Skip to main content

Renal Metabolism

  • Chapter
Contemporary Nephrology

Abstract

As in previous editions, the authors have decided to discuss selected aspects of renal metabolism rather than to attempt a survey of the literature for the past several years. Accordingly, in the present chapter, an extensive discussion on the effects of acidosis on renal gene expression is included because of the application of methods in molecular biology to the study of the kidney. Selected aspects of renal substrate metabolism will also be discussed, namely, intrarenal heterogeneity of metabolic pathways, serine metabolism, ketone body metabolism, and citrate transport and metabolism. In addition, the section on adenosine will cover new information with regard to adenosine transport across epithelial cell membranes and localization of adenosine receptors in the kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guder, W.G., Wagner, S., and Wirthensohn, G., 1986, Metabolic fuels along the nephron: Pathways and intracellular mechanisms of interaction, Kidney Int. 29:41–45.

    Article  PubMed  CAS  Google Scholar 

  2. Wirthensohn, G. and Guder, W.G., 1986, Renal substrate metabolism, Physiol. Rev. 66:469–497.

    PubMed  CAS  Google Scholar 

  3. Guder, W.G. and Ross, B.D., 1984, Enzyme distribution along the nephron, Kidney Int. 26:101–111.

    Article  PubMed  CAS  Google Scholar 

  4. Endou, H., Nonoguchi, H., Nakada, J., Takehara, Y., and Yamada, H., 1985, Glutamine metabolism in the kidney: Ammoniagenesis and gluconeogenesis in isolated segments of rats, in: Kidney Metabolism and Function (R. Dzurik, B. Lichardus, and W.G. Guder, eds.), Nijhoff, Boston, pp. 26–33.

    Google Scholar 

  5. LeBouffant, F., Hus-Citharel, A., and Morel, F.,1982, In Vitro 14CO2 production by single pieces of rat cortical thick ascending limbs and its coupling to active salt transport, in: Biochemistry of Kidney Functions (F. Morel, ed.), Elsevier Biomedical Press, Amsterdam, pp. 363–370.

    Google Scholar 

  6. LeHir, M. and Dubach, U.C., 1982, Distribution of two enzymes of beta-oxidation of fatty acids along the rat nephron, in: Biochemistry of Kidney Functions (F. Morel, ed.), Elsevier Biomedical Press, Amsterdam, pp. 87–94.

    Google Scholar 

  7. Curthoys, N. and Lowry, O. H., 1973, The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic and alkalotic rat kidney, J. Biol Chem. 248:162–168.

    PubMed  CAS  Google Scholar 

  8. Lemieux, G., Baverel, G., Vinay, P., and Wadoux, P., 1976, Glutamine synthetase and glutamyltransferase in the kidney of man, dog, and rat, Am. J. Physiol. 231:1068–1073.

    PubMed  CAS  Google Scholar 

  9. Wittner, M., Weidtke, C., Schlatter, E., DiStefano, A., and Greger, R., 1984, Substrate utilization in the isolated perfused cortical thick ascending limb of rabbit nephron, Pfliigers Arch. 402: 52–62.

    Article  CAS  Google Scholar 

  10. Weidemann, M.J. and Krebs, H.A., 1969, The fuel of respiration of rat kidney cortex, Biochem. J. 112:149–166.

    PubMed  CAS  Google Scholar 

  11. Guder, W.G., Purschel, S., and Wirthensohn, G., 1983, Renal ketone body metabolism: Distribution of 3-oxoacid Ca-Transferase and 3-hydroxybutyrate dehydrogenase along the mouse nephron, Hoppe-Seyler’s Z. Physiol Chem. 364:1727–1737.

    Article  PubMed  CAS  Google Scholar 

  12. Guder, W.G., Purschel, S., Vandewalle, A., and Wirthensohn, G., 1984, Bioluminescence procedures for the measurement of NAD(P) dependent enzyme catalytic activities in submicrogram quantities of rabbit and human nephron structures, J. Clin. Chem. Clin. Biochem. 22:129–140.

    PubMed  CAS  Google Scholar 

  13. Baverel, G., Martin, G., Ferrier, B., and Pellet, M., 1982, Characteristics of ketone body metabolism in body renal cortex and outer medulla, in: Biochemistry of Kidney Functions (F. Morel, ed.), Elsevier Biomedical Press, Amsterdam, pp. 177–185.

    Google Scholar 

  14. Guder, W.G., Purschel, S., and Wirthensohn, G., 1985, Renal ketone body metabolism, in: Kidney Metabolism and Function (R. Dzurik, B. Lichardus, and W.G. Guder, eds.), Nijhoff, Boston, pp. 93–102.

    Google Scholar 

  15. Guder, W.G. and Wirthensohn, G., 1981, Renal turnover of substrates, in: Renal Transport of Organic Substrates (R. Greger, T. Lang, and S. Silbernagl, eds.), Springer-Verlag, Berlin, pp. 66–77.

    Google Scholar 

  16. Barac-Nieto, M., 1985, Renal hydroxybutyrate and acetoacetate reabsorption and utilization in the rat, Am. J. Physiol 249:F40–F48.

    PubMed  CAS  Google Scholar 

  17. Barac-Nieto, M., 1986, Renal absorption and utilization of hydroxybutyrate and acetoacetate in starved rats, Am. J. Physiol 251:F257–F265.

    PubMed  CAS  Google Scholar 

  18. Barac-Nieto, M., 1987, d(-)3-Hydroxybutyrate cotransport with Na in rat renal brush border membrane vesicles, Pflügers Arch. 408:32–327.

    Article  Google Scholar 

  19. Goldstein, L., 1987, Renal substrate utilization in normal and acidotic rats, Am. J. Physiol 253: F351–F357.

    PubMed  CAS  Google Scholar 

  20. Owen, E.E., and Robinson, R.R., 1963, Amino acid extraction and ammonia metabolism by the human kidney during prolonged administration of ammonium chloride, J. Clin. Invest. 42:263–276.

    Article  PubMed  CAS  Google Scholar 

  21. Shalhoub, R., Webber, W., Glabman, S., Canessa-Fischer, M., Klein, J., DeHaas, J., and Pitts, R.F., 1963, Extraction of amino acids from and their addition to renal blood plasma, Am. J. Physiol 204:181–186.

    CAS  Google Scholar 

  22. Squires, E.J., Hall, D.E., and Brosnan, J.T., 1976, Arteriovenous differences for amino acids and lactate across kidneys of normal and acidotic rats, Biochem. J. 160:125–128.

    PubMed  CAS  Google Scholar 

  23. Hughey, R.P., Rankin, B.B., and Curthoys, N.P., 1980, Acute acidosis and arteriovenous differences of glutamine in normal and adrenalectomized rats, Am. J. Physiol 238:F199–F204.

    PubMed  CAS  Google Scholar 

  24. Tizianello, A., Deferrari, G., Garibotto, G., Robando, C., Acquarone, N., and Ghiggeri, G.M., 1982, Renal ammoniagenesis in an early stage of metabolic acidosis in man, J. Clin. Invest. 69: 240–250.

    Article  PubMed  CAS  Google Scholar 

  25. Pitts, R.F. and MacLeod, M.B., 1972, Synthesis of serine by the dog kidney in vivo, Am. J. Physiol 222:394–398.

    PubMed  CAS  Google Scholar 

  26. Pitts, R.F., Damian, A.C., and MacLeod, M.B., 1970, Synthesis of serine by rat kidney in vivo and in vitro, Am. J. Physiol 219:584–589.

    PubMed  CAS  Google Scholar 

  27. Pitts, R.F., 1971, Metabolism of amino acids by the perfused rat kidney, Am. J. Physiol 220: 862–867.

    PubMed  CAS  Google Scholar 

  28. Scaduto, R.C., Jr. and Davis, E.J., 1985, Serine synthesis by an isolated perfused rat kidney preparation, Biochem. J. 230:303–311.

    PubMed  CAS  Google Scholar 

  29. Lowry, M., Hall, B., Hall, D.E., and Brosnan, J.T., 1985, Pathways of serine synthesis in the rat kidney, Contrib. Nephrol. 47:203–208.

    PubMed  CAS  Google Scholar 

  30. Lowry, M., Hall, D.E., and Brosnan, J.T., 1985, Increased activity of renal glycine-cleavageenzyme complex in metabolic acidosis, Biochem. J. 231:477–480.

    PubMed  CAS  Google Scholar 

  31. Lowry, M., Hall, D.E., and Brosnan, J.T., 1986, Serine synthesis in rat kidney: Studies with perfused rat kidney and cortical tubules, Am. J. Physiol. 250:F649–F658.

    PubMed  CAS  Google Scholar 

  32. Lowry, M., Hall, D.E., Hall, M.S., and Brosnan, J.T., 1987, Renal metabolism of amino acids in vivo: Studies on serine and glycine fluxes, Am. J. Physiol. 252:F304–F309.

    PubMed  CAS  Google Scholar 

  33. Davies, B.H.A. and Yudkin, J., 1952, Studies in biochemical adaptation. The origin of urinary ammonia as indicated by the effects of chronic acidosis and alkalosis on some renal enzymes in the rat, Biochem. J. 52:407–412.

    PubMed  CAS  Google Scholar 

  34. Kaufman, A.M., Brod-Miller, C., and Kahn, T., 1985, Role of citrate excretion in acid-base balance in diuretic-induced alkalosis in the rat, Am. J. Physiol. 248:F796–F803.

    PubMed  CAS  Google Scholar 

  35. Simpson, D.P., 1983, Citrate excretion: A window on renal metabolism, Am. J. Physiol. 244: F223–F234.

    PubMed  CAS  Google Scholar 

  36. Simpson, D.P., 1964, Effect of acetazolamide on citrate excretion in the dog, Am. J. Physiol. 206: 883–886.

    PubMed  CAS  Google Scholar 

  37. Hamm, L.L. and Simon, E.E., 1987, Roles and mechanisms of urinary buffer excretion, Am. J. Physiol. 253:F595–F605.

    PubMed  CAS  Google Scholar 

  38. Anaizi, N.H., Cohen, J.J., Black, A.J., and Wertheim, S.J., 1986, Renal tissue citrate: Independence from citrate utilization, reabsorption and pH, Am. J. Physiol. 251:F547–F561.

