Skip to main content

Interrelationships of Rheology, Kinetics, and Transport Phenomena in Food Processing

  • Chapter
Dough Rheology and Baked Product Texture

Abstract

A complete understanding of the interrelationships between rheology, kinetics, and transport phenomena is a very critical part of food process design and analysis. The need to understand the mechanisms underlying the interactions of these three areas cannot be overemphasized. To establish a common ground for discussion, the following definitions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bingham, E. C. 1922. Fluidity and Plasticity. New York: McGraw-Hill.

    Google Scholar 

  • Bird, R. B., Stewart, W. E., and Lightfoot, E. N. 1960. Transport Phenomena. New York: Wiley.

    Google Scholar 

  • Casson, N. 1959. A flow equation for pigmented-oil suspension of the printing ink type. In Rheology of Disperse Systems, ed. C. C. Mill, pp. 82–104. New York: Pergamon.

    Google Scholar 

  • Castell-Perez, M. E., and Steffe, J. F. 1988. Using mixing to evaluate rheological properties. In Viscoelastic Properties of Solid, Fluid and Semisolid Foods, M. A. Rao, ed. Barking, England: Elsevier. In press.

    Google Scholar 

  • Dealy, J. M. 1982. Rheometers for Molten Plastics: Practical Guide to Testing and Property Measurement. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Dolan, K. D., Steffe, J. F., and Morgan, R. G. 1989. Back extrusion and simulation of viscosity development during starch gelatinization. J. Food Process Eng.In press.

    Google Scholar 

  • Heinz, J., 1959, quoted in A. Fincke, 1961, Beitragezur Losungrheologischer Probleme in der Schokoladentechnologie, Diss. TH Karlsruhe.

    Google Scholar 

  • Herschel, W. H., and Bulkley, R. 1926. Konziztensmessungen von gummi-bensollosugen. Kolloid-Zeitzchr 39:291–300

    Article  Google Scholar 

  • Herschel, W. H., and Bulkley, R. 1926. Konziztensmessungen von gummi-bensollosugen; Proc. Amer. Soc. Test. Matts. 26:621–633.

    Google Scholar 

  • Levenspiel, O. 1972. Chemical Reaction Engineering, 2nd ed. New York: Wiley.

    Google Scholar 

  • Luxemburg, L. A., Baird, D. G., and Joseph, E. G. 1985. Background studies in the modeling of extrusion cooking processes for soy flour doughs. Biotechnol. Progress 1(1):33–38.

    Article  Google Scholar 

  • Mackey, K. L., Morgan, R. G., and Steffe, J. F. 1987. Effects of shear-thinning behavior on mixer viscometry techniques. J. Tex. Stud. 18:231–240.

    Article  Google Scholar 

  • Mackey, K. L., Ofoli, R. Y., Morgan, R. G., and Steffe, J. F. 1989. Rheological modeling of potato flour during extrusion cooking. J. Food Process Eng.In press.

    Google Scholar 

  • Mizrahi, S., and Berk, Z. 1972. Flow behavior of concentrated orange juice: Mathematical treatment. J. Tex. Stud. 3:69–79.

    Article  Google Scholar 

  • Morgan, R. G. 1979. Modeling the Effects of Temperature-Time History, Temperature, Shear Rate and Moisture on Viscosity of Defatted Soy Flour. Dough. Ph.D. Diss., Texas A&M University, College Station, Texas.

    Google Scholar 

  • Morgan, R. G., Steffe, J. F., and Ofoli, R. Y. 1989. A generalized viscosity model for extrusion of protein doughs. J. Food Process Eng.In press.

    Google Scholar 

  • Ofoli, R. Y., Morgan, R. G., and Steffe, J. F. 1987. A generalized rheological model for inelastic fluid foods. J. Tex. Stud. 18:213–230.

    Article  Google Scholar 

  • Reiner, M. 1949. Deformation and Flow. London: Lewis.

    Google Scholar 

  • Skelland, A. H. P. 1967. Non-Newtonian Flow and Heat Transfer. New York: Wiley.

    Google Scholar 

  • Steffe, J. F., and Osorio, F. A. 1987. Back extrusion of non-Newtonian fluids: Rapid, low-cost test method has applications in quality control and product development. Food Tech. 41(3):72–77.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Van Nostrand Reinhold

About this chapter

Cite this chapter

Ofoli, R.Y. (1990). Interrelationships of Rheology, Kinetics, and Transport Phenomena in Food Processing. In: Faridi, H., Faubion, J.M. (eds) Dough Rheology and Baked Product Texture. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0861-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0861-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8207-5

  • Online ISBN: 978-1-4613-0861-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics