Advertisement

The Use of Mutants Lacking Glutamine Synthetase and Glutamate Synthase to Study their Role in Plant Nitrogen Metabolism

  • Peter J. Lea
  • Ray D. Blackwell
  • Alan J. S. Murray
  • Knenneth W. Joy
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 23)

Abstract

It is now generally accepted that at least 90% of the ammonia in higher plants is assimilated via the glutamate synthase cycle as outlined in Figure 1.1,2 Following the incorporation of ammonia into glutamine by the enzyme glutamine synthetase (GS), the nitrogen can be transferred to a wide range of different compounds. Nitrate or ammonia taken up through the roots is eventually assimilated through the glutamate synthase pathway. In C3 plants during photorespiration, ammonia released in the mitochondrion from the conversion of glycine to serine is recycled into the chloroplast for reassimilation (Fig. 2).3 Estimates of the flux through the photorespiratory pathway are varied and values ranging from 15 to 75% of the rate of carbon assimilation have been obtained.4 More recent evidence suggests that the photorespiration rate is closer to 40% of the rate of net CO2 fixation5,6 (see later section). On the other hand, the rate of primary nitrogen assimilation in barley can be as low as 3.0 mol gFW-1 h-1 or approximately 1% of the net rate of CO2 fixation.7 The amount of NH3 derived from photorespiration within C3 plant leaves is, therefore, quantitatively the major flux of nitrogen within plant metabolism.

Keywords

Glutamine Synthetase Glutamine Synthetase Activity Ammonia Assimilation Glycine Decarboxylase Glyoxylate Aminotransferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MIFLIN, B.J., P.J. LEA. 1976. The pathway of nitrogen assimilation in plants. Phytochemistry 15: 873–885.CrossRefGoogle Scholar
  2. 2.
    MIFLIN, B.J., P.J. LEA. 1980. Ammonia assimilation. In The Biochemistry of Plants: A Comprehensive Treatise. (B.J. Miflin, ed.), Academic Press, New York, Vol. 5, pp. 169–202.Google Scholar
  3. 3.
    KEYS, A. J., I. F. BIRD, M. J. CORNELIUS, P. J. LEA, R. M. WALLSGROVE, B.J. MIFLIN. 1978. The photorespiratory nitrogen cycle. Nature 275:741–743.ADSCrossRefGoogle Scholar
  4. 4.
    ZELITCH, I. 1979 Photorespiration studies with whole tissue. In Encyclopaedia of Plant Physiology. (M. Gibbs, E. Latzko, eds.), Springer Verlag, Berlin, Vol. 6, pp. 353–367.Google Scholar
  5. 5.
    SOMERVILLE, S.C., C.R. SOMERVILLE. 1983. Effect of oxygen and carbon dioxide on photorespiratory flux determined from glycine accumulation in a mutant of Arabidopsis. J. Exp. Bot. 34: 415–421.CrossRefGoogle Scholar
  6. 6.
    GERBAUD, A., M. ANDRE. 1987. An evaluation ofrecycling in measurements of photorespiration. Plant Physiol. 83: 933–937.CrossRefGoogle Scholar
  7. 7.
    MURRAY, A.J.S., P.G. AYRES. 1986. Studies on nitrate reductase activity and iji vitro nitrate reduction in barley leaves infected by Erysiphe graminis. New Phytol. 104: 367–372.Google Scholar
  8. 8.
    LEA, P.J., B.J. MIFLIN. 1974. An alternativeroute for nitrogen assimilation in higher plants. Nature 251: 614–616.ADSCrossRefGoogle Scholar
  9. 9.
    LOYOLA-VARGAS, V.M., E.S. JIMENEZ. 1984.Differential role of glutemate dehydrogenase in nitrogen metabolism of maize tissues. Plant Physiol. 76, 536–540.CrossRefGoogle Scholar
  10. 10.
    SRISTAVA, H.S., R.P. SINGH. 1987. Role andregulation of L-glutamate dehydrogenase activity in higher plants. Phytochemistry 26: 597–610.CrossRefGoogle Scholar
  11. 11.
    YAMAYA, T., A. OAKS. 1987. Synthesis of glutamate by mitochondria - an anaplerotic function for glutamate dehydrogenase. Physiol. Plant. 70: 749–756.CrossRefGoogle Scholar
  12. 12.
    RHODES, D., D.G. BRUNK. J.R. MAGALHAES. 1989. In Plant Nitrogen Metabolism. (E.E. Conn, ed.), Plenum Press, New York, pp. 191–226.Google Scholar
  13. 13.
    STEWART, G.R., D. RHODES. 1976. Evidence for theassimilation of ammonia via the glutamine pathway in nitrate-grown Lemna minor L. FEBS Lett. 64: 296–299.CrossRefGoogle Scholar
  14. 14.
    FENTEM, P.A., P.J. LEA, G.R. STEWART. 1983. Action of inhibitors of ammonia assimilation on amino acid metabolism in Hordeum vulgare L. (Golden Promise). Plant Physiol. 71: 502–506.CrossRefGoogle Scholar
  15. 15.
    RHODES, D., L. DEAL, P. HAWORTH, G.C. JAMIESON, G.C. REUTER, M.C. ERICSON.1986. Amino acid metabolism of Lemna minor L. I. Responses to methionine sulphoximine. Plant Physiol. 82: 1057–1062.CrossRefGoogle Scholar
  16. 16.
    LEA, P.J., S.M. RIDLEY. 1989. Glutamine synthetaseand its inhibition. In Herbicides and Plant Metabolism. (A.D. Dodge, ed.), Cambridge University Press, Cambridge, pp. 137–167.Google Scholar
  17. 17.
    WRAY, J.L. 1986. The molecular genetics of higher plant nitrate assimilation. In A Genetic Approach to Plant Biochemistry. (A.D. Blonstein, P.J. King, eds.), Springer Verlag, New York, pp. 101–157.CrossRefGoogle Scholar
  18. 18.
    KLEINHOFFS, A. 1989. Genetics and molecular biology of higher plant nitrate reductases. In Plant Nitrogen Metabolism. (E.E. Conn, ed.), Plenum Press, New York, pp. 117–155.Google Scholar
  19. 19.
    McCOURT, P., C.R. SOMERVILLE. 1987. The use of mutants for the study of plant metabolism. In The Biochemistry of Plants. (D.D. Davies, ed.), Academic Press, New York, Vol. 13, pp. 33–64.Google Scholar
  20. 20.
    LAST, R.L. G.R. FINK. 1988. Tryptophan-requiringmutants of the plant Arabidopsis thaliana. Science 240: 305–310.ADSCrossRefGoogle Scholar
  21. 21.
    SOMERVILLE, C.R., W.L. OGREN. 1973. A phospho-glycolate phosphatase-deficient mutant of Arabidopsis. Nature 280: 833–836.ADSCrossRefGoogle Scholar
  22. 22.
    SOMERVILLE, C.R., W.L. OGREN. 1982. Genetic modification of photorespiration. Trends Biochem. Sci. 7: 171–174.CrossRefGoogle Scholar
  23. 23.
    SOMERVILLE, C.R. 1986. Analysis of photosynthesis and photorespiration using mutants of higherplants and algae. Annu. Rev. Plant Physiol. 37: 467–507.CrossRefGoogle Scholar
  24. 24.
    KEYS, A.J. 1986. Rubisco, its role in photorespiration. Philos. Trans. R. Soc. Lond. B. Biol. 313: 325–336.ADSCrossRefGoogle Scholar
  25. 25.
    BLACKWELL, R.D., A.J.S. MURRAY, P.J. LEA, A.C. KENDALL, N.P. HALL, J.C. TURNER, R.M. WALLSGROVE. 1988.The value of mutants unable to carry out photorespiration. Photosyn. Res. 16: 155–176.CrossRefGoogle Scholar
  26. 26.
    SOMERVILLE, C.R. 1984. The analysis of photosyn-thetic carbon dioxide fixation and photorespiration by mutant selection. In Oxford Surveys of Plant Molecular and Cell Biology. (B.J. Miflin, ed.), Oxford University Press, Oxford, Vol. 1, pp. 103–131.Google Scholar
  27. 27.
    SINGH, P., P.A. KUMAR, Y.P. ABROL, M.S. NAIK. 1985.Photorespiratory nitrogen cycle — a critical evaluation. Physiol. Plant. 66: 169–176.CrossRefGoogle Scholar
  28. 28.
    SOMERVILLE, C.R., W.L. OGREN. 1981. Mutants of the cruciferous plant Arabidopsis thaliana lacking glycine decarboxylase. Biochem. J. 202: 373–380.Google Scholar
  29. 29.
    SOMERVILLE, C.R., W.L. OGREN. 1981. Photorespira-tion-deficient mutants of Arabidopsis thaliana lacking mitochondrial serine transhydroxy-methylase activity. Plant Physiol. 67: 666–671.CrossRefGoogle Scholar
  30. 30.
    KENDALL, A.C., A.J. KEYS, J.C. TURNER, P.J. LEA, B.J. MIFLIN. 1983. The isolation and characterization of a catalase-deficient mutant of barley. Planta 159: 505–511.CrossRefGoogle Scholar
  31. 31.
    LEA, P.J., R.D. BLACKWELL, A.J.S. MURRAY. 1988.The isolation of mutants of barley lacking hydroxypyruvate reductase and glutamate:glyoxylate aminotransferase activity. AFRC Meeting on Photosynthesis, AFRC, London, p. 84Google Scholar
  32. 32.
    WALLSGROVE, R.M., J.C. TURNER, N.P. HALL, A.C. KENDALL, S.W.J. BRIGHT. 1987. Barley mutants lacking chloroplast glutamine synthetase – biochemical and genetical analysis. Plant Physiol. 83: 155–158.CrossRefGoogle Scholar
  33. 33.
    BLACKWELL, R.D., A.J.S. MURRAY, P.J. LEA. 1987. Inhibition of photosynthesis in barley with decreased levels of glutamine synthetase activity. J. Exp. Bot. 38: 1799–1809.CrossRefGoogle Scholar
  34. 34.
    BLACKWELL, R.D., A.J.S. MURRAY, P.J. LEA, K.W. JOY.1988. Sucrose synthesis and N metabolism in a photorespiratory mutant of barley deficient in both chloroplastic glutamine synthetase and ferredoxin-dependent glutamate synthase. J. Exp. Bot. 39: 845–858.CrossRefGoogle Scholar
  35. 35.
    WALLSGROVE, R.M., P.J. LEA, B.J. MIFLIN. 1979.Distribution of the enzymes of nitrogen assimilation within the pea leaf. Plant Physiol. 63: 232–236.CrossRefGoogle Scholar
  36. 36.
    OAKS, A., B. HIREL. 1985. Nitrogen metabolism in roots. Annu. Rev. Plant Physiol. 36: 345–365.CrossRefGoogle Scholar
  37. 37.
    KENDALL, A.C., R.M. WALLSGROVE, N.P. HALL, J.C. TURNER, P.J. LEA. 1986. Carbon and nitrogen metabolism in barley (Hordeum vulgare) mutants lacking ferredoxin-dependent glutamate synthase. Planta 168: 316–323.CrossRefGoogle Scholar
  38. 38.
    BLACKWELL, R.D., A.J.S. MURRAY, P.J. LEA. 1987.The isolation and characterization of photorespiratory mutants of barley and pea. In Progress in Photosynthesis Research. (J. Biggins, ed.), Martinus Nijhoff, Drodrecht, Vol. 3, pp. 625–628.Google Scholar
  39. 39.
