Lonically Conductive Polymers

  • Anthony J. Polak


In 1834 Michael Faraday reported that when lead fluoride (PbF2) was heated red hot, it conducted an electric current and so did the metallic vessel it was heated in. This was a startling observation, since most simple salts are electronic insulators. The high conductivity that Faraday observed is now known to be due to ionic conductivity, and not electronic conductivity. At elevated temperatures (500-700°C) the fluoride anion possesses high ionic conductivity and can easily be transported through the lead fluoride lattice. This was the first report of a high ionic conductivity solid electrolyte. Until the mid-1970s all research on solid ionic conductors had centered on inorganic compounds (primarily ceramics, such as the various phases of alumina, stabilized zirconia, etc.). With the discovery of new ionic conducting polymers by Wright,21,22 Armand,2,3 and others, and the numerous advantages that ionic conducting polymers have over ceramics in device fabrication and operating temperature range, it is not surprising that fast ionic conduction in polymers is currently an area of great interest. This interest is a result of a desire both to understand the ionic conduction mechanism in polymers and to use these polymers in applications such as high-energy-density batteries, electrochronic displays, specific-ion sensors, and other electrochemical devices that capitalize on the unique electronic, ionic, and mechanical properties of ionic conducting polymers.


Ionic Conductivity Polymer Electrolyte Solid Electrolyte Conductive Polymer Solid State Ionic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. A. Brown, in Polymer Materials for Electronic Applications, American Chemical Society (1982), p.151.CrossRefGoogle Scholar
  2. [2]
    M. Armand, J. M. Chabagno, and M. J. Duclot, in Fast Ion Transport in Solids, P. Vashista, J. N. Mundy, and G. K. Shenoy, eds., North-Holland, New York, 1979, p. 131.Google Scholar
  3. [3]
    M. B. Armand, J. M. Chabagno, and M. J. Duclot, in Second International Meeting on Solid Electrolytes, St. Andrews, Scotland, 1978, Abstract 6.5.Google Scholar
  4. [4]
    R. G. Linford and S. Hackwood, Chem. Rev. 81, 327 (1981).CrossRefGoogle Scholar
  5. [5]
    C. A. Angell,Solid State Ionics 18–19, 72 (1986).Google Scholar
  6. [6]
    J. O’M. Bockris and A. K. N. Reddy, in Modern Electrochemistry, Plenum, New York, 1970.Google Scholar
  7. [7]
    B. E. Fenton, J. M. Parker, P. V. Wright, Polymer 14, 589 (1973).CrossRefGoogle Scholar
  8. [8]
    P. M. Blonsky, D. F. Shriver, P. Austin, and H. R. Allcock, J. Am. Chem. Soc. 106, 6854 (1984).CrossRefGoogle Scholar
  9. [9]
    A. J. Polak, S. Petty-Weeks, A. J. Beuhler, Sensors and Actuators, 9,1 (1986).CrossRefGoogle Scholar
  10. [10]
    Wetton, Ions in Polymers, Advances in Chemistry Series No. 187, A. Eisenberg, ed., Washington, D.C. 1980.CrossRefGoogle Scholar
  11. [11]
    M. Armand, Solid State Ionics 9–10, 745 (1983).Google Scholar
  12. [12]
    P. M. Blonsky, D. F. Shriver, P. Austin, and H. R. Allcock, J. Am. Chem. Soc. 106, 6854 (1984).CrossRefGoogle Scholar
  13. [13]
    P. M. Blonsky, S. Clancy, L. C. Hardy, C. S. Harris, R. Spindler, and D. F. Shriver, Poly. Mater. Sci. Eng. 53, 736 (1985).Google Scholar
  14. [14]
    R. Dupon, B. L. Papke, M. A. Ratner, and D. F. Shriver, J. Electrochem. Soc. 131, 586 (1984).CrossRefGoogle Scholar
  15. [15]
    R. M. Blonsky, D. F. Shriver, P. Austin, and H. R. Allcock, Solid State Ionics 18–19, 258 (1986).Google Scholar
  16. [16]
    H. Cheradame, J. L. Souquet, J. M. Latour, Mater. Res. Bull. 15,1173 (1980).CrossRefGoogle Scholar
  17. [17]
    J. E. Bauerle, J. Phys. Chem. Solids 30, 2657 (1969).CrossRefGoogle Scholar
  18. [18]
    C. K. Chaing, G. T. Davis, and C. A. Harding, Solid State Ionics 18–19, 300 (1986).Google Scholar
  19. [19]
    R. C. T. Slade, A. Hardwick, and P. G. Dickens, Solid State Ionics 8–9,1093 (1983).Google Scholar
  20. [20]
    L. C. Hardy and D. F. Shriver, J. Am. Chem. Soc. 107, 3823 (1985).CrossRefGoogle Scholar
  21. [21]
    P. V. Wright, Br. Poly. J. 7, 319 (1975).CrossRefGoogle Scholar
  22. [22]
    P. V. Wright, J. Poly. Sci. Poly. Phys. Ed. 14, 955 (1976).CrossRefGoogle Scholar
  23. [23]
    T. M. A. Abrantes, L. J. Alcacer, and C. A. C. Sequeira, Solid State Ionics 18–19, 315 (1986).Google Scholar
  24. [24]
    E. A. Rietman, M. L. Kaplan, and R. J. Cava, Solid State Ionics 17, 67 (1985).CrossRefGoogle Scholar
  25. [25]
    J. R. MacCallum, M. J. Smith, and C. A. Vincent, Solid State Ionics 11, 307 (1984).CrossRefGoogle Scholar
  26. [26]
    Y. Ito, K. Syakushiro, M. Hiratani, K. Miyauchi, and T. Kudo, Solid State Ionics 18–19, 277 (1986).Google Scholar
  27. [27]
    W. Gorecki, R. Andreani, C. Berthier, M. Armand, M. Mali, J. Roos, D. Brinkmann, Solid State Ionics 18–19, 295 (1986).Google Scholar
  28. [28]
    P. Ferloni, G. Chiodelli, A. Magistris, and M. Sanesi, Solid State Ionics 18–19, 265 (1986).Google Scholar
  29. [29]
    T. Takahashi, G. T. Davis, C. K. Chiang, and C. A. Harding, Solid State Ionics 18–19 (1986).Google Scholar
  30. [30]
    A. Killis, J. F. Le Nest, A. Gandini, H. Cheradame, and J. P. Cohen-Addad, Solid State Ionics 14, 231 (1984).CrossRefGoogle Scholar
  31. [31]
    M. L. Williams, R. F. Landel, and J. D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955).CrossRefGoogle Scholar
  32. [32]
    C. A. Angell and C. T. Moynihan, in Molten Salts, G. Mamantov, ed., Marcel Dekker, New York, 1969, pp. 315–375.Google Scholar
  33. [33]
    G. S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925).CrossRefGoogle Scholar
  34. [34]
    A. K. Doolittle, J. Appl. Phys. 22, 1471 (1951).CrossRefGoogle Scholar
  35. [35]
    T. G. Fox and P. J. Flory, J. Appl. Phys. 21, 581 (1950).CrossRefGoogle Scholar
  36. [36]
    N. F. Sheppard and S. D. Senturia, J. Poly. Sci. Poly. Phys. Ed., submitted for publication, 1985.Google Scholar
  37. [37]
    M. H. Cohen and D. Turnbull, J. Chem. Phys. 31, 1164 (1959).CrossRefGoogle Scholar
  38. [38]
    A. Killis, J. F. Le Nest, H. Cheradame, and A. Gandini, Makromol. Chem. 183, 2835 (1982).CrossRefGoogle Scholar
  39. [39]
    S. I. Smedley, The Interpretation of Ionic Conductivity in Liquids, Plenum, New York, 1980.Google Scholar
  40. [40]
    G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).CrossRefGoogle Scholar
  41. [41]
    J. H. Gibbs and E. A. DiMarzio, J. Chem. Phys. 28, 373 (1958).CrossRefGoogle Scholar
  42. [42]
    P. R. Sorensen and T. Jacobsen, Electrochim. Acta. 27, 1671 (1982).CrossRefGoogle Scholar
  43. [43]
    J. E. Weston and B. C. H. Steele, Solid State Ionics, 2, 347 (1981).CrossRefGoogle Scholar
  44. [44]
    E. Tubandt, Handb. Experimentalphys. 12, 383 (1932).Google Scholar
  45. [45]
    Monirex Systems Hydrogen Analyzer, UOP, Inc., Des Plaines, I11.Google Scholar
  46. [46]
    A. Bouridah, F. Dalard, D. Deroo, and M. B. Armand, Solid State Ionics 18–19, 287 (1986).Google Scholar
  47. [47]
    M. Watanabe, M. Rikukawa, K. Sanui, and N. Ogata, J. Appl. Phys. 58, 736 (1985).CrossRefGoogle Scholar
  48. [48]
    M. Watanabe, K. Sanui, N. Ogata, T. Kobayashi, and Z. Ohtaki, J. Appl. Phys. 57, 123 (1985).CrossRefGoogle Scholar
  49. [49]
    M. Watanabe, S. Nagano, K. Sanui, and N. Ogata, Solid State Ionics 18–19, 338 (1986).Google Scholar
  50. [50]
    J. P. Stagg, Appl. Phys. Lett. 31, 532 (1977).CrossRefGoogle Scholar
  51. [51]
    G. Greeuw and J. F. Verwey, J. Appl. Phys. 56, 2218 (1984).CrossRefGoogle Scholar
  52. [52]
    G. Greeuw and B. J. Hoenders, J. Appl. Phys. 56, 3371 (1984).CrossRefGoogle Scholar
  53. [53]
    M. Kosaki, H. Ohshima, and M. Ieda, J. Phys. Soc. Jpn. 29, 1012 (1970).CrossRefGoogle Scholar
  54. [54]
    C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, and P. Rigaud, Solid State Ionics 11, 91 (1983).CrossRefGoogle Scholar
  55. [55]
    S. Bhattacharja, S. W. Smoot, and D. H. Whitmore, Solid State Ionics 18–19, 306 (1986).Google Scholar
  56. [56]
    C. Berthier, Y. Chabre, W. Gorecki, P. Segransan, and M. B. Armand, in Proceedings of the 160th Meeting of the AECS, Denver, Vol. 81–82, 1981, p. 1495.Google Scholar
  57. [57]
    S. Petty-Weeks and A. J. Polak, Sensors and Actuators 11, 377 (1987).CrossRefGoogle Scholar
  58. [58]
    S. G. Cutler, in Ions in Polymers, Advances in Chemistry Series, A. Eisenberg, ed., Vol. 187, Washington, D.C., 1980.CrossRefGoogle Scholar
  59. [59]
    T. D. Gierke, 152nd National Meeting Electrochemical Society, Atlanta, Ga., 1977.Google Scholar
  60. [60]
    A. J. Hopfinger and K. Mauritz, in Comprehensive Treatise of Electrochemistry, Vol. 2, J. M. Brockris, B. E. Conway, E. Yeager, and R. E. White, eds., Plenum, New York, 1981.Google Scholar
  61. [61]
    R. Wodzki, A. Narebska, and W. K. Nioch, J. Appl. Poly. Sci. 30, 769 (1985).CrossRefGoogle Scholar
  62. [62]
    W. Y. Hsu, J. R. Barkley, and P. Meakin, Macromolecules, 13, 198 (1980).CrossRefGoogle Scholar
  63. [63]
    W. Y. Hsu and T. Berzins, J. Poly. Sci. Poly. Phys. Ed. 23, 933 (1985).CrossRefGoogle Scholar
  64. [64]
    S. D. Druger, M. A. Ratner, and A. Nitzan, Phys. Rev B 31, 3939 (1984).CrossRefGoogle Scholar
  65. [65]
    S. D. Druger, A. Nitzan, and M. A. Ratner, J. Chem Phys. 79, 3133 (1983).CrossRefGoogle Scholar
  66. [66]
    S. D. Druger, M. A. Ratner, and A. Nitzan, Solid State Ionics 9–10, 1115 (1983).Google Scholar
  67. [67]
    O. Worz and H. R. Cole, J. Chem Phys. 51, 1546 (1969).CrossRefGoogle Scholar
  68. [68]
    M. G. Shilton and A. T. Howe, Mater. Res. Bull. 12, 701 (1977).CrossRefGoogle Scholar
  69. [69]
    L. Bernard, A. N. Fitch, A. F. Wright, B. E. F. Fender, and A. T. Howe, Solid State Ionics 5, 459 (1981).CrossRefGoogle Scholar
  70. [70]
    K. Kiukkola, C. Wagner, J. Electrochem. Soc. 104, 379 (1957).CrossRefGoogle Scholar
  71. [71]
    E. Baun and H. Pieis, Z. Electrochem. 43, 727 (1937).Google Scholar
  72. [72]
    F. Haber, Z. Anorg. Chem. 57, 154 (1908).CrossRefGoogle Scholar
  73. [73]
    W. P. Treadwell, Z. Electrochem. 22, 411 (1916).Google Scholar
  74. [74]
    F. A. Lewis, The Palladium Hydrogen System, Academic Press, New York, 1967.Google Scholar
  75. [75]
    P. N. Moskalev and I. S. Kirin, Opt Spectroscosc. 29, 220 (1970).Google Scholar
  76. [76]
    C. J. Scoot, J. J. Ponjee, H. T. van Dam, R. A. van Doom, and P. T. Bolwijn, Appl. Phys. Lett. 23, 64 (1973).CrossRefGoogle Scholar
  77. [77]
    M. M. Nicholson, Society for Information Display Digest, February 1984, p. 1.Google Scholar
  78. [78]
    W. C. Dautremont-Smith, Displays, January 1982, p. 3.Google Scholar
  79. [79]
    I. F. Chang, Proc. Brown Boveri Symposia, Nonemissive Electrooptic Displays, A. R. Kmetz and F. K. von Willisen, eds., 1975, pp. 155–196.Google Scholar
  80. [80]
    T. Oi, Annual Review of Materials Science, Vol. 16, R. A. Huggins, J. A. Giordmaine, and J. B. Wachtman, eds., 1986.Google Scholar
  81. [81]
    R. D. Giglia and G. Haacke, SID Dig. 12, 76 (1981).Google Scholar
  82. [82]
    J. M. Calvert, T. J. Manuccia, and R. J. Nowak, J. Electrochem. Soc. 133, 591 (1986).CrossRefGoogle Scholar
  83. [82]
    T. A. Skotheim and O. Inganas, J. Electrochem. Soc. 132, 2116 (1985).CrossRefGoogle Scholar
  84. [83]
    B. C. Tofield, NATO Advanced Study Institute on Solid State Batteries, Portugal (1984), “Future Prospects for All-Solid-State Batteries” AERE-R 11576, AERE Harwell.Google Scholar
  85. [84]
    K. O. Hever, J. Electrochem. Soc. 115, 830 (1968).CrossRefGoogle Scholar
  86. [85]
    A. Hooper and J. M. North, Solid State Ionics 9–10, 1161 (1983).Google Scholar
  87. [86]
    A. Hooper, J. M. North, M. Oliver, and B. C. Tofield, 31st Power Sources Symposium Proceedings, Cherry Hill, N.J., 1984.Google Scholar
  88. [87]
    A. Hooper, private communication.Google Scholar
  89. [88]
    W. Y. Hsu, J. R. Barkley, and P. Meakin, Macromolecules 13, 198 (1980).CrossRefGoogle Scholar
  90. [89]
    W. Y. Hsu and T. Berzins, J. Poly. Sci. Poly. Phys. Ed. 23, 933 (1985).CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1989

Authors and Affiliations

  • Anthony J. Polak

There are no affiliations available

Personalised recommendations