Optical Manifestations of Berry’s Topological Phase: Classical and Quantum Aspects

  • R. Y. Chiao
  • C. K. Hong
  • P. G. Kwiat
  • H. Nathel
  • W. A. Vareka
Conference paper

Abstract

Berry’s discovery of a topological phase in quantum mechanics has led to a unified view of many seemingly disconnected topological phenomena in physics, both at the quantum and classical levels.1 Here we review some recent optical manifestations of this Aharonov-Bohm-like phase. There are now four distinct manifestations of topological phases in optics. All these phases can be thought of as anholonomies. An anholonomy can arise whenever a system is processed through a sequence of changes such that it is returned to its original state; most of the variables characterizing the system obviously return to their original values, but surprisingly certain ones may not. An example is the phase anholonomy which an electron exhibits when it returns to its original state after encircling a solenoid in the Aharonov-Bohm effect. Another example is the age anholonomy which a travelling twin experiences relative to the nontravelling twin when he returns to the Earth after a rocket trip in the twin paradox. When light is cycled through a sequence of states such that it returns to its original state, it can also acquire anholonomies at both the classical and quantum levels.

Keywords

Microwave Mani Fold Coherence Arena Mandel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Berry, Proc. Roy. Soc. (London) A392, 45 (1984);Google Scholar
  2. J. H. Hannay, J. Phys. A18, 221 (1985);MathSciNetGoogle Scholar
  3. Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987).MathSciNetCrossRefGoogle Scholar
  4. 2.
    R. Y. Chiao and Y. S. Wu, Phys. Rev. Lett 57, 933 (1986);CrossRefGoogle Scholar
  5. A. Tomita and R. Y. Chiao, Phys. Rev. Lett. 57, 937 (1986);CrossRefGoogle Scholar
  6. R.Y. Chiao, Nucl. Phys. B (Proc. Suppl.) 6, 289 (1989).Google Scholar
  7. 3.
    J. N. Ross, Opt. Quantum Electron. 16, 445 (1984);CrossRefGoogle Scholar
  8. F. D. M. Haldane, Opt. Lett. 11, 730 (1986).CrossRefGoogle Scholar
  9. 4.
    J. Anandan and L. Stodolsky, Phys. Rev. D35, 2597 (1987);MathSciNetGoogle Scholar
  10. T. F. Jordan, J. Math. Phys. 28, 1759 (1987);MathSciNetCrossRefGoogle Scholar
  11. T. F. Jordan, J. Math. Phys. 29, 2042 (1988).MathSciNetMATHCrossRefGoogle Scholar
  12. 5.
    R. Y. Chiao, A. Antaramian, K. M. Ganga, H. Jiao, S. R. Wilkinson, and H. Nathel, Phys. Rev. Lett. 60, 1214 (1988).CrossRefGoogle Scholar
  13. 6.
    S. Pancharatnam, Proc. Ind. Acad. Sci. A44, 247 (1956);MathSciNetGoogle Scholar
  14. R. Bhandari and J. Samuel, Phys. Rev. Lett. 60, 1210;Google Scholar
  15. T. H. Chyba, L. J. Wang, L. Mandel, and R. Simon, Opt. Lett. 13, 562 (1988);CrossRefGoogle Scholar
  16. R. D. Simon, H. J. Kimble, and E. C. G. Sudarshan, Phys. Rev. Lett. 61, 19 (1988);CrossRefGoogle Scholar
  17. R. Bhandari, Phys. Lett. A133, 1 (1988).Google Scholar
  18. 7.
    H. Jiao, S. R. Wilkinson, R. Y. Chiao, and H. Nathel, Phys. Rev. A39, 3475 (1989).Google Scholar
  19. 8.
    W. R. Tompkin, M. S. Malcuit, R. W. Boyd, and R. Y. Chiao (submitted to Europhys. Lett.).Google Scholar
  20. 9.
    See the special issue on squeezed states in J. Opt. Soc. Am. B4, 1450 (1987).Google Scholar
  21. 10.
    R. Gilmore, “Lie Groups, Lie Algebras, and Some of their Applications”, John Wiley & Sons, New York, 1974.MATHGoogle Scholar
  22. 11.
    R. Y. Chiao and T. F. Jordan, Phys. Lett. A132, 77 (1988);MathSciNetGoogle Scholar
  23. RY. Chiao, Nucl. Phys. B (Proc. Suppl.) 6, 327 (1989).MathSciNetMATHCrossRefGoogle Scholar
  24. 12.
    M. K. Kitano and T. Yabuzaki (preprint).Google Scholar
  25. 13.
    D. Suter, K. T. Mueller, and A. Pines, Phys. Rev. Lett. 60, 1218 (1988); L. Dabrowski and H. Grosse (preprint).Google Scholar
  26. 14.
    J. Samuel and R. Bhandari, Phys. Rev. Lett. 60, 2339 (1988).MathSciNetCrossRefGoogle Scholar
  27. 15.
    D. C. Burnham and D. L. Weinreb, Phys. Rev. Lett. 25, 84 (1970)CrossRefGoogle Scholar
  28. R. Ghosh and L. Mandel, Phys. Rev. Lett. 59, 1903 (1987);CrossRefGoogle Scholar
  29. C. K. Hong, Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987);CrossRefGoogle Scholar
  30. Z. Y. Ou and L. Mandel; Phys. Rev. Lett. 61, 50 (1988);MathSciNetCrossRefGoogle Scholar
  31. Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 61, 54 (1988);MathSciNetCrossRefGoogle Scholar
  32. P. Grangier, A. Aspect, and G. Roger, Europhys. Lett. 1, 173 (1986).CrossRefGoogle Scholar
  33. D. C. Burnham and D. L. Weinreb, Phys. Rev. Lett. 25, 84 (1970);CrossRefGoogle Scholar
  34. R. Ghosh and L. Mandel, Phys. Rev. Lett. 59, 1903 (1987);CrossRefGoogle Scholar
  35. C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987);CrossRefGoogle Scholar
  36. Z. Y. Ou and L. Mandel; Phys. Rev. Lett. 61, 50 (1988);MathSciNetCrossRefGoogle Scholar
  37. Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 61, 54 (1988);MathSciNetCrossRefGoogle Scholar
  38. P. Grangier, A. Aspect, and G. Roger, Europhys. Lett. 1, 173 (1986).CrossRefGoogle Scholar
  39. 16.
    J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989);CrossRefGoogle Scholar
  40. M. A. Horne, A. Shimony, and A. Zeilinger, Phys. Rev. Lett. 62, 2209 (1989).CrossRefGoogle Scholar
  41. 17.
    J. C. Garrison and R. Y. Chiao, Phys. Rev. Lett. 60, 165 (1988).MathSciNetCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • R. Y. Chiao
    • 1
  • C. K. Hong
    • 2
  • P. G. Kwiat
    • 1
  • H. Nathel
    • 2
  • W. A. Vareka
    • 1
  1. 1.Dept. of PhysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations