M. 1976. Loss of structure in freeze-dried carbohydrate solutions. J Sci. Food Agric. 27:509–519.

    CAS  Google Scholar 

  • Turi, E. A. 1981. Thermal Characterization of Polymeric Materials, Orlando, FL: Academic Press.

    Google Scholar 

  • van den Berg, C. 1981. Vapor sorption equilibria and other water-starch interactions: A physicochemical approach. Doctoral Thesis, Agricultural University, Wageningen, Holland.

    Google Scholar 

  • van den Berg, C. 1986. Water activity. In Concentration and Drying of Foods, ed. D. MacCarthy, pp. 11–36, London: Elsevier.

    Google Scholar 

  • van den Berg, C., and Bruin, S. 1981. Water activity and its estimation in food systems: Theoretical aspects. In Water Activity: Influences on Food Quality, ed. L. B. Rockland and G. F. Stewart, pp. 1–61, New York: Academic Press.

    Google Scholar 

  • Walton, A. G. 1969. Nucleation in liquids and solutions. In Nucleation, ed. A. C. Zettlemoyer, p. 225, New York: Marcel Dekker.

    Google Scholar 

  • Watt, I. C. 1980. Adsorption-desorption hysteresis in polymers. J Macromol. Sci. Chem. A14:245–255.

    CAS  Google Scholar 

  • Weegels, P. L., Verhoek, A., and Hamer, R. J. 1988. A Comprehensive Study of the Effect of Heat on Wheat Gluten, abstract 133, American Association of Cereal Chemists, 73rd Annual Meeting, San Diego, CA.

    Google Scholar 

  • Welsh, E. J., Bailey, J., Chandarana, R., and Norris, W. E. 1982. Physical characterization of interchain association in starch systems. Prog. Food Nutr. Sci. 6:45–53.

    CAS  Google Scholar 

  • Wesson, J. A., Takezoe, H., Yu, H., and Chen, S. P. 1982. Dye diffusion in swollen gels by forced Rayleigh scattering. J. Appl. Phys. 53:6513–6519.

    CAS  Google Scholar 

  • Whewell, C. S. 1977. The chemistry of wool finishing. In Chemistry of Natural Protein Fibers, ed. R. S. Asquith, pp. 333–370, New York: Plenum Press.

    Google Scholar 

  • Whistler, R. L., and Daniel, J. R. 1984. Molecular structure of starch. In Starch: Chemistry and Technology, ed. R. L. Whistler, J. N. BeMiller, and E. F. Paschall, 2nd ed., pp. 153–182, Orlando, FL: Academic Press.

    Google Scholar 

  • White, G. W., and Cakebread, S. H. 1966. The glassy state in certain sugar-containing food products. J. Food Technol. 1:73–82.

    CAS  Google Scholar 

  • Williams, M. L., Landel, R. F., and Ferry, J. D. 1955. Temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Amer. Chem. Soc. 77:3701–3706.

    CAS  Google Scholar 

  • Wolf, W., Spiess, W. E. L., and Jung, G. 1985. Standardization of isotherm measurements. In Properties of Water in Foods, ed. D. Simatos and J. L. Multon, pp. 661–679, Dordrecht, Holland: Martinus Nijhoff.

    Google Scholar 

  • Wright, D. J. 1984. Thermoanalytical methods in food research. Crit. Rev. Appl. Chem. 5:1–36.

    CAS  Google Scholar 

  • Wunderlich, B. 1973. Macromolecular Physics, Vol. 1, Crystal Structure, Morphology, Defects, New York: Academic Press.

    Google Scholar 

  • Wunderlich, B. 1976. Macromolecular Physics, Vol. 2, Crystal Nucleation, Growth, Annealing, New York: Academic Press.

    Google Scholar 

  • Wunderlich, B. 1980. Macromolecular Physics, Vol. 3, Crystal Melting, New York: Academic Press.

    Google Scholar 

  • Wunderlich, B. 1981. The basis of thermal analysis. In Thermal Characterization of Polymeric Materials, ed. E. A. Turi, pp. 91–234, Orlando, FL: Academic Press.

    Google Scholar 

  • Wynne-Jones, S., and Blanshard, J. M. V. 1986. Hydration studies of wheat starch, amylopectin, amylose gels and bread by proton magnetic resonance. Carbohydr. Polym. 6:289–306.

    CAS  Google Scholar 

  • Yamamoto, M., Harada, S., Sano, T., Yasunaga, T., and Tatsumoto, N. 1984. Kinetic studies of complex formation in amylose-SDS-iodine ternary system. Biopolymers 23:2083–2096.

    CAS  Google Scholar 

  • Yamazaki, W. T., and Lord, D. D. 1978. Soft wheat products. In Wheat Chemistry and Technology, 2nd ed., ed. Y. Pomeranz, pp. 743–776, St. Paul, MN: American Association of Cereal Chemists.

    Google Scholar 

  • Yannas, I. V. 1972. Collagen and gelatin in the solid state. J. Macromol. Sci.-Revs. Macromol. Chem. C7:49.

    Google Scholar 

  • Yost, D. A., and Hoseney, R. C. 1986. Annealing and glass transition of starch. Staerke 38:289–292.

    CAS  Google Scholar 

  • Zeleznak, K., and Hoseney, R. C. 1986. Role of water in retrogradation of wheat starch gels and bread crumb. Cereal Chem. 63:407–411.

    CAS  Google Scholar 

  • Zeleznak, K. J., and Hoseney, R. C. 1987a. The glass transition in starch. Cereal Chem. 64:121–124.

    CAS  Google Scholar 

  • Zeleznak, K. J., and Hoseney, R. C. 1987b. Characterization of starch from bread aged at different temperatures. Staerke 39:231–233.

    Google Scholar 

  • Ziegler, K. 1977. Crosslinking and self-crosslinking in keratin fibers. In Chemistry of Natural Protein Fibers, ed. R. S. Asquith, pp. 267–300, New York: Plenum Press.

    Google Scholar 

  • Zobel, H. F. 1984. Gelatinization of starch and mechanical properties of starch pastes. In Starch: Chemistry and Technology, ed. R. L. Whistler, J. N. BeMiller, and E. F. Paschall, 2nd ed., pp. 285–309, Orlando, FL: Academic Press.

    Google Scholar 

  • Zobel, H. F. 1988. Starch crystal transformations and their industrial importance. Starke 40:1–7.

    CAS  Google Scholar 

  • Zobel, H. F., Young, S. N., and Rocca, L. A. 1988. Starch gelatinization: An Xray diffraction study. Cereal Chem. 65:443–446.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Van Nostrand Reinhold

About this chapter

Cite this chapter

Levine, H., Slade, L. (1990). Influences of the Glassy and Rubbery States on the Thermal, Mechanical, and Structural Properties of Doughs and Baked Products. In: Faridi, H., Faubion, J.M. (eds) Dough Rheology and Baked Product Texture. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0861-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0861-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8207-5

  • Online ISBN: 978-1-4613-0861-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics