Rheological Properties of Cereal Carbohydrates

  • Jean-Louis Doublier


Starch and proteins are the main macromolecules in cereal grains. Other non-starch carbohydrates occur in cereal grains in low amounts, particularly other pentosans, (1→3) (1→4) β-glucans, and low molecular weight carbohydrates. This chapter is concerned primarily with carbohydrates that (1) originate from cereal grains or flours and (2) exhibit total or partial solubility in water (at room temperature and/or heated). This definition includes starch, water-soluble pentosans, (1→3) (1→4) β-glucans, and starch hydrolyzates.


Shear Rate Rheological Property Flow Curve Starch Granule Apparent Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AFNOR, 1966. Amidons efécules. Détermination des coefficients de viscosite des empois. Norme N.F.V. 03–604.Google Scholar
  2. Anger, H., Dörfer, J., and Berth, G. 1986. Untersuchungen zur molmasse und grenzviskosität von arabinoxylan (pentosan) aus roggen (secale cereale) zur aufstel-lung der Mark-Houwink-Beziehung. Die Nahrung 30:205–208.CrossRefGoogle Scholar
  3. Autio, K., Myllymaki, O. and Malkki, Y. 1987. Flow properties of solutions of oat β-glucans. J. Food Sci. 52:1364–1366.CrossRefGoogle Scholar
  4. Bagley, E. B., and Christianson, D. D. 1982. Swelling capacity of starch and its relation-ship to suspension viscosity. Effect of cooking time, temperature and concentration. J. Text. Stud. 13:115–126.CrossRefGoogle Scholar
  5. Bagley, E. B., and Christianson, D. D. 1983. Yield stresses in cooked wheat starch dispersions. Staerke 35:81–86.CrossRefGoogle Scholar
  6. Bagley, E. B., Christianson, D. D., and Beckwith, A. C. 1983. A test of the Arrhenius viscosity volume fraction relationship for concentrated dispersions of deformable particules. J. Rheol. 27:503–507.CrossRefGoogle Scholar
  7. Bechtel, W. G. 1950. Measurement of properties of corn starch gels. J. Colloid Sci. 5:260–270.CrossRefGoogle Scholar
  8. Blanshard, J. M. V. 1979. Physical aspects of starch gelatinization. In Polysaccharides in Foods, ed. J. M. V. Blanshard and J. R. Mitchell, pp. 139–152. London: Butter-worths.Google Scholar
  9. Blanshard, J. M. V. 1987. Starch granule and function. In Starch: Properties and Potential. Critical Reports on Applied Chemistry, Vol. 13, ed. T. Galliard, pp. 16–54. New York: Wiley.Google Scholar
  10. Bowler, P., Williams, M. R., and Angold, R. E. 1980. A hypothesis for the morpho-logical changes which occur on heating lenticular wheat starch in water. Staerke 32(6): 186–189.CrossRefGoogle Scholar
  11. Bulpin, P. V., Welsh, E. J., and Morris, E. R. 1982. Physical characterization of amylose-fatty complexes in starch granules and in solution. Staerke 34:335–339.CrossRefGoogle Scholar
  12. Cakebread, S. H. 1971a. Physical properties of confectionery ingredients. Viscosity of carbohydrate solutions. Confectionery Prod. 37:662–665.Google Scholar
  13. Cakebread, H. H. 1971b. Physical properties of confectionery ingredients. Viscosity and high boiling mixtures of high solids content at high temperature. Confectionery Prod. 37:705–709.Google Scholar
  14. Christianson, D. D., and Bagley, E. G. 1983. Apparent viscosities of dispersion of swollen cornstarch granules. Cereal Chem. 60(2): 116–121.Google Scholar
  15. Christianson, D. D., and Bagley, E. B. 1984. Yield stresses in dispersions of swollen, deformable corn starch granules. Cereal Chem. 61:500–503.Google Scholar
  16. Christianson, D. D., Baker, F. L., Loffredo, A. R. and Bagley, E. B. 1982. Correlation of microscopic structure of corn starch granules with rheological properties of cooked pastes. Food Microstruct. 1:13–24.Google Scholar
  17. Christianson, D. D., Casiraghi, E. M., and Bagley, E. B. 1985. Uniaxial compression of bonded and lubricated gels. J. Rheol. 29:671–684.CrossRefGoogle Scholar
  18. Christianson, D. D., Casiraghi, E. M., and Bagley, E. B. 1986. Deformation and fracture of wheat, corn and rice starch gels in lubricated and bonded uniaxial compression. Carbohydr. Polymers 6:335–348.CrossRefGoogle Scholar
  19. Clarke, A. E., and Stone, B. A. 1966. Enzymic hydrolysis of barley and other β-glucans by a β(1→4)-glucan hydrolase. Biochem. J. 99:582–588.Google Scholar
  20. Cluskey, J. E., Taylor, N. W., and Senti, F. R. 1959. Relations of the rigidity of flour, starch, and gluten gels to bread staling. Cereal Chem. 36:236–246.Google Scholar
  21. Collison, R. 1968. Swelling and gelation of starch. In Starch and Its Derivatives, ed. J. A. Radley, pp. 168–193. London: Chapman and Hall, Ltd.Google Scholar
  22. Collison, R., and Elton, G. A. H. 1961. Some factors which influence the rheological properties of starch gels. Staerke 13:164–173.CrossRefGoogle Scholar
  23. Cruz, A., Russel, W. B., and Ollis, D. F. 1976. Shear viscosity of native and enzyme hydrolyzed amioca starch pastes. AICHE J. 22(5):832–840.CrossRefGoogle Scholar
  24. De Willigen, A. H. A. 1976. The rheology of starch. In Starch and Its Derivatives, ed. J. A. Radley, pp. 168–193. London: Chapman and Hall, Ltd.Google Scholar
  25. Dengate, H. N. 1984. Swelling pasting and gelling of wheat starch. In Advanced Cereal Science Technology, Vol 6, ed. Y. Pomeranz, pp. 49-82. St. Paul, MN: AACC.Google Scholar
  26. Djaković, L., and Dokić, P. 1972. Die rheologische charakterierung der stárkegele. Staerke 24:195–201.CrossRefGoogle Scholar
  27. Doublier, J. L. 1981. Rheological studies on starch. Flow behaviour of wheat starch pastes. Staerke 33(12):415–420.CrossRefGoogle Scholar
  28. Doublier, J. L. 1987. A rheological comparison of wheat, maïze, faba bean and smooth pea starches. J. Cereal Sci. 5:247–262.CrossRefGoogle Scholar
  29. Doublier, J. L., Llamas, G., and Le Meur, M. 1987. A rheological investigation of cereal starch pastes and gels. Effect of pasting procedures. Carbohydr. Polymers 7:251–275.CrossRefGoogle Scholar
  30. Doublier, J. L., Paton, D., and Llamas, G. 1987. A rheological investigation of oat starch pastes. Cereal Chem. 64(1):21–26.Google Scholar
  31. Elfak, A. M., Pass, G., and Phillips, G. 0. 1979. The effect of shear rate on the vis-cosity of solutions of guar gum and locust bean gum. J. Sci. Food Agric. 30:439–444.CrossRefGoogle Scholar
  32. Eliasson, A. C. 1986. Viscoelastic behaviour during the gelatinization of starch. I. Comparison of wheat, maize, potato and waxy-barley starches. J. Text. Stud. 17:253–265.CrossRefGoogle Scholar
  33. Eliasson, A. C., and Krog, N. 1985. Physical properties of amylose-monoglycerides complexes. J. Cereal Sci. 3:239–248.CrossRefGoogle Scholar
  34. Eliasson, A. C., Finstad, H., and Ljunger, G. 1988. A study of starch-lipid interactions for some native and modified maize starches. Stiaerke 40(3):95–100.CrossRefGoogle Scholar
  35. Ellis, H. S., and Ring, S. G. 1985. A study of some factors influencing amylose gelation. Carbohydr. Polymers 5:201–213.CrossRefGoogle Scholar
  36. Erickson, E. R., Bernsten, R. A., and Eliason, M. A. 1986. Viscosity of corn syrup. J. Chem. Eng Data 11:485–488.CrossRefGoogle Scholar
  37. Evans, I. D., and Haisman, D. R. 1979. Rheology of gelatinised starch suspensions J. Text. Stud. 10:347–370.CrossRefGoogle Scholar
  38. Farrow, F. D., and Lowe, G. M. 1923. The flow of starch paste through capillary tubes. J. Text. Inst. 14:414–440.CrossRefGoogle Scholar
  39. Farrow, F. D., Lowe, G. M. and Neale, S. M. 1928. The flow of starch pastes. Flow at high and low rates of shear. J. Text. Inst. 19:18–31.CrossRefGoogle Scholar
  40. Forrest, I. S., and Wainwright, T. 1977. The mode of binding of β-glucans and pentosans in barley endosperm cell walls. J. Inst. Brew. 83:279–286.Google Scholar
  41. Ghiasi, K., Hoseney, R. C, and Varriano-Marston, E. 1982. Gelatinization of wheat starch. I. Excess-water systems. Cereal Chem. 59(2):81–85.Google Scholar
  42. Granath, K. A. 1958. Solution properties of branched dextrans. J. Colloid Sci. 13:308–328.CrossRefGoogle Scholar
  43. Guilbot, A., and Mercier, C. 1985. Starch. In The Polysaccharides, Vol. 3, ed. G. O. Aspinall, pp. 201–282. New York: Wiley.Google Scholar
  44. Hoseney, R. C. 1984. Functional properties of pentosans in baked foods. Food Technol. 38:114–116.Google Scholar
  45. Hoseney, R. C, and Faubion, J. M. 1981. A mechanism for the oxidative gelation of wheat flour water-soluble pentosans. Cereal Chem. 58:421–424.Google Scholar
  46. Jackson, B. 1985a. Application of glucose syrups in modern confectionery manufacture. I. Confectionery Manufacture Marketing 22:12–14.Google Scholar
  47. Jackson, B. 1985b. Glucose syrups. II. Confectionery Manufacture Marketing 22:30–34.Google Scholar
  48. Jackson, G. M., and Hoseney, R. C. 1986. Fate of ferulic acid in overmixed wheat flour doughs: partial characterization of a cystein-ferulic acid adduct. J. Cereal Sci. 4:87–95.CrossRefGoogle Scholar
  49. Juliano, B. O. 1984. Rice starch: production, properties and uses. In Starch: Chemistry and Technology, 2nd ed., ed. R. L. Whistler, J. N. BeMiller, and E. F. Paschall, pp. 507–528. New York: Academic Press.Google Scholar
  50. Kalichevsky, M. T., and Ring, S. G. 1987. Incompatibility of amylose and amylopectin in aqueous solution. Carbohydr. Res. 162:323–328.CrossRefGoogle Scholar
  51. Kearsley, M. W., and Birch, G. G. 1977. Production and physicochemical properties of hydrogenated glucose syrups. Staerke 29:425–429.CrossRefGoogle Scholar
  52. Krüsi, H., and Neukom, H. 1984. Untersuchunger über die retrogradation der stärke in konzentrienten weizenstärkegelen. Teil 1. Staerke 36:40–45.CrossRefGoogle Scholar
  53. Kubota, K., Hosokawa, Y., Suzuki, K., and Hosaka, H. 1978. Determination of viscometric constants in empirical flow equations of heated starch solutions. J. Fac. Fish Animal Husb. Hiroshima Univ. 17:1–15.Google Scholar
  54. Kubota, K., Hosokawa, Y., Suzuki, K., and Hosaka, H. 1979. Studies of the gelatinization rate of rice and potato starches. J. Food Sci. 44:1394–1397.CrossRefGoogle Scholar
  55. Kugimiya, M., and Donovan, J. W. 1980. Phase transitions of amylose-lipid complexes in starches: a calorimetric study. Staerke 32:265–270.CrossRefGoogle Scholar
  56. Lancaster, E. B., Conway, H. F., and Schwab, F. 1966. Power-law rheology of alkaline starch pastes. Cereal Chem. 43:637–643.Google Scholar
  57. Launay, B., Doublier, J.-L., and Cuvelier, G. 1986. Flow properties of aqueous solutions and dispersions of polysaccharides. In Functional Properties of Food Macromolecules, ed. J. R. Mitchell and D. A. Ledward, pp. 1–78. London: Elsevier.Google Scholar
  58. Leach, H. W. 1965. Gelatinization of starch. In Starch: Chemistry and Technology. I. Fundamental Aspects, ed. R. L. Whistler and E. F. Paschall, pp. 289–307. New York: Academic Press.Google Scholar
  59. Leach, H. W., McCowen, L. D., and Schoch, T. J. 1959. Structure of the starch granule. 1. Swelling and solubility patterns of various starches. Cereal Chem. 36:534–544.Google Scholar
  60. Lindahl, L., and Eliasson, A. C. 1986. Effect of wheat proteins on the viscoelastic properties of starch gels. J. Sci. Food Agric. 37:1125–1132.CrossRefGoogle Scholar
  61. MacDonald, M. 1984. Uses of glucose syrups in the food industry. In Glucose Syrups: Science and Technology, ed. S. Z. Dziedzic and M. W. Kearsley, pp. 247–263. London: Elsevier.Google Scholar
  62. Meredith, W. O. S., Base, E. J., and Anderson, J. A. 1951. Some characteristics of barley, malt and wort gums. Cereal Chem. 28:177–188.Google Scholar
  63. Miles, M. J., Morris, V. J., and Ring, S. G. 1985a. Gelation of amylose. Carbohydr. Res. 135:257–269.CrossRefGoogle Scholar
  64. Miles, S. G., Morris, V. J., and Ring, S. G. 1985b. Recent observations on starch retrogradation. In New Approaches to Research on Cereal Carbohydrates, ed. R. D. Hill and L. Munck, pp. 109–114. Amsterdam: Elsevier.Google Scholar
  65. Miles, M. J., Morris, V. J., Orford, P. D., and Ring, S. G. 1985b. The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr. Res. 135:271–281.CrossRefGoogle Scholar
  66. Miller, B., Derby, R. L, and Trimbo, H. B. 1973. A pictorial explanation for the increase on viscosity of a heated wheat starch-water suspension. Cereal Chem. 50:271–280.Google Scholar
  67. Montgomery, E. M., and Senti, F. R. 1958. Separation of amylose from amylopectin by an extraction-sedimentation procedure. J. Polymer Sci. 28:1–9.CrossRefGoogle Scholar
  68. Morgan, A. G., Gill, A. A., and Smith, D. B. 1983. Some barley grain and green malt properties and their influence on malt hot water extract. I. β-glucan, β-glucan solubilase and endo-β-glucanase. J. Inst. Brew. 89:283–291.Google Scholar
  69. Morris, E. R., and Ross-Murphy, S. B. 1981. Chain flexibility of polysaccharides and glycoproteins from viscosity measurements. Tech. Carbohydr. Metabolism B310:1–46.Google Scholar
  70. Murray, D. G., and Luft, L. T. 1973. Low DE corn starch hydrolyzates. Food Technol. 27:32–40.Google Scholar
  71. Myers, R. R., Knauss, C. J., and Hoffman, R. D. 1962. Dynamic rheology of modified starches. J. Appl. Polymer Sci. 6:659–666.CrossRefGoogle Scholar
  72. Myers, R. R., and Knauss, C. J. 1964. Dynamic mechanical properties. Determination of viscosity and rigidity of starch pastes. In Methods in Carbohydrate Chemistry, Vol. 4, ed. R. L. Whistler, and M. L. Wolfrom, pp. 128–133, New York: Academic Press.Google Scholar
  73. Myers, R. R., and Knauss, C. J. 1965. Mechanical properties of starch pastes. In Starch: Chemistry and Technology, Vol 1., ed. R. L. Whistler and E. F. Paschall, pp. 393–407. New York: Academic Press.Google Scholar
  74. Nedonchelle, Y. 1968. Sur la rheologie des solutions concentrees de carbohydrates macromoléculaires. Dissertation. Université de Strasbourg.Google Scholar
  75. Neukom, H. 1976. Chemistry and properties of the non-starchy polysaccharides (NSP) of wheat flour. Lebensmitt. Wiss. Technol. 9:143–148.Google Scholar
  76. Ollku, J., and Rha, C. K. 1978. Gelatinization of starch and wheat flour starch. Food Chem. 3:293–317.CrossRefGoogle Scholar
  77. Ott, M., and Hester, E. E. 1965. Gel formation as related to concentration of amylase and degree of starch swelling. Cereal Chem. 42:476–484.Google Scholar
  78. Preece, I. A., and MacKenzie, K. G. 1952. Non-starch polysaccharides of cereal grains. II. Distribution of water-soluble gum-like materials in cereals. J. Inst. Brew. 58:457–464.Google Scholar
  79. Preece, I. A., and Hobkirk, R. 1953. Non-starchy polysaccharides of cereal grains. III. Higher molecular gums of common cereals. J. Inst. Brew. 59:385–392.Google Scholar
  80. Preece, I. A. 1957. Malting relationship of barley polysaccharides. Wallersteim Lab. Commun. 20:147–161.Google Scholar
  81. Radley, J. A. 1976. Physical methods of characterising starch. In Examination and Analysis of Starch and Starch Products, ed. J. A. Radley, pp. 91–131. London: Elsevier.Google Scholar
  82. Richardson, W. A., and Waite, R. 1933. The flow of starch pastes. The effects of soaps and other electrolytes on the apparent viscosity of starch pastes. J. Text. Inst. 24:383–416.CrossRefGoogle Scholar
  83. Ring, S. G. 1985. Some studies on starch gelation. Staerke 37:80–83.CrossRefGoogle Scholar
  84. Ring, S. G., Colonna, P., Fanson, K. J., Kalichevsky, M. T., Miles, M. J., Morris, V. J., and Ring, S. G. 1987. The gelation and crystallisation of amylopectin. Carbohydr. Res. 162:277–293.CrossRefGoogle Scholar
  85. Robinson, G., Ross-Murphy, S. B., and Morris, E. R. 1982. Viscosity-molecular weight relationships, intrinsic chain flexibility, and dynamic solution properties of guar galactomannans. Carbohydr. Res. 107:17–32.CrossRefGoogle Scholar
  86. Saunders, R. P., and Ward, A. G. 1954. An absolute method for the rigidity modulus of gelation gels. Proceedings, 2nd International Congress Rheol. Oxford, ed. V. C. G. Harrison, pp. 284–290. Pergamon.Google Scholar
  87. Schutz, R. A. 1970. De la rhéologie de systèmes aqueux à base de gomme. Staerke 22:116–125.CrossRefGoogle Scholar
  88. Schutz, R. A. 1974. Die rheologie auf dem stärkegebeit. Berlin: Verlag Paul Parey.Google Scholar
  89. Scott, R. W. 1972. The viscosity of worts in relation to their content of β-glucan. J. Inst. Brew. 78:179–186.Google Scholar
  90. Sterling, C. 1978. Textural qualities and molecular structure of starch products. J. Text. Stud. 9:225–255.CrossRefGoogle Scholar
  91. Stute, R., and Konieczny-Janda, G. 1983. DSC—Untersuchungen an stärken. Teill II. Untersuchungen an Stärke-lipid-complexen. Staerke 35:340–347.CrossRefGoogle Scholar
  92. Varriano-Marston, E., Zeleznak, K., and Nowota, A. 1985. Structural characteristics of gelatinized starch. Staerke 37(10):326–329.CrossRefGoogle Scholar
  93. Völker, H. H. 1969. Die eingluss von glukosesirupen auf die beschaffenheit von hartkaramelmassen. Zucker Suesswarenwirtschaft 22:114–118.Google Scholar
  94. Williams, M. R., and Bowler, P. 1982. Starch gelatinization: a morphological study of triticeae and other starches. Staerke 34(7):221–223.CrossRefGoogle Scholar
  95. Wong, R. B. K., and Lelievre, J. 1981. Viscoelastic behaviour of wheat starch pastes. Rheol. Acta 20:299–307.CrossRefGoogle Scholar
  96. Wong, R. B., and Lelievre, J. 1982a. Effects of storage on dynamic rheological properties of wheat starch pastes. Staerke 34:231–233.CrossRefGoogle Scholar
  97. Wong, R. B. K., and Lelievre, J. 1982b. Rheological characteristics of wheat starch pastes measured under steady shear conditions. J. Appl. Polymer Sci. 27:1433–1440.CrossRefGoogle Scholar
  98. Wood, P. J., Siddiqui, I. R., and Paton, D. 1978. Extraction of high-viscosity gums from oats. Cereal Chem. 55:1038–1049.Google Scholar
  99. Wood, P. J. 1984. Physicochemical properties and technological and nutritional significance of cereal β-glucans. In Cereal Polysaccharides in Technology and Nutrition, ed. V. F. Rasper, pp. 52–57. St. Paul, MN: AACC.Google Scholar
  100. Woodward, J. R., Phillips, D. R., and Fincher, G. B. 1983. Water soluble (1–3) (1–4)-β-D-glucans from barley (Hordeum vulgare) endosperm. I. Physicochemical properties. Carbohydr. Polymers 3:143–156.CrossRefGoogle Scholar
  101. Yeh, Y. F., Hoseney, R. C, Lineback, D. R. 1980. Changes in wheat flour pentosans as a result of dough mixing and oxidation. Cereal Chem. 57:144–148.Google Scholar
  102. Zobel, H. F. 1984. Gelatinization of starch and mechanical properties of starch pastes. In Starch Chemistry and Technology, 2d ed., ed. J. A. Radley, pp. 49–82. St. Paul, MN: AACC.Google Scholar

Copyright information

© Van Nostrand Reinhold 1990

Authors and Affiliations

  • Jean-Louis Doublier

There are no affiliations available

Personalised recommendations