    PubMed  CAS  Google Scholar 

  39. Brennan, T.S., Klahr, S., and Hamm, L.L., 1986, Citrate transport in rabbit nephron, Am. J. Physiol. 251:F683–F689.

    PubMed  CAS  Google Scholar 

  40. Brennan, S., Klahr, S., and Hamm, L.L., 1986, Effect of luminal and peritubular pH on citrate reabsorption in the rabbit proximal convoluted tubule, Kidney Int. 29:413.

    Google Scholar 

  41. Wright, S.H., Kippen, I., Klinenberg, J.R., and Wright, E.M., 1980, Specificity of the transport system for tricarboxylic acid cycle intermediates in renal brush borders, J. Membr. Biol. 57:73–82.

    Article  PubMed  CAS  Google Scholar 

  42. Wright, S.H., Kippen, I., and Wright, E.M., 1982, Effect of pH on the transport of Krebs cycle intermediates in renal brush border membranes, Biochim. Biophys. Acta 684:287–290.

    Article  PubMed  CAS  Google Scholar 

  43. Wright, S.H., Kippen, I., and Wright, E.M., 1982, Stoichiometry of Na + -succinate cotransport in renal brush border membranes, J. Biol. Chem. 257:1773–1778.

    PubMed  CAS  Google Scholar 

  44. Jorgensen, K.E., Kragh-Hansen, U., Roigaard-Petersen, H., and Iqbal-Sheikh, M., 1983, Citrate uptake by basolateral and luminal membrane vesicles from rabbit kidney cortex, Am. J. Physiol. 244:F686–F695.

    PubMed  CAS  Google Scholar 

  45. Barac-Nieto, M., 1984, Effects of pH, calcium, and succinate on sodium citrate cotransport in renal microvilli, Am. J. Physiol. 247:F282–F290.

    PubMed  CAS  Google Scholar 

  46. Wright, S.H. and Wunz, T.M., 1987, Succinate and citrate transport in renal basolateral and brush border membranes, Am. J. Physiol. 253:F432–F439.

    PubMed  CAS  Google Scholar 

  47. Jenkins, A.D., Dousa, T.P., and Smith, L.H., 1985, Transport of citrate across renal brush border membrane: Effects of dietary acid and alkali loading, Am. J. Physiol. 249:F590–F595.

    PubMed  CAS  Google Scholar 

  48. Windus, D.W., Cohn, D.E., and Heifets, M., 1986, Effects of fasting on citrate transport by the brush border membranes of rat kidney, Am. J. Physiol. 251:F678–F682.

    PubMed  CAS  Google Scholar 

  49. Scicli, A.G. and Carretero, D.A., 1986, Renal kallikrein-kinin system, Kidney Int. 29:120–130.

    Article  PubMed  CAS  Google Scholar 

  50. Fuller, P.J. and Funder, J.W., 1986, The cellular physiology of glomerular kallikrein, Kidney Int. 29:953–964.

    Article  PubMed  CAS  Google Scholar 

  51. Barajas, L., Powers, K., Carretero, D., Scicli, A.G., and Inagami, T., 1986, Immunocytochemical localizations of renin and kallikrein in the rat renal cortex, Kidney Int. 29:965–970.

    Article  PubMed  CAS  Google Scholar 

  52. Marchetti, J., Roseau, S., and Alnenc-Gelas, T., 1987, Angiotensin I converting enzyme and kinin-hydrolyzing enzymes along the rabbit nephron, Kidney Int. 31:744–751.

    Article  PubMed  CAS  Google Scholar 

  53. Omata, K., Carretero, O.A., Scicli, A.G., and Jackson, B.A., 1982, Localization of active and inactive kallikrein (kininogenase activity) in the microdissected rabbit nephron, Kidney Int. 232: 602–607.

    Article  Google Scholar 

  54. Omata, K., Abe, K., Yoshinga, K., and Carretero, O., 1987, Distribution of kininase activity along the rabbit nephron, Clin. Exp. Theory Practice A9(2-3):469–472.

    Article  CAS  Google Scholar 

  55. Guder, W.G., Hallback, J., Fink, E., Kaissling, B., and Wirthensohn, G., 1987, Kallikrein (Kininogenase) in the mouse nephron: Effect of dietary potassium, Biol. Chem. Hoppe-Seyler, 368:637–645.

    Article  PubMed  CAS  Google Scholar 

  56. Guder, W.G., Hallback, J., Wirthensohn, G., Linke, R., Fink, E., and Muller-Estesl, W., 1987, Studies on the renal kallikrein system, in: Molecular Nephrology. Biochemical Aspects of Kidney Function (Z. Kovačevic and W.G. Guder, eds.), Walter de Gruyter, Berlin, pp. 377–384.

    Google Scholar 

  57. Hallback, J., Adams, G., Wirthensohn, G., and Guder, W.G., 1987, Quantification of kininogen in human renal medulla, Biol. Chem. Hoppe-Seyler, 368:1151–1155.

    Article  Google Scholar 

  58. Beasley, D., Oza, N.B., and Levinsky, N.G., 1987, Micropuncture localization and kallikrein secretion in the rat nephron, Kidney Int. 32:26–30.

    Article  PubMed  CAS  Google Scholar 

  59. Kovačevic, Z. and McGivan, J.D., 1983, Mitochondrial metabolism of glutamine and glutamate and its physiological significance, Physiol. Rev. 63:547–605.

    PubMed  Google Scholar 

  60. Tannen, R.L. and Sastrasinh, S., 1984, Response of ammonia metabolism to acute acidosis, Kidney Int. 25:1–10.

    Article  PubMed  CAS  Google Scholar 

  61. Brosnan, J.T., Vinay, P., Gougoux, A., and Halperin, M.L., 1988, Renal ammonium production and its implications for acid-base balance, in: pH Homeostasis: Mechanisms and Control (D. Haussinger, ed.), Academic Press, New York, pp. 281–304.

    Google Scholar 

  62. Vinay, P., Lemieux, G., Gougoux, A., and Halperin, M.L., 1986, Regulation of glutamine metabolism in dog kidney in vivo, Kidney Int. 29:68–79.

    Article  PubMed  CAS  Google Scholar 

  63. Schrock, H., Chu, C.J., and Goldstein, L., 1980, Glutamine release from hindlimb and uptake by kidney in the acutely acidotic rat, Biochem. J. 188:557–560.

    PubMed  CAS  Google Scholar 

  64. Tannen, R.L. and Ross, B.D., 1979, Ammoniagenesis by isolated perfused rat kidney: The critical role of urinary acidification, Clin. Sci. 56:353–364.

    PubMed  CAS  Google Scholar 

  65. Lowry, M. and Ross, B.D., 1980, Activation of oxoglutarate dehydrogenase in the kidney in response to acute acidosis, Biochem. J. 190:771–780.

    PubMed  CAS  Google Scholar 

  66. Alleyne, G.A.O. and Scullard, G.A., 1969, Renal metabolic response to acid-base change. I. Enzymatic control of renal ammoniagenesis in the rat, J. Clin. Invest. 48:364–370.

    Article  PubMed  CAS  Google Scholar 

  67. Burch, H.B., Narins, E., Chu, Fagioli, S., Choi, S., McCarthy, W., and Lowry, O.H., 1978, Distribution along the rat nephron of three enzymes of gluconeogenesis in acidosis and starvation, Am. J. Physiol. 235:F246–253.

    PubMed  CAS  Google Scholar 

  68. Welbourne, T.C., Phromphetcharat, V., Givens, G., and Joshi, S., 1986, Regulation of interorganal glutamine flow in metabolic acidosis, Am. J. Physiol. 250:E457–E463.

    PubMed  CAS  Google Scholar 

  69. Guder, W.G. and Schmidt, U., 1974, The localization of gluconeogenesis in rat nephron, Hoppe- Seyler’s Z. Physiol. Chem. 355:273–278.

    Article  PubMed  CAS  Google Scholar 

  70. Good, D.W. and Burg, M.B., 1984, Ammonia production by individual segments of the rat nephron, J. Clin. Invest. 73:602–610.

    Article  PubMed  CAS  Google Scholar 

  71. Sajo, I.M., Goldstein, M.B., Sonnenberg, H., Stinebaugh, B.J., Wilson, D.R., and Halperin, M.L., 1981, Sites of ammonia addition to tubular fluid in rats with chronic metabolic acidosis, Kidney Int. 20:353–358.

    Article  PubMed  CAS  Google Scholar 

  72. Iynedjian, P.B., Ballard, F.J., and Hanson, R.W., 1975, The regulation of phosphoenolpyruvate carboxykinase (GTP) synthesis in rat kidney cortex. The role of acid-base balance and glucocorticoids, J. Biol. Chem. 250:5596–5603.

    PubMed  CAS  Google Scholar 

  73. Iynedjian, P.B. and Hanson, R.W., 1977, Messenger RNA for renal phosphoenolpyruvate carboxykinase (GTP). Its translation in a heterologous cell-free system and its regulation by glucocorticoids and by changes in acid-base balance, J. Biol. Chem. 252:8398–8403.

    PubMed  CAS  Google Scholar 

  74. Tong, J., Harrison, G., and Curthoys, N.P., 1986, The effect of metabolic acidosis on the synthesis and turnover of rat renal phosphate-dependent glutaminase, Biochem. J. 233:139–144.

    PubMed  CAS  Google Scholar 

  75. Tong, J., Shapiro, R.A., and Curthoys, N.P., 1987, Changes in the levels of translatable glutaminase mRNA during onset and recovery from metabolic acidosis, Biochemistry 26:2773– 2777.

    Article  PubMed  CAS  Google Scholar 

  76. Gallo, M., Shapiro, R.A., and Curthoys, N.P., 1987, Effect of glucocorticoids and metabolic acidosis on the level of rat renal phosphoenolpyruvate carboxykinase mRNA, in: Molecular Nephrology, Biochemical Aspects of Kidney Function (Z. Kovacevic and W.G. Guder, eds.), Walter de Gruyter, Berlin, New York, pp. 191–197.

    Google Scholar 

  77. Parry, D. and Brosnan, J.T., 1978, Glutamine metabolism in the kidney during induction of, and recovery from, metabolic acidosis in the rat, Biochem. J. 174:387–396.

    PubMed  CAS  Google Scholar 

  78. Yoo-Warren, H., Cimbala, M.A., Felz, K., Monahan, J.E., Leis, J.P., and Hanson, R.W., 1981, Identification of a DNA clone to phosphoenolpyruvate carboxykinase (GTP) from rat cytosol, J. Biol. Chem. 256:10224–10227.

    PubMed  CAS  Google Scholar 

  79. Yoo-Warren, H., Monahan, J.E., Short, J., Short, H., Bruzel, A., Wynshaw-Boris, A., Meisner, H.M., Samols, D., and Hanson, R.W., 1983, Isolation and characterization of the gene coding for cytosolic phosphoenolpyruvate carboxykinase (GTP) from the rat, Proc. Natl. Acad. Sci. USA 80:3656–3660.

    Article  PubMed  CAS  Google Scholar 

  80. Beale, E.G., Hartley, J.L., and Granner, D.K., 1982, N6-O2-Dibutyryl cyclic AMP and glucose regulate the amount of messenger RNA coding for hepatic phosphoenolpyruvate carboxykinase (GTP), J. Biol. Chem. 257:2022–2028.

    PubMed  CAS  Google Scholar 

  81. Beale, E.G., Chrapkiewicz, N.G., Scoble, H.A., Metz, R.J., Quick, D.P., Noble, R.L., Donelson, J.E., Biemann, K., and Granner, D.K., 1985, Rat hepatic cytosolic phosphoenolpyruvate carboxykinase (GTP). Structures of the protein, messenger RNA and gene, J. Biol. Chem. 260:10748–10760.

    PubMed  CAS  Google Scholar 

  82. Wynshaw-Borris, A., Lugo, T.G., Short, J.M., Fournier, R.E.K., and Hanson, R.W., 1984, Identification of cAMP regulatory region in the gene for rat cytosolic phosphoenolpyruvate carboxykinase (GTP), J. Biol. Chem. 259:12161–12169.

    Google Scholar 

  83. Wynshaw-Borris, A., Short, J.M., Loose, D.S., and Hanson, R.W., 1986, Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region. Multiple hormone regulatory elements and the effects of enhancers, J. Biol. Chem. 261:9714–9720.

    Google Scholar 

  84. Short, J.M., Wynshaw-Borris, A., Short, H.P., and Hanson, R.W., 1986, Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region. Identification of cAMP and glucocorticoid regulatory domains, J. Biol. Chem. 261:9721–9726.

    PubMed  CAS  Google Scholar 

  85. Magnuson, M.A., Quinn, P.G., and Granner, D.K., 1987, Multihormonal regulation of phosphoenolpyruvate carboxykinase-chloramphenicol acetyltransferase fusion gene, J. Biol. Chem. 262:14917–14920.

    PubMed  CAS  Google Scholar 

  86. Guder, W.G. and Rupprecht, A., 1976, Hormonal regulation of gluconeogensis in isolated rat kidney tubule fragments, in: Use of Isolated Cells and Kidney Tubules in Metabolic Studies (J.M. Tager, H.D. Soiling, and J.R. Williamson, eds.), North Holland, Amsterdam, pp. 379–388.

    Google Scholar 

  87. Samaranayake, S. and Curthoys, N.P., 1987, Biosynthesis and processing of mitochondrial glutaminase, Fed. Proc. 46:2109.

    Google Scholar 

  88. Banner, C., Hwang, J.J., Shapiro, R.A., Wenthold, R.J., Nakatani, Y., Lampel, K.A., Thomas, J.W., Huie, D., and Curthoys, N.P., 1988, Isolation of a cDNA for rat brain glutaminase, Mol. Brain Res. 3:247–254.

    Article  CAS  Google Scholar 

  89. Young, R.A. and Davis, R.W., 1983, Efficient isolation of genes by using antibody probes, Proc. Natl. Acad. Sci. USA 80:1194–1198.

    Article  PubMed  CAS  Google Scholar 

  90. Shapiro, R.A., Banner, C., Hwang, J.J., Wenthold, R.J., and Curthoys, N.P., 1988, Regulation of renal glutaminase gene expression during metabolic acidosis, in: Contributions to Nephrology (G. Baverel, A.C. Schoolwerth, H. Endow, M. Rengel, and A. Tizianello, eds.), S. Karger, Basel 63:141–146.

    Google Scholar 

  91. Sasaki, K., Cripe, T.P., Kock, S.R., Andreone, T.L., Paterson, D.D., Beale, E.G., and Granner, D.K., 1984, Multihormonal regulation of phosphoenolpyruvate carboxykinase gene transcription. Dominant role of insulin, J. Biol. Chem. 259:15242–15251.

    PubMed  CAS  Google Scholar 

  92. Hod, Y. and Hanson, R.W., 1987, Dual effect of cAMP on PEP-carboxykinase gene expression, Fed. Proc. 46:2057.

    Google Scholar 

  93. Cimbala, M.A., Lamers, W.H., Nelson, K., Monahan, J.E., Yoo-Warren, H., and Hanson, R.W., 1982, Rapid changes in the concentration of phosphoenolpyruvate carboxykinase mRNA in rat liver and kidney, J. Biol. Chem. 257:7629–7636.

    PubMed  CAS  Google Scholar 

  94. Meisner, H., Loose, D.S., and Hanson, R.W., 1985, Effect of hormones on transcription of the gene for cytosolic phosphoenolpyruvate carboxykinase (GTP) in rat kidney, Biochemistry, 24: 421–425.

    Article  PubMed  CAS  Google Scholar 

  95. McGrane, M.M., deVente, J., Yun, J., Bloom, J., Park, E., Wynshaw-Borris, A., Wagner, T., Rottman, F.M., and Hanson, R.W., 1988, Tissue specific expression and dietary regulation of a chimeric phosphoenolpyruvate carboxykinase/bovine growth hormone gene in transgenic mice, J. Biol. Chem. 263:11443–11451.

    PubMed  CAS  Google Scholar 

  96. Cole, L.A., Scheid, J.M., and Tannen, R.L., 1986, Induction of mitochondrial metabolism and pH-modulated ammoniagenesis by rocking LLC-PK1 cells, Am. J. Physiol. 251:C293–C298.

    PubMed  CAS  Google Scholar 

  97. Gstraunthaler, G. and Handler, J.S., 1987, Isolation, growth and characterization of a gluconeogenic strain of renal cells, Am. J. Physiol. 252:C232–C238.

    PubMed  CAS  Google Scholar 

  98. Spielman, W.S., Arend, L.J., and Forrest, J.N. Jr., 1987, The renal and epithelial actions of adenosine, in: Topics and Perspectives in Adenosine Research (F. Gerlach and B.F. Becker, eds.), Springer-Verlag, Berlin, Heidelberg, pp. 249–260.

    Google Scholar 

  99. Daly, J.W., 1982, Adenosine receptors: Targets for future drugs, J. Med. Chem. 25:197–207.

    Article  PubMed  CAS  Google Scholar 

  100. Jackson, E.K. and Ohnishi, A., 1987, Development and application of a simple microassay for adenosine in rat plasma, Hypertension 10:189–197.

    PubMed  CAS  Google Scholar 

  101. Klotz, K-N., Cristalli, G., Grifantini, M., Vittori, S., and Lohse, M.J., 1985, Photoaffinity labeling of Aradenosine receptors, J. Biol. Chem. 260:14659–14664.

    PubMed  CAS  Google Scholar 

  102. Stiles, G.L., Daly, D.T., and Olsson, R.A., 1986, Characterization of the A1 adenosine receptor-adenylate cyclase system of cerebral cortex using an agonist photoaffinity ligand, J. Neurochem. 47:1020–1025.

    Article  PubMed  CAS  Google Scholar 

  103. Pawlowska, D., Granger, J.P. and Knox, F.G., 1987, Effects of adenosine infusion into renal interstitium on renal hemodynamics, Am. J. Physiol. 252:F678–F682.

    PubMed  CAS  Google Scholar 

  104. Stiles, G.L., 1986, Adenosine receptors: Structure, function and regulation, Trends Pharmacol. Sci. 7:486–490.

    Article  CAS  Google Scholar 

  105. Kurachi, Y., Nakajima, T., and Sugimoto, T., 1986, On the mechanism of activation of muscarinic K+ channels by adenosine in isolated atrial cells: Involvement of GTP-binding proteins, Pflügers Arch. 407:264–274.

    Article  PubMed  CAS  Google Scholar 

  106. Daly, J.W., 1985, Adenosine receptors, in: Advances in Cyclic Nucleotide and Protein Phosphorylation Research, Volume 19 (D.M.F. Cooper and K.B. Seamon, eds.), Raven Press, New York, pp. 29–46.

    Google Scholar 

  107. Jacobson, K.A., Ukena, D., Kirk, K.L., and Daly, J.W., 1986, [3H]Xanthine amine congener of 1,3-dipropyl-8-phenylxanthine: An antagonist radioligand for adenosine receptors, Proc. Natl. Acad. Sci. USA 83:4089–4093.

    Article  PubMed  CAS  Google Scholar 

  108. Abboud, H.E. and Dousa, T.P., 1983, Action of adenosine on cyclic 3’,5’-nucleotides in glomeruli, Am. J. Physiol. 244:F633–F638.

    PubMed  CAS  Google Scholar 

  109. Freissmuth, M., Hausleithner, V., Tuisl, E., Nanoff, C., and Schuetz, W., 1987, Glomeruli and microvessels of the rabbit kidney contain both A 1-and A2-adenosine receptors, Naunyn- Schmiedeberg’s Arch. Pharmacol. 335:438–444.

    Article  CAS  Google Scholar 

  110. Palacios, J.M., Fastbom, J., Wiederhold, K-H., and Probst, A., 1987, Visualization of adenosine Ai receptors in the human and the guinea-pig kidney, Eur. J. Pharmacol. 138:273–276.

    Article  PubMed  CAS  Google Scholar 

  111. Freissmuth, M., Nanoff, C., Tuisl, E., and Schuetz, W., 1987, Stimulation of adenylate cyclase activity via A2-adenosine receptors in isolated tubules of the rabbit renal cortex, Eur. J. Pharmacol. 138:137–140.

    Article  PubMed  CAS  Google Scholar 

  112. Coulson, R., Wolszczak, E.A., and Scheinman, S.J., 1986, Effect of 2-chloroadenosine and R(-)phenylisopropyladenosine on the response of the isolated perfused rat kidney to parathyroid hormone. Fed. Proc. 45:424 (Abstract).

    Google Scholar 

  113. Lang, M.A., Preston, A.S., Handler, J.S., and Forrest, J.N., Jr., 1985. Adenosine stimulates sodium transport in kidney A6 epithelia in culture, Am. J. Physiol. 249:C330–C336.

    PubMed  CAS  Google Scholar 

  114. Dillingham, M.A. and Anderson, R.J., 1985, Purinergic regulation of basal and arginine vasopressin- stimulated hydraulic conductivity in rabbit cortical collecting tubule, J. Membr. Biol. 88: 277–281.

    Article  PubMed  CAS  Google Scholar 

  115. Arend, L.J., Sonnenburg, W.K., Smith, W.L., and Spielman, W.S., 1987, A 1 and A2 adenosine receptors in rabbit cortical collecting tubule cells: Modulation of hormone-stimulated cAMP, J. Clin. Invest. 79:710–714.

    Article  PubMed  CAS  Google Scholar 

  116. Woodcock, E.A., 1986, Evidence for two different stimulatory adenylate cyclase coupling mechanisms in rat renal papilla, J. Cyclic Nucleotide Protein Phosphor. Res. 11:301–316.

    PubMed  CAS  Google Scholar 

  117. Clancy, G.P., Husted, R.F., and Stokes, J.B., 1986, Adenosine and vasopressin stimulate cyclic-AMP accumulation in rat papillary collecting duct cells (RtPC) in culture, Fed. Proc. 45: 424 (Abstract).

    Google Scholar 

  118. Woodcock, E.A., Leung, E., and Johnston, C.I., 1986, Adenosine receptors in papilla of human kidneys, Clin. Sci. 70:353–357.

    PubMed  CAS  Google Scholar 

  119. Brines, M.L. and Forrest, J.N., Jr., 1987, Autoradiographic localization of Aj adenosine receptors to tubules in the red medulla and papilla of the rat kidney, Kidney Int. 33:256 (Abstract).

    Google Scholar 

  120. Torikai, S., 1987, Effect of phenylisopropyladenosine on vasopressin-dependent cyclic AMP generation in defined nephron segments from rat, Renal Physiol. 10:33–39.

    PubMed  CAS  Google Scholar 

  121. Kuttesch, J.F., Jr. and Nelson, J.A., 1982, Renal handling of 2’-deoxyadenosine and adenosine in humans and mice, Cancer Chemother. Pharmacol. 8:221–229.

    Article  PubMed  CAS  Google Scholar 

  122. Trimble, M.E. and Coulson, R., 1984, Adenosine transport in perfused rat kidney and renal cortical membrane vesicles, Am. J. Physiol. 246:F794–F803.

    PubMed  CAS  Google Scholar 

  123. Thompson, C.I., Sparks, H.V., and Spielman, W.S., 1985, Renal handling and production of plasma and urinary adenosine, Am. J. Physiol. 248:F545–F551.

    PubMed  CAS  Google Scholar 

  124. Plagemann, P.G.W. and Wohlhueter, R.M., 1980, Permeation of nucleosides, nucleic acid bases, and nucleotides in animal cells, Curr. Top. Membr. Transp. 14:225–330.

    CAS  Google Scholar 

  125. Pearson, J.D. and Gordon, J.L., 1985, Nucleotide metabolism by endothelium, Annu. Rev. Physiol. 47:617–627.

    Article  PubMed  CAS  Google Scholar 

  126. Le Hir, M. and Dubach, U.C., 1984, Sodium gradient-energized concentrative transport of adenosine in renal brush border vesicles, Pflügers Arch. 401:58–63.

    Article  PubMed  Google Scholar 

  127. Le Hir, M. and Dubach, U.C., 1985, Concentrative transport of purine nucleosides in brush border vesicles of the rat kidney, Eur. J. Clin. Invest. 15:121–127.

    Article  PubMed  Google Scholar 

  128. Le Hir, M. and Dubach, U.C., 1985, Uphill transport of pyrimidine nucleosides in renal brush border vesicles, Pflügers Arch. 404:238–243.

    Article  PubMed  Google Scholar 

  129. Betcher, S.L., Forrest, J.N., Jr., Knickelbein, R.G., and Dobbins, J.W., Sodium-adenosine cotransport in brush border membranes from rabbit ileum, Am. J. Physiol, (submitted).

    Google Scholar 

  130. Spector, R. and Huntoon, S., 1984, Specificity and sodium dependence of the active nucleoside transport system in choroid plexus, J. Neurochem. 42:1048–1052.

    Article  PubMed  CAS  Google Scholar 

  131. Osswald, H., Nabakowski, G., and Hermes, H., 1980, Adenosine as a possible mediator of metabolic control of glomerular filtration rate, Int. J. Biochem. 12:263–267.

    Article  PubMed  CAS  Google Scholar 

  132. Drury, A.N. and Szent-Györgyi, A., 1929, The physiological activity of adenine compounds with special reference to their action upon the mammalian heart, J. Physiol. (London) 68:213–237.

    CAS  Google Scholar 

  133. Thurau, K., 1964, Renal hemodynamics, Am. J. Med. 36:689–719.

    Article  Google Scholar 

  134. Osswald, H., 1983, Adenosine and renal function, in Regulatory Function of Adenosine (R.M. Berne, T.W. Rail, and R. Rubio, eds.), Martinus Nijhoff, The Hague/Boston/London, pp. 399–415.

    Google Scholar 

  135. Spielman, W.S. and Thompson, C.I., 1982, A proposed role for adenosine in the regulation of renal hemodynamics and renin release, Am. J. Physiol. 242:F423–F435.

    PubMed  CAS  Google Scholar 

  136. Osswald, H., 1975, Renal effects of adenosine and their inhibition by theophylline in dogs, Naunyn-Schmiedeberg’s Arch. Pharmacol. 288:79–86.

    Article  CAS  Google Scholar 

  137. Spielman, W.S., Britton, S.L., and Fiksen-Olsen, M.J., 1980, Effect of adenosine on the distribution of renal blood flow in dogs, Circ. Res. 46:449–456.

    PubMed  CAS  Google Scholar 

  138. Osswald, H., Hermes, H.H., and Nabokowski, G., 1982, The role of adenosine in signal transmission of tubuloglomerular feedback, Kidney Int. 22(Suppl)S136–S142.

    Google Scholar 

  139. Arend, L.J., Thompson, C.I., and Spielman, W.S., 1985, Dipyridamole decreases glomerular filtration in the sodium-depleted dog: Evidence for mediation by intrarenal adenosine, Circ. Res. 56:242–251.

    PubMed  CAS  Google Scholar 

  140. Franco, M., Bell, P.D., and Navar, L.G., 1987, Intratubular effect of adenosine Aj analog on tubuloglomerular feedback (TGF) mechanism, Kidney Int. 33:263 (Abstract).

    Google Scholar 

  141. Soejima, H. and Schnermann, J., 1987, The effect of adenosine analogues on tubuloglomerular feedback responses, Kidney Int. 33:413 (Abstract).

    Google Scholar 

  142. Murray, R.D. and Churchill, P.C., 1985, Concentration dependency of the renal vascular and renin secretory responses to adenosine receptor agonists, J. Pharmacol. Exp. Ther. 232:189–193.

    PubMed  CAS  Google Scholar 

  143. Osswald, H., Spielman, W.S., and Knox, F.G., 1978, Mechanism of adenosine-mediated decreases in glomerular filtration rate in dogs, Circ. Res. 43:465–469.

    PubMed  CAS  Google Scholar 

  144. Spielman, W.S. and Osswald, H., 1979, Blockade of post-occlusive renal vasoconstriction by an angiotensin II antagonist: Evidence for an angiotensin-adenosine interaction, Am. J. Physiol. 237: F463–F467.

    PubMed  CAS  Google Scholar 

  145. Hall, J.E. and Granger, J.P., 1986, Adenosine alters glomerular filtration control by angiotensin II, Am. J. Physiol. 250:F917–F923.

    PubMed  CAS  Google Scholar 

  146. Tagawa, H. and Vander, A.J., 1970, Effects of adenosine compounds on renal function and renin secretion in dogs, Circ. Res. 26:327–338.

    PubMed  CAS  Google Scholar 

  147. Churchill, P.C. and Churchill, M.C., 1985, A1 and A2 adenosine receptor activation inhibits and stimulates renin secretion of rat renal cortical slices, J. Pharmacol. Exp. Ther. 232:589–594.

    PubMed  CAS  Google Scholar 

  148. Barchowsky, A., Data, J.L., and Whorton, A.R., 1987, Inhibition of renin release by analogues of adenosine in rabbit renal cortical slices, Hypertension 9:619–623.

    PubMed  CAS  Google Scholar 

  149. Churchill, P.C., 1985, Second messengers in renin secretion, Am. J. Physiol. 249:F175–F184.

    PubMed  CAS  Google Scholar 

  150. Rossi, N.F., Churchill, P.C., and Churchill, M.C., 1987, Pertussis toxin reverses adenosine receptor-mediated inhibition of renin secretion in rat renal cortical slices, Life Sci. 40:481–487.

    Article  PubMed  CAS  Google Scholar 

  151. Churchill, P.C. and Bidani, A., 1987, Renal effects of selective adenosine receptor agonists in anesthetized rats, Am. J. Physiol. 252:F299–F303.

    PubMed  CAS  Google Scholar 

  152. Briggs, J.P. and Schnermann, J., 1986, Macula densa control of renin secretion and glomerular vascular tone: Evidence for common cellular mechanisms, Renal Physiol. 9:193–203.

    PubMed  CAS  Google Scholar 

  153. Rossi, N.F., Churchill, P.C., Jacobson, K.A., and Leahy, A.E., 1987, Further characterization of the renovascular effects of N6-cyclohexyladenosine in the isolated perfused rat kidney, J. Pharmacol. Exp. Ther. 240:911–915.

    PubMed  CAS  Google Scholar 

  154. Churchill, P.C., Bidani, A.K., Churchill, M.C., and Prada, J., 1984, Renal effects of 2-chloroadenosine in the two-kidney Goldblatt rat, J. Pharmacol. Exp. Ther. 230:302–306.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Publishing Corporation

About this chapter

Cite this chapter

Schoolwerth, A.C., Betcher, S.L., Curthoys, N.P. (1989). Renal Metabolism. In: Klahr, S., Massry, S.G. (eds) Contemporary Nephrology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0829-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0829-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8103-0

  • Online ISBN: 978-1-4613-0829-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics