Skip to main content

Abstract

There has been, for very good reasons, a growing interest in the cells of lamina 1 ever since 1970 when Christensen and Perl identified the lamina as the site of a particularly high concentration of nociceptive specific cells. The interest has been further increased by the confirmation of the area as the site of termination of fine afferents, as the site of many powerful chemicals and as the site of origin of large projecting systems. These discoveries have led to precise proposals on the function of the nociceptive specific cells in relation to pain. Perl (1985) writes: In my view, selective nocireceptive projections have much to do with both the recognition and localization of tissue-damaging stimuli as pain sensation. It is further proposed that these cells represent a stable component of the nocireceptive projections. Laird and Cervero have emphasised altered responsiveness of multireceptive deep dorsal horn cells following noxious stimulation and concluded: This shows fundamental differences in the processing of nociceptive information by Multireceptive and Nocireceptive cells (Laird and Cervero, 1988) and: These results suggest that the system of the nocireceptive neurones in the superficial dorsal horn is functionally hard-wired (Cervero and Laird, 1988). These statements with which many other workers agree, are clearly of considerable practical importance as well as being summaries of experimental observations. They therefore deserve particularly careful examination. This paper will review the available data and will conclude that the quoted statements are too strong and that alternative proposals should be entertained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BARTON., C., BASBAUM., A.I. and FIELDS., H.L. (1980) Dissociation of supraspinal and spinal actions of morphine a quantitative evaluation. Brain Research., 188: 487–498

    Article  Google Scholar 

  • BASBAUM., A.I. (1974) Effects of central lesions on disorders produced by multiple dorsal rhizotomy in rats. Experimental Neurology., 42: 490–501

    Article  Google Scholar 

  • BASBAUM., A.I. and FIELDS., H.L. (1988) Endogenous pain control mechanisms. In, Textbook of Pain, 2nd edition eds. P.D. Wall and R. Melzack, Churchill Livingstone, Edinburgh.

    Google Scholar 

  • BASBAUM., A.I., MARLEY., N.J.E., O’KEEFE., J. and CLANTON., C.H. (1977) Reversal of morphine and stimulus-produced analgesia by subtotal spinal cord lesions. Pain., 3: 43–56

    Article  Google Scholar 

  • BERNARD., J.F., MA, W., BESSON., J.M. and PESCHANSKI., M. (1986) A monosynaptic spino-ponto-amygdaline pathway possibly involved in pain., American Neuroscience Society Abstracts., 12: 13–5

    Google Scholar 

  • CASEY., K.L. and MORROW., T.J. (1988) Supraspinal nocifensive responses of cats: Spinal cord pathways, monoamines, and modulation. Journal of Comparative Neurology., 270: 591–605

    Article  Google Scholar 

  • CERVERO., F. (1983) Somatic and visceral inputs to the thoracic spinal cord of the cat: effects of noxious stimulation of the bilary system., Journal of Physiology., 337: 51–67

    Google Scholar 

  • CERVERO., F., IGGO., A. and OGAWA., H. (1976) Nociceptor-driven dorsal horn neurones in the lumbar spinal cord of the cat. Pain., 2: 5–24

    Article  Google Scholar 

  • CERVERO., F., IGGO., A. and OGAWA., H. (1976) Nociceptor-driven dorsal horn neurones in the lumbar spinal cord of the cat. Pain., 2: 5–24

    Article  Google Scholar 

  • CERVERO., F., SCHOUENBORG., J., SJOLUND., B.H. and WADDELL., P.J. (1984) Cutaneous inputs to dorsal horn neurones in adult rats treated at birth with capsaicin. Brain Research., 301: 47–57

    Article  Google Scholar 

  • CERVERO., F., and TATTERSALL., J. (1987) Somatic and visceral inputs to the thoracic spinal cord of the cat: marginal zone (lamina I) of the dorsal horn., Journal of Physiology., 388: 383–395

    Google Scholar 

  • CERVERO., F. and WOLSTENCROFT., J. (1984) A positive feedback loop between spinal cord nociceptive pathways and antinociceptive areas of the cat’s brain. Pain., 20: 125–138

    Article  Google Scholar 

  • CHRISTENSEN., B.N. and PERL., E.R. (1970) Spinal neurons specifically excited by noxious and thermal stimuli: marginal zone of the spinal cord. Journal of Neurophysiology., 33: 293–307

    Google Scholar 

  • CHRISTIANSEN., J. (1966) Neurological observations of macaques with spinal cord lesions., Anatomical Record., 154: 330.

    Google Scholar 

  • COLLINS., J.G. and REN., K. (1987) WDR response profiles of spinal dorsal horn neurones may be unmasked by barbiturate anaesthesia. Pain., 28: 369–378

    Article  Google Scholar 

  • COOK., A.J., WOOLF., C.J. and WALL., P.D. (1986) Prolonged C-fibre facilitation of the flexion reflex in the rat is not due to changes in afferent terminal or motoneurone excitability. Neuroscience Letters., 70: 91–96

    Article  Google Scholar 

  • COOK., A.J., WOOLF., C.J., WALL., P.D. and MCMAHON., S.B. (1987) Expansion of cutaneous receptive fields of dorsal horn neurones following C-primary afferent fibre inputs. Nature., 325: 151–153

    Article  Google Scholar 

  • CRAIG., A.D. and BURTON., H. (1981) Spinal and medullary lamina I projections to nucleus submedius in medial thalamus., Journal of Neurophysiology., 45: 443–466

    Google Scholar 

  • CRAIG., A.D. and KNIFFKI., K.D. (1985) The multiple representation of nociception in the spinothalamic projection of lamina 1 cells in the cat. In, Development, organization and processing in somatosensory pathwaysEds. M. Rowe and W.D. Willis., Neurology and Neurobiology, vol. 14., Liss, New York

    Google Scholar 

  • DARDICK., S.J., BASBAUM., A.I. and LEVINE., J.D. (1986) The contribution of pain to disability in experimentally induced arthritis. Arthritis and Rheumatism., 29: 1017–1022

    Article  Google Scholar 

  • DAVIES., J.E., MARSDEN., C.A. and ROBERTS., M.H.T. (1983) Hyperalgesia and the reduction of monoamines resulting from lesions of the dorsolateral funiculus., Brain Research., 261: 59–68

    Article  Google Scholar 

  • DEVOR., M. (1988) The Pathophysiology of Damaged Nerve, in The Textbook of Pain., 2nd edition, Eds. P.D. Wall and R. Melzack, Churchill Livingstone, Edinburgh.

    Google Scholar 

  • DEVOR., M. and WALL., P.D. (1981a) The effect of peripheral nerve injury on receptive fields of cells in the cat spinal cord. Journal of Comparative Neurology., 199: 277–291

    Article  Google Scholar 

  • DEVOR., M. and WALL., P.D. (1981b) Plasticity in the spinal cord sensory map following peripheral nerve injury in rats., Journal of Neuroscience., 1: 679–684

    Google Scholar 

  • DICKHAUS., H., PAUSER., G. and ZIMMERMANN., M. (1985) Tonic descending inhibition affects intensity coding of nociceptive responses of spinal dorsal horn neurones in the cat. Pain., 23: 145–160

    Article  Google Scholar 

  • DUBUISSON., D. (1981) The descending control of substantia gelatinosa, Ph.D Thesis., University of London.

    Google Scholar 

  • DUBUISSON., D., FITZGERALD., M. and WALL., P.D. (1979) Ameboid receptive fields of cells in laminae 1,2 and 3. Brain Research., 177: 376–378

    Article  Google Scholar 

  • DUBUISSON., D. and WALL., P.D. (1980) Descending influences on single units in laminae 1 and 2 of cat spinal cord. Brain Research., 199: 283–298

    Article  Google Scholar 

  • FERRINGTON., D.G., SORKIN., L.S. and WILLIS., W.D. (1987) Responses of spinothalamic tract cells in the superficial dorsal horn of the primate lumbar spinal cord., Journal of Physiology., 388: 681–703

    Google Scholar 

  • GIESLER., G.J., GEBHART., K.D., YEZIERSKI., R.P., WILCOX., I.K., and WILLIS., W.D. (1981) Postsynaptic inhibition of primate spinothalamic neurons by stimulation in nucleus raphe magnus., Brain Research., 204: 184–188

    Article  Google Scholar 

  • HABER., L.H., MARTIN., R.F., CHUNG., J.M., and WILLIS., W.D. (1980) Inhibition and excitation by primate spinothalamic tract neurons by stimulation in the region of nucleus reticularis gigantocellularis., Journal of Neurophysiology., 43: 1578–1593

    Google Scholar 

  • HARMANN., P.A., CARLTON., S.M. and WILLIS., W.D. (1988) Collaterals of spinothalamic tract cells to the periaqueductal gray: a fluorescent double labelling study in the rat. Brain Research., 441: 87–97

    Article  Google Scholar 

  • HAYES., R.L., KATAYAMA., Y., WATKINS., L.R. and BECKER., D.P. (1984) Bilateral lesions of the dorsolateral funiculus of the cat spinal cord: effects on basal nociceptive reflexes and nociceptive suppression produced by cholinergic activation of the pontine parabrachial region. Brain Research., 311: 267–280

    Article  Google Scholar 

  • HAYES., R.L., PRICE., D.D., BENNETH., G.J., WILCOX., G.L. and MAYER., D.J. (1978) Differential effects of spinal cord lesions on narcotic and non-narcotic suppression of nociceptive reflexes., Brain Research., 155: 91–101

    Article  Google Scholar 

  • HYLDEN., J.L.K., HAYASHI., H., DUBNER., R., and BENNETH., G.J. (1986) Physiology and morphology of the lamina I spinomesencephalic projection., Journal of Comparative Neurology., 247: 505–515

    Article  Google Scholar 

  • HYLDEN., J.L.K., NAHIN., R.L. and DUBNER., R. (1987) Altered responses of nociceptive cat lamina I spinal dorsal horn neurons after chronic sciatic neuroma formation. Brain Research., 411: 341–350

    Article  Google Scholar 

  • KENNARD., M.A. (1954) The course of ascending fibres in spinal cord of cat essential to the recognition of painful stimuli. Journal of Comparative Neurology., 100: 511–524

    Article  Google Scholar 

  • LAIRD., J.M.A, and CERVERO., F. (1988) Receptive field plasticity of dorsal horn cells: a Comparison between multireceptive and nocireceptive neurones. Society for Neuroscience Abstracts., 14: 913

    Google Scholar 

  • LEVITT., M. and LEVITT., J.H. (1981) The deafferentation syndrome in monkeys: dysaesthesia of spinal origin. Pain., 10: 129–147

    Article  Google Scholar 

  • LIGHT., A.R., CASALE., E.J. and MENÉTREY., D.M. (1986) The effects of focal stimulation in the nucleus raphe magnus and periaqueductal gray on intracellularly recorded neurones in spinal laminae I and II. Journal of Neurophysiology., 56: 555–571

    Google Scholar 

  • LIGHT., A.R., CASALE., E. and SEDIVEC., M. (1988) The physiology and anatomy of spinal lamina 1 and 2 neurons antidromically activated by stimulation in the parabrachial region of the midbrain and pons. In, Fine afferent nerve fibres and pain., Eds. R.F. Schmidt, H.G. Schaible and C. Vahle-Hinz, VCH, Weinheim, New York

    Google Scholar 

  • MCMAHON., S.B. and WALL., P.D. (1983) A system of rat spinal cord lamina I cells projecting through the contralateral dorsolateral funiculus. Journal of Comparative Neurology., 214., 217–223

    Article  Google Scholar 

  • MCMAHON., S.B. and Wall (1984) Receptive fields of rat lamina I projection cells move to incorporate a nearby region of injury. Pain., 19: 235–247

    Article  Google Scholar 

  • MCMAHON., S.B. and Wall (1985) Electrophysiological mapping of brainstem projections of spinal cord lamina I cells in the rat. Brain Research., 333: 19–26

    Article  Google Scholar 

  • MCMAHON., S.B. and Wall (1988) Descending excitation and inhibition of spinal cord lamina I projection neurones. Journal of Neurophysiology., 59: 1204–1219

    Google Scholar 

  • MCMAHON., S.B. WALL., GRANUM., S. and WEBSTER., K.E. (1984) The chronic effects of capsaicin applied to peripheral nerves on responses of a group of lamina I cells in rats. Journal of Comparative Neurology., 227., 393–400

    Article  Google Scholar 

  • MELZACK., R., STOTLER., W.A. and LIVINGSTONE., W.K. (1958) Effects of discrete brain stem lesions in cats on perception of noxious stimulation., Journal of Neurophysiology., 21: 353–367

    Google Scholar 

  • MOFFIE., D. (1975) Spinothalamic fibres, pain conduction and cordotomy., Clinical Neurology and Neurosurgery., 78., 261–268

    Article  Google Scholar 

  • NASHOLD., B.S., SLAUGHTER., D.G., WILSON., W.P. and ZORUB., D. (1977) Stereotactic mesencephalotomy., In, Krayenbuhl, H., Maspes, P., Sweet, W.H. (eds) Progress in Neurological Surgery., 8., p. 35, Karger, Basel.

    Google Scholar 

  • NORSELL., U. (1983) Unilateral behavioural thermosensitivity after transection of one lateral funiculus in the cervical spinal cord of the cat. Experimental Brain Research., 53: 71–80

    Article  Google Scholar 

  • PERL., E.R. (1985) Unravelling the Story of Pain. Advances in Pain Research and Therapy., 9: 1–30, eds. H.L. Fields, R. Dubner and F. Cervero, Raven Press, New York.

    Google Scholar 

  • PLOTKIN., H.C. and STEELE-RUSSELL., I. (1969) Quantitative adjustment in magnitude of the hemidecorticate learning deficit by CS duration manipulation., Physiology and Behaviour., 4: 709–721

    Article  Google Scholar 

  • PRICE., D.D. and MAYER., D.J. (1975) Neurophysiology characterization of the anterolateral quadrant neurones subserving pain in m. mulatta., Pain., 11: 59–72

    Article  Google Scholar 

  • PRICE., D.D., HAYES., R.L., RUOA., M.A. and DUBNER., R. (1978) Spatial and temporal transformations of input to spinothalamic tract neurones and their relation to somatic sensations. Journal of Neurophysiology., 41: 933–947

    Google Scholar 

  • RODIN., B. and KRUGER., L. (1984) Deafferentation in animals as a model for the study of pain: an alternative hypothesis. Brain Research Reviews., 7: 213–228

    Article  Google Scholar 

  • RYAN., S.M., WATKINS., L.R., MAYER., D.J. and MAIER., S.F. (1985) Spinal pain suppression mechanisms may differ for phasic and tonic pain. Brain Research., 334: 172–175

    Article  Google Scholar 

  • RYDENHAG., B. and ANDERSSON., S. (1981) Effect of DLF lesions at different spinal levels on morphine induced analgesia. Brain Research., 212: 239–242

    Article  Google Scholar 

  • SWETT., J.E., MCMAHON., S.B. and WALL., P.D. (1985) Projection of lamina I cells to the midbrain of the rat. Journal of Comparative Neurology., 238: 401–416

    Article  Google Scholar 

  • TATTERSALL., J.E.H., CERVERO., F., and LUMB., B.M. (1986) Viscerosomatic neurones in the lower thoracic spinal cord of the cat: excitations and inhibitions by afferent volleys and by stimulation of brainstem nuclei., Journal of Neurophysiology., 56: 785–796

    Google Scholar 

  • VIERCK., C.J., HAMILTON., D.N. and THORNBY., J.I. (1971) Pain reactivity of monkeys after lesions to the dorsal and lateral columns of the spinal cord., Experimental Brain Research., 13: 140–158

    Article  Google Scholar 

  • VIERCK., C.J. and LUCK., M.N. (1979) Loss and recovery of reactivity to noxious stimuli with primary spinothalamic cordotomies followed by secondary and tertiary lesions of other cord sectors., Brain., 102: 233–248

    Article  Google Scholar 

  • WALL., P.D. (1988) The introduction, and The dorsal horn, in, The Textbook of Pain., eds. P.D. Wall and R. Melzack, 2nd edition, Churchill Livingstone, Edinburgh.

    Google Scholar 

  • WALL., P.D., BERY., J. and SAADE., N. (1988) Effects of lesions to lamina I cell projection pathways on reactions to acute and chronic noxious stimuli. Pain., 35., 327–339

    Article  Google Scholar 

  • WALL., P.D., FITZGERALD., M., NUSSBAUMER., J.C., VAN DER LOOS., H. and DEVOR., M. (1982) Somatotopic maps are disorganised in adult rodents treated with capsaicin as neonates. Nature., 295: 691–693

    Article  Google Scholar 

  • WALL., P.D. and NOORDENBOS., W. (1978) Sensory functions which remain in man after complete transection of dorsal horns., Brain Research., 100: 641–653

    Google Scholar 

  • WALL., P.D. and WOOLF., C.J. (1984) Muscle but not cutaneous C- afferent input produces prolonged increases in the excitability of the flexion reflex in the rat. Journal of Physiology., 356: 443–458

    Google Scholar 

  • WATKINS., L.R., COBELLI., D.A. and MAYER., D.J. (1982) Opiate vs non-opiate foot shock-induced analgesia (FSIA): descending and intraspinal components. Brain Research., 245: 97–106

    Article  Google Scholar 

  • WATKINS., L., FARIS., P.L., KOMISARUK., B.R. and MAYER., D. (1984) DLF and intraspinal pathways mediate vaginal stimulation induced suppression of nociceptive responding in rats. Brain Research., 294: 59–65

    Article  Google Scholar 

  • WOOLF., C.J. (1983) Evidence for a central component of post- injury pain hypersensitivity. Nature., 306: 686–688

    Article  Google Scholar 

  • WOOLF., C.J. and FITZGERALD., M. (1983) The properties of neurones recorded in the superficial dorsal horn in rat spinal cord. Journal of Comparative Neurology., 221: 313–328

    Article  Google Scholar 

  • YEZIERSKI., R.P., SORKIN., L.S. and WILLIS., W. (1987) Response properties of spinal neurones projecting to midbrain or midbrain-thalamus in the monkey., Brain Research., 437: 165–170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press

About this chapter

Cite this chapter

McMahon, S.B., Wall, P.D. (1989). The Significance of Plastic Changes in Lamina 1 Systems. In: Cervero, F., Bennett, G.J., Headley, P.M. (eds) Processing of Sensory Information in the Superficial Dorsal Horn of the Spinal Cord. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0825-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0825-6_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8101-6

  • Online ISBN: 978-1-4613-0825-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics