Advertisement

Factors Affecting Polyimide Lightguide Quality

  • C. Feger
  • R. Reuter
  • H. Franke

Abstract

Low loss lightguides were fabricated from three commercial polyimides of which one contains one, the others two hexafluoroisopropylidene (6F) groups. The latter utilizes the all para and the all meta isomer of the same diamine, respectively. As the number of 6F groups increases the optical losses of the corresponding lightguides decreases. In thick lightguides of the two 6F groups containing polyimides loss values below 0.1 dB/cm can be realized using optimized conditions. Two mechanisms — ordering with or without charge transfer complex for¬mation and voids or pinholes — are found to be responsible for optical losses. The second type of losses can be reduced by cure optimization. Where ordering is possible annealing leads to increased optical losses. Geometrical restraint of the ordering as in sufficiently thin films, however, leads to loss reduction for otherwise identical conditions. Losses observed in the bulk are always higher than in the top and bottom layers of the polyimide films.

Keywords

Dynamic Mechanical Thermal Analysis Optical Loss Planar Waveguide Dynamic Mechanical Thermal Analysis Polyimide Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. P. Russell, H. Gugger, and J. D. Swalen, J. Polymer Sci., Polym. Phys. Ed. 21 , 1745 (1983).CrossRefGoogle Scholar
  2. 2.
    A. K. St. Clair, T. L. St. Clair, and W. S. Slemp, in “Recent Advances In Polyintide Science and Technology,” W. D. Weber, M. R. Gupta, Editors, p. 16, SPE Mid. Hudson Section Poughkeepsie, NY, 1987.Google Scholar
  3. 3.
    H. Franke, H. Knabke, and R. Reuter, SPIE Proceedings, 682, 191 (1986).Google Scholar
  4. 4.
    C. Feger, Soc. Plast. Eng. Tech. Pap., XXXII1 , 967 (1987).Google Scholar
  5. 5.
    R. Mathisen, E. Pyun, and C. S. P. Sung, Soc. Plast. Eng. Tech. Pap. XXXIII , 1103 (1987).Google Scholar
  6. 6.
    J. Shouli, Y. Ligang, Z. Zikang, Z. Zhiming, and Z. Qiyi, Conf. Rec. 1985 Intl. Conf. Prop. Appl. Dielectr. Mat., 2, 583 (1985).Google Scholar
  7. 7.
    T. A. Gordina, B. V. Kotov, O. V. Kolninov, and A. N. Pravednikov, Vysokomol. Soyedin., B, 15 , 378 (1973).Google Scholar
  8. 8.
    C. E. Diener and J. R. Susko, in “Polyimides: Synthesis, Characterization, and Ap­plications,” K. L. Mittal, Editor, Vol. 1, p. 353, Plenum Press, New York, 1984.Google Scholar
  9. 9.
    R. Reuter, H. Franke, and C. Feger, Appl. Optics, 27 , 4565 (1988).CrossRefGoogle Scholar
  10. 10.
    R. Schriever, H. Franke, H. G. Festl, and E. Kraetzig, Polymer, 26 , 1423 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • C. Feger
    • 1
  • R. Reuter
    • 2
  • H. Franke
    • 2
  1. 1.IBM T.J. Watson Research CenterYorktown HeightsUSA
  2. 2.Fachbereich PhysikUniversität OsnabrückOsnabrückGermany

Personalised recommendations