    WALLSGROVE, R.M., P.J. LEA, B.J. MIFLIN. 1982.The development of NAD(P)H-dependent and ferredoxin-dependent glutamate synthase in greening pea and barley leaves. Planta 154: 473–476.CrossRefGoogle Scholar
  40. 40.
    SOMERVILLE, S.C., W.L. OGREN. 1983. An Arabidopsisthaliana mutant defective in chloroplast dicarboxylate transport. Proc. Nat. Acad. Sci. USA 80: 1290–1294.ADSCrossRefGoogle Scholar
  41. 41.
    WALLSGROVE, R.M., A.C. KENDALL, N.P. HALL, J.C. TURNER, P.J. LEA. 1986. Carbon and nitrogen metabolism in a barley (Hordeum vulgare) mutant with impaired chloroplast dicarboxylate transport. Planta 168: 324–329.CrossRefGoogle Scholar
  42. 42.
    SOMERVILLE, S.C., SOMERVILLE, C.R. 1985. A mutant Arabidopsis thaliana deficient in chloroplast dicarboxylate transport is missing an envelope protein. Plant Sci. Lett. 37: 317–320.Google Scholar
  43. 43.
    WOO, K.C., U.I. FLUGGE, H.W. HELDT. 1987. A two-translocator model for the transport of 2- oxoglutarate and glutamate in chloroplasts during ammonia assimilation in the light. Plant Physiol. 84: 624–632.CrossRefGoogle Scholar
  44. 44.
    SOMERVILLE, C.R., W.L. OGREN. 1980. The inhibitionof photosynthesis in Arabidopsis mutants lacking in glutamate synthase activity. Nature 286: 257–259.ADSCrossRefGoogle Scholar
  45. 45.
    McNALLY, S.F., B. HIREL, P. GADAL, A.F. MANN, G.R. STEWART. 1983. Glutamine synthetases of higher plants. Evidence for specific isoform content related to their possible physiological role and their compartmentation within the plant. Plant Physiol. 72: 22–25.CrossRefGoogle Scholar
  46. 46.
    McNALLY, S.F., B. HIREL. 1983. Glutamine synthetase is oforms in higher plants. Physiol. Veg. 21: 761–774.Google Scholar
  47. 47.
    LARA, M., H. PORTA, J. PADILLA, J. FOLCH, F. SANCHEZ.1984. Heterogeneity of glutamine synthetase polypeptides in Phaseolus vulgaris L. Plant Physiol. 76: 1019–1023.CrossRefGoogle Scholar
  48. 48.
    CULLIMORE, J.V., C. GEBHARDT, R. SAARELAINEN, B. JMIFLIN, K.B. IDLER, R.F. BARKER. 1984. Glutamine synthetase of Phaseolus vulgaris L.: Organ-specific expression of a multigene family. J. Mol. Appl. Genet. 2: 589–599.Google Scholar
  49. 49.
    GEBHARDT, C., J.E. OLIVER, B.G. FORDE, R. SAARELAINEN, B.J. MIFLIN. 1986. Primary structure and differential expression of glutamine synthetase genes in nodules, roots and leaves of Phaseolus vulgaris. EMBO J. 5: 1429–1435.Google Scholar
  50. 50.
    TINGEY, S.V., G.M. CORUZZI. 1987. Glutaminesynthetase of Nicotiana plumbaginifolia: cloning and in vivo expression. Plant Physiol. 84: 366–373.CrossRefGoogle Scholar
  51. 51.
    BENNETT, M.J., D.A. LIGHTFOOT, J.V. CULLIMORE.1988. Glutamine synthetase cDNA sequences and subunit identification of the Phaseolus vulgaris L. multigene family. Mol. Gen. Genet, (in press).Google Scholar
  52. 52.
    WALLSGROVE, R.M. A.J. KEYS, I.F. BIRD, M.J. CORNELIUS, P.J. LEA, B.J. MIFLIN. 1980. The location of glutamine synthetase in leaf cells and its role in the reassimilation of ammonia released in photorespiration. J. Exp. Bot. 31: 1005–1017.CrossRefGoogle Scholar
  53. 53.
    WALTERS, D.R., P.G. AYRES. 1983. Changes in nitrogen utilization and enzyme activities associated with CO2 exchanges in healthy leaves of powdery mildew infected barley. Plant Path. 23: 447–459.Google Scholar
  54. 54.
    VEZINA, L., H.J. HOPE, K.W. JOY. 1987. Isoenzymesof glutamine synthetase in roots of pea (Pisum sativum L. cv. Little Marvel) and alfalfa (Medicago media Pers cv. Saranac). Plant Physiol. 83: 58–62.CrossRefGoogle Scholar
  55. 55.
    IKEDA, M., OGREN. W.L. HAGEMAN, R.H. 1984. Effectof methionine sulphoximine on photosynthetic carbon metabolism in wheat. (Triticum aestivum) cv. Poland) leaves. Plant Cell Physiol. 25: 447–452.Google Scholar
  56. 56.
    WALKER, K.A., A.J. KEYS, C.V. GIVAN. 1984. Effect of L-methionine sulphoximine on the products of photosynthesis in wheat. (Triticum aestivum) leaves. J. Exp. Bot. 35, 1800–1810.CrossRefGoogle Scholar
  57. 57.
    KROGMAN, D.W., A.T. JAGENDORF, M. AVRON. 1959.Uncouplers of spinach chloroplast photosynthetic phosphorylation. Plant Physiol. 34: 272–277.CrossRefGoogle Scholar
  58. 58.
    SLOVACEK, R.E., G. HIND. 1981. Correlation between photosynthesis and the transthylakoid proton gradient. Biochim. Biophys. Acta 635: 393–404.CrossRefGoogle Scholar
  59. 59.
    SIVAK, M.N., P.J. LEA, R.D. BLACKWELL, A.J.S. MURRAY, N.P. HALL, A.C. KENDALL, J.C. TURNER, R.M. WALLSGROVE.1988. Some effects of oxygen on photosynthesis by photorespiratory mutants of barley (Hordeum vulgare L.). J. Exp. Bot. 39: 655–666.CrossRefGoogle Scholar
  60. 60.
    MUHITCH, M., J.S. FLETCHER. 1983. Influence ofmethionine sulphoximine on photosynthesis in isolated chloroplasts. Photosynth. Res. 4: 241–244.Google Scholar
  61. 61.
    LIANG, Z., A.H.C. HUANG. 1983. Metabolism ofglycolate and glyoxylate in intact spinach leaf peroxisomes. Plant Physiol. 73: 147–152.CrossRefGoogle Scholar
  62. 62.
    ANDERSON, I.W., V.S. BUTT. 1986. Permeability oflettuce leaf peroxisomes to photorespiratory metabolites. Biochem. Soc. Trans. 14: 106–107.Google Scholar
  63. 63.
    HALL, N.P., A.C. KENDALL, P.J. LEA, J.C. TURNER, R.M. WALLSGROVE. 1987. Characteristics of a photorespiratory mutant of barley (Hordeum vulgare) deficient in phosphoglycolate phosphatase. Photosynth. Res. 11: 89–96.CrossRefGoogle Scholar
  64. 64.
    CHASTAIN, C.J., W.L. OGREN. 1985. Photorespiration-induced reduction of ribulose bisphosphate carboxylase activation level. Plant Physiol. 77: 851–856.CrossRefGoogle Scholar
  65. 65.
    LEEGOOD, R.C., M.J. ADCOCK, C.A. LABATE, A.J.S. MURRAY, R.D. BLACKWELL, P.J. LEA. 1987. Regulation of photosynthetic carbon metabolism following thetransition from 2% to 20% oxygen in photorespiratory mutants of barley. AFRC Meeting on Photosynthesis, AFRC, London, p. 82Google Scholar
  66. 66.
    IRELAND, R.J., K.W. JOY. 1983. Purification and properties of an asparagine aminotransferase from Pisum sativum leaves. Arch. Biochem. Biophys. 223: 291–296.CrossRefGoogle Scholar
  67. 67.
    MURRAY, A.J.S., R.D. BLACKWELL, P.J. LEA. 1987. Photorespiratory donors aminotransferase specificity and photosynthesis in a mutant of barley deficient in serine:glyoxylate aminotransferase activity. Planta 172: 106–113.CrossRefGoogle Scholar
  68. 68.
    TA, T.C., K.W. JOY. 1986. Metabolism of somamino acids in relation to the photorespiration cycle of pea leaves. Planta 169: 117–122.CrossRefGoogle Scholar
  69. 69.
    SIECIECHOWICZ, K.A., K.W. JOY, R.J. IRELAND. 1988.The metabolism of asparagine in plants. Photochemistry 27: 663–671.CrossRefGoogle Scholar
  70. 70.
    BETSCHE, T. 1983. Aminotransfer from alanine andglutamate to glycine and serine during photorespiration in oat leaves. Plant Physiol. 71: 961–965.CrossRefGoogle Scholar
  71. 71.
    TOLBERT, N.E. 1980. Microbodies – peroxisomes and glyoxysomes. In The Biochemistry of Plants: A comprehensive treatise. (N.E. Tolbert, ed.), Academic Press, New York, Vol. 1, pp. 359–388.Google Scholar
  72. 72.
    REHFIELD, D.W., N.E. TOLBERT. 1970. Aminotransferases in peroxisomes from spinach leaves. J. Biol. Chem. 247: 4803–4811.Google Scholar
  73. 73.
    MURRAY, A.J.S., P.G. AYRES. 1986. Uptake and translocation of nitrogen by mildewed barley seedlings. New Phytol. 104: 355–365.CrossRefGoogle Scholar
  74. 74.
    SOMERVILLE, C.R., W.L. OGREN. 1980. Photorespiration mutants of Arabidopsis thaliana deficient in serine-glyoxylateaminotransferase activity. Proc. Nat. Acad. Sci. USA 77: 2684–2687.ADSCrossRefGoogle Scholar
  75. 75.
    WALKER, J.L., D.J. OLIVER. 1986. Glycine decarboxylase multienzyme complex: Purification and partial characterization from pea leaf mitochondria. J. Biol. Chem. 261: 2214–2221.Google Scholar
  76. 76.
    NEUBURGER, M., J. BOURGUIGNON, R. DOUCE. 1986.Isolation of a large complex from the matrix of pea leaf mitochondria involved in rapid transformation of glycine into serine. FEBS Lett. 207: 18–22.CrossRefGoogle Scholar
  77. 77.
    BOURGUIGNON, J., M. NEUBURGER, R. DOUCE. 1988.Resolution and characterization of the glycine cleavage reaction in pea leaf mitochondria. Biochem. J. 255: 169–178.Google Scholar
  78. 78.
    BLACKWELL, R.D., A.J.S. MURRAY, P.J. LEA. 1988.Mutations of photorespiratory CO2 evolution in the mitochondrial conversion of glycine to serine. AFRC Meeting on Photosynthesis, AFRC, London, p. 78.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Peter J. Lea
    • 1
  • Ray D. Blackwell
    • 1
  • Alan J. S. Murray
    • 2
  • Knenneth W. Joy
    • 3
  1. 1.Division of Biological SciencesUniversity of LancasterLancasterUK
  2. 2.William Grants and Sons LtdThe Girvan DistilleryGirvan, AyrshireUK
  3. 3.Department of BiologyCarleton UniversityOttawaCanada

Personalised recommendations