Skip to main content

Molecular Aspects of Storage Protein and Starch Synthesis in Wheat and Rice Seeds

  • Chapter
Plant Nitrogen Metabolism

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 23))

Abstract

Seed formation in cereals is accompanied by the mobilization and transport of nitrogen from leaves and other source tissues to the developing cereal grain. Nitrogen enters the seed primarily as amino acids, of which glutamine appears to be the predominant constituent.1 It has been estimated that about 50% of the total nitrogen available in leaf and stem tissue of wheat is catabolized and transported to the developing grains2 where it is converted mainly into storage proteins. Storage proteins (defined here as any protein which serves as a nitrogen store and is packaged into protein bodies) are synthesized during the mid-stages of seed development and normally constitute about 80–90% of the total protein present in seeds. These proteins are subsequently utilized by the young developing seedling as a source of nitrogen and carbon and sometimes sulfur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. FISHER, D.B., P.K. MACNICOL. 1986. Amino acid composition along the transport pathway during grain filling in wheat. Plant Physiol. 82: 1019–1023.

    Article  Google Scholar 

  2. HARPER, L.A., P.P. SHARPE, G.W. LANGDALE, J.E. GIDDENS. 1987. Nitrogen cycling in a wheat crop: soil, plant, and aerial nitrogen transport. Agronomy J. 79: 965–973.

    Article  Google Scholar 

  3. OSBORNE, T.B. 1907. The proteins of the wheat kernel. Carnegie Inst. Washington, Washington, D.C., 119 pp.

    Google Scholar 

  4. BRIGHT, S.W.J., P.R. SHEWRY. 1983. Improvement of protein quality in cereals. In Critical Reviews in Plant Sciences. (B.V. Conger, ed.), CRC Press, Inc., Boca Raton, Florida, Vol. 1, pp. 49–92.

    Google Scholar 

  5. NELSON, O.E. 1980. Genetic control of polysaccharide and storage protein synthesis in the endosperm of barley, maize, and sorghum. Adv. Cereal Sci. Technol. 2: 41–71.

    Google Scholar 

  6. KREIS, M., P.R. SHEWRY, B.G. FORDE, J. FORDE, B.J. MIFLIN. 1985. Structure and evolution of seed storage proteins and their genes with particular reference to those of wheat, barley and rye. In Oxford Surveys of Plant Molecular and Cell Biology. (B.J. Miflin, ed.), Oxford University Press, Oxford, Vol. 2, pp. 253–317.

    Google Scholar 

  7. SHOTWELL, M.A., B.A. LARKINS. 1989. The biochemistry and molecular biology of seed storage proteins. In The Biochemistry of Plants: A Comprehensive Treatise. (A. Marcus, ed.), Academic Press, New York, Vol. 15 (in press).

    Google Scholar 

  8. KASARDA, D.D., T.W. OKITA, J.E. BERNARDIN, P.A. BAECKER, C.C. NIMMO, E.T.-L. LEW, M.D. DIETLER, F.C. GREENE. 1984. Nucleic Acid (cDNA) and amino acid sequences of α–type gliadins from wheat (Triticum aestivum). Proc. Natl. Acad. Sci. USA 81: 4712–4716.

    Article  ADS  Google Scholar 

  9. OKITA, T.W., V. CHESSBROUGH, C.D. REEVES. 1985.Evolution and heterogeneity of the α–/β–type and β–type gliadin DNA sequences. J. Biol. Chem. 260: 8203–8213.

    Google Scholar 

  10. RAFALSKI, J.A., K. SCHEETS, M. METZLER, D.M. PETERSON, C. HEDGEOTH, D.G. SÖLL. 1984. Develop– mentally regulated plant genes: the nucleotide sequence of a wheat gliadin genomic clone. EMBO J. 3: 1409–1415.

    Google Scholar 

  11. SUMMER-SMITH, M., J.A. RAFALSKI, T. SUGIYAMA, M. STOLL, D. SÖLL. 1985. Conservation and variability of wheat α/β–gliadin genes. Nucleic Acids Res. 13: 3905–3916.

    Article  Google Scholar 

  12. ANDERSON, O.D., J.C. LITTS, M.-F. GAUTIER, F.C. GREENE. 1984. Nucleic acid sequence and chromosome assignment of a wheat storage protein gene. Nucleic Acids Res. 12: 8129–8144.

    Article  Google Scholar 

  13. REEVES, C.D., T.W. OKITA. 1987. Analyses of α/β–type gliadin genes from diploid and hexaploid wheats. Gene 52: 257–266.

    Article  Google Scholar 

  14. OKITA, T.W. 1984. Identification and DNA sequence analysis of a γ–type gliadin cDNA plasmid from winter wheat. Plant Mol. Biol. 3: 325–332.

    Article  Google Scholar 

  15. SCHEETS, K., J.A. RAFALSKI., C. HEDGCOTH, D.G. SOLL.1985. Heptapeptide repeat structure of a wheat γ–gliadin. Plant Sci. Lett. 37: 221–225.

    Article  Google Scholar 

  16. RAFALSKI, J.A. 1986. Structure of wheat gamma gliadin genes. Gene 43: 221–229.

    Article  Google Scholar 

  17. FORDE, J., J.-M. MALPICA, N.G. HALFORD, P.R. SHEWRY, O.D. ANDERSON, F.C. GREENE, B.J. MIFLIN. 1985. The nucleotide sequence of a HMW glutelin subunit gene located on chromosome IA of wheat (Triticum aestivum L.). Nucleic Acids Res. 13: 6817–6832.

    Article  Google Scholar 

  18. SUGIYAMA, T., A. RAFALSKI, D. PETERSON, D. SÖLL.1985. A wheat HMW glutenin subunit gene reveals a highly repeated structure. Nucleic Acids Res. 13: 8729–8737.

    Article  Google Scholar 

  19. THOMPSON, R.D., D. BARTELS, N.P. HARBERD. 1985. Nucleotide sequence of a gene from chromosome ID of wheat encoding a HMW–glutenin subunit. Nucleic Acids Res. 13: 6833–6846.

    Article  Google Scholar 

  20. KASARDA, D.D., J.-C. AUTRAN, E.J.-L. LEW, C.C. NIMMO, P.R. SHEWRY. 1983. N-terminal amino acid sequences of ω-gliadin and ω-secalins: implications for the evolution of prolamin genes. Biochim. Biophys. Acta 747: 138–150.

    Article  Google Scholar 

  21. COLOT, V., L.S. ROBERT, T.A. KAVANAGH, M.W. BEVAN, R.D. THOMPSON. 1987. Localization of sequences in wheat endosperm protein genes which confer tissue–specific expression in tobacco. EMBO J. 6: 3559–3564.

    Google Scholar 

  22. AN, G., P.R. EBERT, B.-Y. YI, C.-H. CHOI. 1986. Both TATA box and upstream regions are required for the nopaline synthase promoter activity in transformed tobacco cells. Mol. Gen. Genet. 203: 245–250.

    Article  Google Scholar 

  23. DYNAN, W.S., R. TJIAN. 1985. Control of eukaryotic messenger RNA synthesis by sequence–specific DNA binding proteins. Nature 316: 774–778.

    Article  ADS  Google Scholar 

  24. MAIER, U.-G., J.W.S. BROWN, L.M. SCHMITZ, M. SCHWALL, G. DIETRICH, G. FEIX. 1988. Mapping of tissue-dependent and independent protein binding sites to the 5’ upstream region of a zein gene. Mol. Gen. Genet. 212: 241–245.

    Article  Google Scholar 

  25. CHEN, Z.-L., N.-S. PAN, R.N. BEACHY. 1988. A DNA sequence element that confers seed-specific enhancement to a constitutive promoter. EMBO J. 7: 297–302.

    Google Scholar 

  26. YAMAGATA, H., T. SUGIMOTO, K. TANAKA, Z. KASAI. 1982. Biosynthesis of storage proteins in developing rice seeds. Plant Physiol. 70: 1094–1100.

    Article  Google Scholar 

  27. KRISHNAN, H.B., T.W. OKITA. 1986. Structural relationships among rice glutelin polypeptides. Plant Physiol. 81: 748–753.

    Article  Google Scholar 

  28. LUTHE, D.S. 1983. Storage protein accumulation in developing rice (Oryza sativa L.) seeds. Plant Sci. Lett. 32: 147–158.

    Article  Google Scholar 

  29. ZHAO, W.M., J.A. GATEHOUSE, D. BOULTER. 1983. The purification and partial amino acid sequence of a polypeptide from the glutelin fraction of rice grains; homology to pea legumin. FEBS Lett. 162: 96–102.

    Article  Google Scholar 

  30. WEN, T.-N., D.S. LUTHE. 1985. Biochemical characterization of rice glutelin. Plant Physiol. 78: 172–177.

    Article  Google Scholar 

  31. OKITA, T.W., H.B. KRISHNAN, W.T. KIM. 1988. Immunological relationships among the major seed proteins of cereals. Plant Science (Shannon) 57: 103–111.

    Article  Google Scholar 

  32. TAKAIWA, F., S. KIKUCHI, K. OONO. 1987. A rice glutelin gene family — A major type of glutelin mRNAs can be divided into two classes. Mol. Gen. Genet. 208: 15–22.

    Article  Google Scholar 

  33. HIGUCHI, W., C. FUKAZAWA. 1987. A rice glutelin and a soybean glycinin have evolved from a common ancestral gene. Gene 55: 245–253.

    Article  Google Scholar 

  34. STASWICK, P.E., M.A. HERMODSON, N.C. NIELSEN. 1981. Identification of the acidic and basic subunit complexes of glycinin. J. Biol. Chem. 256: 8752–8755.

    Google Scholar 

  35. ARGOS, P., S.V.L. NARAYANA, N.C. NIELSEN. 1985. Structural similarity between legumin and vicilin storage proteins from legumes. EMBO J. 4: 1111–1117.

    Google Scholar 

  36. KIM, W.T., T.W. OKITA. 1988. Nucleotide and primary sequence of a major rice prolamine. FEBS Lett. 231: 308–310.

    Article  Google Scholar 

  37. KIM, W.T., T.W. OKITA. 1988. Structure, expression, and heterogeneity of the rice seed prolamines. Plant Physiol. 88: 649–655.

    Article  Google Scholar 

  38. TAKAIWA, F., H. EBINUMA, S. KIKUCHI, K. OONO. 1987. Nucleotide sequence of a rice glutelin gene. FEBS Lett. 221: 43–47.

    Article  Google Scholar 

  39. LYCETT, G.W., R.R.D. CROY, A.H. SHIRSAT, D. BOULTER. 1984. The complete nucleotide sequence of a legumin gene from pea (Pisum sativum L.). Nucleic Acids Res. 12: 4493–4506.

    Article  Google Scholar 

  40. REEVES, C.D., H.B. KRISHNAN, T.W. OKITA. 1986. Gene expression in developing wheat endosperm. Plant Physiol. 82: 34–40.

    Article  Google Scholar 

  41. FABIJANSKI, S., I. ALTOSAAR. 1985. Evidence for translational control of storage protein biosynthesis during embryogenesis of Avena sativa L. (oat endosperm). Plant Mol. Biol. 4: 211–218.

    Article  Google Scholar 

  42. KRISHNAN, H.B., V.R. FRANCESCHI, T.W. OKITA. 1986. Immunochemical studies on the role of the Golgi complex in protein–body formation in rice seeds. Planta 169: 471–480.

    Article  Google Scholar 

  43. LARKINS, B.A., W.T. HURKMAN. 1978. Synthesis and deposition of protein bodies of maize endosperm. Plant Physiol. 62: 256–263.

    Article  Google Scholar 

  44. YAMAGATA, H., K. TANAKA. 1986. The site of synthesis and accumulation of rice storage proteins. Plant Cell Physiol. 27: 135–145.

    Google Scholar 

  45. CHRISPEELS, M.J. 1985. The role of the Golgi apparatus in the transport and post–translational modification of vacuolar (protein body) proteins. Op. cit. Reference 6, pp. 43–68.

    Google Scholar 

  46. TAYLOR, J.R.N., L. SCHUSSLER, N.v.d.W. 1985. Protein body formation in the starch endosperm of developing Sorghum bicolor (L.) moench seeds. S. Afr. J. Bot. 51: 35–40.

    Google Scholar 

  47. CAMPBELL, W.P., J.W. LEE, T.P. O’BRIEN, M.G. SMART. 1981. Endosperm morphology and protein body formation in developing wheat grain. Aust. J. Plant Physiol. 8: 5–19.

    Article  Google Scholar 

  48. MIFLIN, B.J., S.R. BURGESS, P.R. SHEWRY. 1981. The development of protein bodies in the storage tissues of seeds: subcellular separation of homogenates of barley, maize and wheat endosperm and pea cotyledons. J. Exp. Bot. 32: 199–219.

    Article  Google Scholar 

  49. PARKER, M.L., C.R. HAWES. 1982. The Golgi apparatus in developing endosperm of wheat (Triticum aestivum L.). Planta 154: 277–283.

    Article  Google Scholar 

  50. BECHTEL, D.B., B.D. BARNETT. 1986. A freeze–fracture study of storage protein accumulation in unfixed wheat starch endosperm. Cereal Chem. 63: 232–240.

    Google Scholar 

  51. BECHTEL, D.B., R.L. GAINES, Y. POMERANZ. 1982. Protein secretion of wheat endosperm: formation of the matrix protein. Cereal Chem. 59: 336–343.

    Google Scholar 

  52. KIM, W.T., V.R. FRANCESCHI, H.B. KRISHNAN, T.W. OKITA. 1988. Formation of wheat protein bodies: involvement of the Golgi apparatus in gliadin transport. Planta 173: 173–182.

    Article  Google Scholar 

  53. MUNRO, S., H.R.B. PELHAM. 1987. A C–terminal signal prevents secretion of luminal ER proteins. Cell 48: 811–907.

    Article  Google Scholar 

  54. MARKS, M.D., J.S. LINDELL, B.A. LARKINS. 1985. Nucleotide sequence analysis of zein mRNAs from maize endosperm. J. Biol. Chem. 16: 451–459.

    Google Scholar 

  55. PFEFFER, S.R., J.E. ROTHMAN. 1987. Biosynthetic protein transport and sorting by the endosplasmic reticulum and golgi. Annu. Rev. Biochem. 56: 829–852.

    Article  Google Scholar 

  56. HOFFMAN, L.M., D.D. DONALDSON, R. BOOKLAND, K. RASHKA, E.M. HERMAN. 1987. Synthesis and protein body deposition of maize 15-kd zein in transgenic tobacco seeds. EMBO J. 6: 3213–3221.

    Google Scholar 

  57. TAGUE, B.W., M.J. CHRISPEELS. 1987. The plant vacuolar protein, phytohemagglutinin, is transported to the vacuole of transgenic yeast. J. Cell Biol. 105: 1971–1979.

    Article  Google Scholar 

  58. PERNOLLET, J.C., J. MOSSÉ. 1983. Secondary structure prediction of seed storage protein genes. Int. J. Pept. Protein Res. 22: 456–463.

    Article  Google Scholar 

  59. PREISS, J. 1982. Regulation of the biosynthesis and degradation of starch. Annu. Rev. Plant Physiol. 33: 431–454.

    Article  Google Scholar 

  60. HANNAH, L.C., D.M. TUSCHAU, R.J. MANS. 1980. Multiple forms of maize endosperm ADP-glucose pyrophosphorylase and their control by Shrunken-2 and Brittle-2. Genetics 95: 961–970.

    Google Scholar 

  61. LIN, T.-P., T. CASPAR, C. SOMERVILLE, J. PREISS. 1988. Isolation and characterization of a starchless mutant of Arabidopsis thaliana (L.) Heynh lacking ADPglucose pyrophosphorylase activity. Plant Physiol. 86: 1131–1135.

    Article  Google Scholar 

  62. HELDT, H.W., C.J. CHON, D. MARONDE, Z.S. STANKOVIC, D.A. WLAKER, A. KRAMINER, M.R. KIRK, U. HEBER. 1977. Role of orthophosphate and other factors in the regulation of starch formation in leaves and isolated chloroplasts. Plant Physiol. 59: 1146–1155.

    Article  Google Scholar 

  63. DICKINSON, D.B., J. PREISS. 1969. ADPglucose pyrophosphorylase from maize endosperm. Arch. Biochem. Biophys. 130: 119–128.

    Article  Google Scholar 

  64. PREISS, J., M. BLOOM, M. MORELL, V.L. KNOWLES, W.C. PLAXTON, T.W. OKITA, R. LARSEN, A.C. HARMON, C. PUTNAMEVANS. 1987. Regulation of starch synthesis: enzymological and genetic studies. In Tailoring Genes for Crop Improvement. (G. Bruening, J. Harada, T. Kosuge, A. Hollaender, eds.), Plenum Publishing Corp., New York, pp. 133–152.

    Google Scholar 

  65. SOWOKINOS, J.R., J. PREISS. 1982. Pyrophosphory–lases in Splanum tuberosum. II. Purification, physical, and catalytic properties of ADPglucose pyrophosphorylase in potatoes. Plant Physiol. 69: 1459–1466.

    Article  Google Scholar 

  66. PREISS, J. 1984. Bacterial glycogen synthesis and its regulation. Annu. Rev. Microbiol. 38: 419–458.

    Article  Google Scholar 

  67. MORELL, M.K., M. BLOOM, V. KNOWLES, J. PREISS. 1987. Subunit structure of spinach leaf ADPglucose pyrophosphorylase. Plant Physiol. 85: 182–187.

    Article  Google Scholar 

  68. MORELL, M., M. BLOOM, R. LARSEN, T.W. OKITA, J. PREISS. 1987. II. Biochemistry and molecular biology of starch synthesis. In Plant Gene Systems and Their Biology. (J. Key, L. Mcintosh, eds.), Alan R. Liss, Inc., pp. 227– 242.

    Google Scholar 

  69. KRISHNAN, H.B., C.D. REEVES, T.W. OKITA. 1986. ADPglucose pyrophosphorylase is encoded by different mRNA transcripts in leaf and endosperm of cereals. Plant Physiol. 81: 642–645.

    Article  Google Scholar 

  70. BAECKER, P.A., C.E. FURLONG, J. PREISS. 1983. Biosynthesis of bacterial glycogen: primary structure of Escherichia coli ADPglucose synthetase as deduced from the nucleotide sequence of the glgC gene. J. Biol. Chem. 258: 5084–5088.

    Google Scholar 

  71. KARLINN-EUMANN, G.A., E.M. TOBIN. 1986. Transit peptides of nuclear-encoded chloroplast proteins share a common amino acid framework. EMBO J. 5: 9–13.

    Google Scholar 

  72. KEITH, B., N.-H. CHUA. 1986. Monocot and dicot pre-mRNAs are processed with different efficiencies in transgenic tobacco. EMBO J. 5: 2419– 2425.

    Google Scholar 

  73. UENG, P., G. GALILI, V. SAPANARA, P.B. GOLDSBROUGH, P. DUBE, R.N. BEACHY, B.A. LARKINS. 1988. Expression of a maize storage protein gene in petunia plants is not restricted to seeds. Plant Physiol. 86: 1281–1285.

    Article  Google Scholar 

  74. FORDE, B.G., A. HEYWORTH, J. PYWELL, M. KREIS.1985. Nucleotide sequence of a Bl hordein gene and the identification of possible upstream regulatory elements in endosperm storage protein genes from barley, wheat and maize. Nucleic Acids Res. 13: 7327–7339.

    Article  Google Scholar 

  75. LANGRIDGE, P., G. FEIX. 1983. A zein gene of maize is transcribed from two widely separated promoter regions. Cell 34: 1015–1022.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Okita, T. et al. (1989). Molecular Aspects of Storage Protein and Starch Synthesis in Wheat and Rice Seeds. In: Poulton, J.E., Romeo, J.T., Conn, E.E. (eds) Plant Nitrogen Metabolism. Recent Advances in Phytochemistry, vol 23. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0835-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0835-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8106-1

  • Online ISBN: 978-1-4613-0835-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics