Carotenoids pp 105-123 | Cite as

Advances in HPLC and HPLC-MS of Carotenoids and Retinoids

  • Richard F. Taylor
  • Paul E. Farrow
  • Lauren M. Yelle
  • Judith C. Harris
  • Ingrid G. Marenchic


High performance liquid chromatography (HPLC) has been established during the past 10 years as one of the primary methods for the separation and purification of carotenoids and retinoids. The rapid analysis times (10 to 45 min), high sensitivity (low ng), high resolving power, high recovery and non-destructive conditions of HPLC make it an ideal method for carotenoid and retinoid analysis.


High Performance Liquid Chromatography High Performance Liquid Chromatography High Performance Liquid Chromatography Analysis Collisionally Activate Dissociation High Performance Liquid Chromatography System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.F. Taylor, Chromatography of carotenoids and retinoids, Adv. Chromatogr. 22: 157 (1983).Google Scholar
  2. 2.
    K. Tsukida, K. Saiki, T. Takii, and Y. Koyama, Separation and determination of cis/trans-ß-carotenes by high performance liquid chromatography, J. Chromatogr. 245:359 (1982).CrossRefGoogle Scholar
  3. 3.
    M. Vecchi, E. Glinz, V. Meduna, and K. Schiedt, HPLC separation and determination of astacene, semiastacene, astaxanthin, and other keto-carotenoids, J. High Resol. Chrom. Comm. 10: 348 (1987).CrossRefGoogle Scholar
  4. 4.
    Y.M. Peng, J. Beaudry, D.S. Alberts, and T.P. Davis, High performance liquid chromatography of the provitamin A ß-carotene in plasma, J. Chromatogr. 273:410, (1983).CrossRefGoogle Scholar
  5. 5.
    W.J. Driskell, M.M. Bashor and J.W. Neese, Beta-carotene determined in serum by liquid chromatography with a internal standard, Clin. Chem. 29:1042 (1983).Google Scholar
  6. 6.
    N. Katrangi, L.A. Kaplan, and E.A. Stein, Separation and quantitation of serum ß-carotene and other carotenoids by high performance chromatography, J. Lipid Res. 25:400 (1984).Google Scholar
  7. 7.
    D.W. Nierenberg, Serum and plasma ß-carotene levels measured with an improved method of high-performance liquid chromatography, J. Chromatogr. 339:273 (1985).CrossRefGoogle Scholar
  8. 8.
    K.W. Miller and C.S. Yang, An isocratic high-performance liquid chromatography method for the simultaneous analysis of plasma retinol, α-tocopherol, and various carotenoids, Anal. Biochem. 145:21 (1985).CrossRefGoogle Scholar
  9. 9.
    D.B. Milne and J. Botnen, Retinol, α-tocopherol, lycopene and α- and ß-carotene simultaneously determined in plasma by isocratic LC. Clin. Chem. 32:874 (1986).Google Scholar
  10. 10.
    T. Maoka and T. Matsuno, the first isolation and identification of tunaxanthin D. from marine fishes, Bull. Jap. Soc. Sci. Fish. 51:1349 (1985).CrossRefGoogle Scholar
  11. 11.
    Y. Ikuno, T. Maoka, M. Shimizu, T. Komori, and T. Matsuno, Direct diastereometric resolution of carotenoids II. All ten stereoisomers of tunaxanthin, J. Chromatogr. 328:387 (1985).CrossRefGoogle Scholar
  12. 12.
    T. Maoka, T. Komori, and T. Matsuno, Direct diastereometric resolution of carotenoids I. 3-Hydroxy-4-oxo-ß-end group, J. Chromatogr. 318:122 (1985).CrossRefGoogle Scholar
  13. 13.
    F.T. Gillan and R.B. Johns, Normal-phase HPLC analysis of microbial carotenoids and neutral lipids, J. Chromatogr. Sci. 21:34 (1983).Google Scholar
  14. 14.
    R.F.C. Mantoura and C.A. Llewellyn, The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance chromatography, Anal. Chim. Acta. 151:297 (1983).CrossRefGoogle Scholar
  15. 15.
    S.W. Wright and J.D. Shearer, Rapid extraction and HPLC of chlorophylls and carotenoids from marine phytoplankton, J. Chromatogr. 294:281 (1984).CrossRefGoogle Scholar
  16. 16.
    H.J.C.F. Nells and A.P. De Leenheer, Isocratic nonaqueous reversed-phase liquid chromatography of carotenoids, Anal. Chem. 55:270 (1983).CrossRefGoogle Scholar
  17. 17.
    O.H. Will III and M. Ruddat, C18 reversed-phase HPLC analysis of carotenoids, Liq. Chromatogr. 2:610 (1984).Google Scholar
  18. 18.
    O. Beyer, G. Weiss, and H. Kleinig, Solubilization and reconstitution of the membrane-bound carotenogenic enzymes from daffodil chromoplasts, Eur. J. Biochem. 153:341 (1985).CrossRefGoogle Scholar
  19. 19.
    B.H. Chen and C.A. Bailey, Separation of carotenoids in turf bermuda grasses by HPLC, J. Chromatogr. 393:297 (1987).CrossRefGoogle Scholar
  20. 20.
    P.S. Stuart, P.A. Bailey and J.L. Beven, HPLC separation of carotenoids in tobacco and their characterization with the aid of a microcomputer, J. Chromatogr. 282:589 (1983).CrossRefGoogle Scholar
  21. 21.
    R.J. Bushway, Separation of carotenoids in fruits and vegetables by HPLC, J. Liq. Chromatogr. 8:1527 (1985).CrossRefGoogle Scholar
  22. 22.
    R.J. Bushway, Determination of α-and ß-carotene in some raw fruits and vegetables by HPLC, J. Agric. Food Chem. 34:409 (1986).CrossRefGoogle Scholar
  23. 23.
    S.J. Schwartz and M. Patroni-Killam, Detection of cis-trans carotene isomers by two-dimensional thin-layer and HPLC, J. Agric. Food Chem. 33:1160, 1985.CrossRefGoogle Scholar
  24. 24.
    F. Khachik, G.R. Beecher and N.F. Whittaker, Separation, identification and quantification of the major carotenoid and chlorophyll constituents in extracts of several green vegetables by LC, J. Agric. Food Chem. 34:603 (1986).CrossRefGoogle Scholar
  25. 25.
    C. Fisher and J.A. Kocis, Separation of paprika pigments by HPLC, J. Agric. Food Chem. 35:55 (1987).CrossRefGoogle Scholar
  26. 26.
    S.H. Ashoor and M.J. Knox, Determination of vitamin A derivatives in fortified foods and commercial vitamin supplements by HPLC, J. Chromatogr. 409:419 (1987).CrossRefGoogle Scholar
  27. 27.
    W. Gau, H.J. Ploschke and C. Wunsche, MS identification of xanthophyll fatty acid esters from marigold flowers obtained by HPLC and craig counter-current distribution, J. Chromatogr. 262:277 (1983).CrossRefGoogle Scholar
  28. 28.
    F. Zonta, B. Stancher, and G.P. Marietta, Simultaneous HPLC analysis of free carotenoids and carotenoid esters, J. Chromatogr. 403:207 (1987).CrossRefGoogle Scholar
  29. 29.
    T. Philip and T.S. Chen., Separation and quantitative analysis of some carotenoid fatty acid esters of fruits by liquid chromatography, J. Chromatogr. 435:113 (1988).CrossRefGoogle Scholar
  30. 30.
    M. Ito, T. Yamane, and K. Tsukida, HPLC separation and NMR identification of stereoisomers of 5,8-furanoidal retinoid, J. Chromatogr. 253:113 (1982).CrossRefGoogle Scholar
  31. 31.
    G.M. Landers and J.A. Olson, Statistical solvent optimization for the separation of geometric isomers of retinol by HPLC, J. Chromatogr. 29l:51 (1984).CrossRefGoogle Scholar
  32. 32.
    F. Zonta and B. Stancher, HPLC of retinals, retinols and their dehydro homologues: Improvements in resolution and spectroscopic characterization of the stereoisomers. J. Chromatogr. 301:64 (1984).CrossRefGoogle Scholar
  33. 33.
    D.W. Nierenberg, Determination of serum and plasma concentrations of retinol using HPLC, J. Chromatogr. 311:239 (1984).CrossRefGoogle Scholar
  34. 34.
    A.T.R. Williams. Simultaneous determination of vitamin A and E by liquid chromatography with fluorescence detection, J. Chromatogr. 341:198 (1985).CrossRefGoogle Scholar
  35. 35.
    A.J. Speek, Microdetermination of vitamin A in human plasma using HPLC with fluorescence detection, J. Chromatogr. 382:284 (1986).CrossRefGoogle Scholar
  36. 36.
    Y.M. Peng, M.J. Xu, and D.S. Alberts, Analysis and stability of retinol in plasma, J. Natl. Cancer Inst. 78:95 (1987).Google Scholar
  37. 37.
    M.E. Cullum and M.H. Zile, Quantitation of biological retinoids by HPLC: Primary internal standardization using tritiated retinoids, Anal. Biochem. 153:23 (1986).CrossRefGoogle Scholar
  38. 38.
    J.L. Napoli, Quantification of physiological levels of retinoic acid, Meth. Enzymol. 123:112 (1986).CrossRefGoogle Scholar
  39. 39.
    M. Makino-Tasaka and T. Suzuki, Quantitative analysis of retinal and 3-dehydroretinal by HPLC, Meth. Enzymol. 123:53 (1986).CrossRefGoogle Scholar
  40. 40.
    B. Stancher and F. Zonta, HPLC of the unsaponifiable from samples of marine and freshwater fish: Fractionation and identification of retinol and dehydroretinal isomers, J. Chromatogr. 287:353 (1984).CrossRefGoogle Scholar
  41. 41.
    J.G. Besner, S. Meloche, R. Leclaire, P. Band, and S. Mailhot, HPLC of Ro 10–9359 (Tigason) and its metabolite Ro 10–1670 in human plasma, J. Chromatogr. 231:467 (1982).CrossRefGoogle Scholar
  42. 42.
    U. Paravicini and A. Busslinger, Determination of etretinate and its main metabolite in human plasma using normal-phase HPLC, J. Chromatogr. Biomed. Appl. 267:359 (1983).Google Scholar
  43. 43.
    T.A. Hultin, R.G. Megta, and R.C. Moon, Simple HPLC method for the separation of retinoids including N-(4-hydroxyphenyl)-all-trans- retinamide, J. Chromatogr. Biomed. Appl. 341:187 (1985).CrossRefGoogle Scholar
  44. 44.
    D.D. Bankson, R.M. Russell, and J.A. Sadowski, Determination of retinyl esters and retinol in serum or plasma by normal-phase liquid chromatography: Method and applications, Clin. Chem. 321:35 (1986).Google Scholar
  45. 45.
    C. Ross. Separation and quantitation of retinyl esters and retinol by HPLC, Meth Enzymol. 123:68 (1986).CrossRefGoogle Scholar
  46. 46.
    P.V. Bhat and A. Lacroix, Separation and estimation of retinyl fatty acyl esters in tissues and normal rat by HPLC, J. Chromatogr. 272: 269 (1983).CrossRefGoogle Scholar
  47. 47.
    L.R. Chaudhary and E.C. Nelson, Separation of vitamin A and retinyl esters by reversed-phase HPLC, J. Chromatogr. 294:466 (1984).CrossRefGoogle Scholar
  48. 48.
    P.E. Farrow, R.F. Taylor, and L.M. Yelle, The characterization of carotenoids and retinoids by HPLC-MS-MS, Proc. 35th ASMS Conference on Mass Spectrometry and Allied Topics, p. 1084 (1987).Google Scholar
  49. 49.
    R.F. Taylor, C.R. Hinckley, D.M. Eklund, and I.G. Marenchic, Effects of saponification on carotenoids, Proc. 8th International Symposium on Carotenoids. p. 19 (1987).Google Scholar
  50. 50.
    F. Khachik, G.R. Beecher, J.T. Vanderslice, and G. Farrow, Chromatographic artifacts and peak distortion in separation of carotenoids by HPLC: Sample-solvent interactions, Proc. 8th International Symposium on Carotenoids, p. P21 (1987).Google Scholar
  51. 51.
    P.J. Arpino, Ten years of liquid chromatography-mass spectrometry, J. Chromatogr. 323:3 (1985).CrossRefGoogle Scholar
  52. 52.
    B.L. Karger and P. Vouros, A chromatography perspective of HPLC-MS, J. Chromatogr. 323:13 (1985).CrossRefGoogle Scholar
  53. 53.
    T.R. Covey, E.D. Lee, A.P. Bruins, and J.D. Henion, Liquid chromatography-mass spectrometry, Anal. Chem. 58:1451A (1986).CrossRefGoogle Scholar
  54. 54.
    F. W., McLafferty, Ed., “Tandem Mass Spectrometry”, John Wiley & Sons, New York (1983).Google Scholar
  55. 55.
    J. V., Johnson, and R. A. Yost, Tandem Mass Spectrometry for Trace Analysis, Anal. Chem. 57:758A (1985).CrossRefGoogle Scholar
  56. 56.
    M.E. Rose, Metastable ion Techniques for the Analysis of Carotenoid Isomers, In: “Carotenoid Chemistry and Biochemistry”, G. Britton and T.W. Goodwin, Eds., Pergamon, Oxford (1982).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Richard F. Taylor
    • 1
  • Paul E. Farrow
    • 1
  • Lauren M. Yelle
    • 1
  • Judith C. Harris
    • 1
  • Ingrid G. Marenchic
    • 1
  1. 1.Applied Biotechnology and Mass Spectrometry LaboratoriesArthur D. Little, Inc.CambridgeUSA

Personalised recommendations