Effects of Arginine-Free Diet on Ureagenesis in Young and Adult Ferrets

  • Devendra R. Deshmukh


The major function of arginine is to protect mammals against ammonia intoxication via urea synthesis. In addition, arginine has several other important functions. Arginine is used by mammals for the synthesis of tissue proteins. It is the only amino acid that provides the amidino group for synthesis of creatine, a major source of high energy phosphate in muscle. Arginine is also a precursor for the synthesis of polyamines, which play an important role in cell division, tissue growth and differentiation.


Plasma Amino Acid Orotic Acid Urea Synthesis Carbamyl Phosphate Argininosuccinate Synthetase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Visek, W. J., Arginine needs, physiological states and usual diets. A reevaluation, J. Nutr. 116 (1986) 36–46.Google Scholar
  2. 2.
    Milner, J. A., Mechanism for fatty liver induction in rats fed arginine deficient diet, J.Nutr. 109 (1979) 663–670.Google Scholar
  3. 3.
    Milner, J. A, and Visek, W. J., Orotate, citrate and urea excretion in rats fed various levels of arginine. Free. Soc. Exp. Biol. Med. 147 (1974) 754–759.Google Scholar
  4. 4.
    Deshmukh, D. R., Maassab, H. F. and Mason, M., Interactions of aspirin and other potential etiologic factors in an animal model of Reye syndrome, Proc. Natl. Acad. Sci. (U.S.A.) 79 (1982) 7557–7560.CrossRefGoogle Scholar
  5. 5.
    Morris, J. G. and Rogers, Q. R., Arginine:An essential amino acid for the cat, J. Nutr. 108 (1978) 1944–1953.Google Scholar
  6. 6.
    Deshmukh, D.R. and Shope, T.C., Arginine requirement and ammonia toxicity in ferrets, J. Nutr. 113 (1983) 1664–1667.Google Scholar
  7. 7.
    Thomas, P. E. and Deshmukh, D. R., Effect of arginine-free diet on ammonia metabolism in young and adult ferrets, J. Nutr. 116 (1986) 545–551.Google Scholar
  8. 8.
    Deshmukh, D. R., Kao, W., Mason, M. and Baublis, J. V., Serum enzyme alterations in arginine deficient, influenza infected ferrets. A potential animal model for Reye’s syndrome. Enzyme 27 (1982) 52–57.Google Scholar
  9. 9.
    Czarnecki, G. L. and Baker, D. H., Urea cycle function in the dog with emphasis on the role of arginine, J. Nutr. 114 (1984) 581–590.Google Scholar
  10. 10.
    Stewart, P. M., Batshaw, M., Valle, D. and Walser, M., Effects of arginine-free meals on ureagenesis in cats, Am. J. Physiol. 241 (1981) E 310–E315.Google Scholar
  11. 11.
    Burns, R. A., Milner, J. A. and Corbin, J. E., Arginine: An indispensible amino acid for mature dogs, J. Nutr. 111 (1981) 1020–1024Google Scholar
  12. 12.
    Portoles, M., Minana, M., Jorda, A. and Grisolia, S., Caffeine-induced changes in the composition of the free amino acid pool of the central cortex, Neurochem. Res. 10 (1985) 887–895.CrossRefGoogle Scholar
  13. 13.
    Mondzack, A., Ehrlich, G. E. and Sigmiller, J. E., An enzymatic determination of ammonia in biological fluids, J. Lab. Clin. Med. 66 (1965) 526–531.Google Scholar
  14. 14.
    Tarrab, R., Rodriguez, J., Haitron, C., Palacois, R. and Soberon, G., Molecular forms of rat liver arginase. Isolation and characterization, Eur. J. Biochem. 49 (1974) 457–468.CrossRefGoogle Scholar
  15. 15.
    Schimke, R. T., Adaptive characteristic of urea cycle enzymes in the rat, J. Biol. Chem. 237 (1962) 459–468.Google Scholar
  16. 16.
    Peraino, C. and Pitot, H.C., Ornithine δ transaminase, Biochem. Biophys. Acta 73 (1963) 222–231.CrossRefGoogle Scholar
  17. 17.
    Nazum, C. T. and Snodgrass, P. J., Multiple assays of the five urea cycle enzymes in human liver homogenates, in: “The urea cycle”, S. Grisolia, R. Baguena and F. Mayer Eds., John Wiley and Sons, New York (1975) pp 325–349.Google Scholar
  18. 18.
    Cerriotti, G., Ornithine carbamyl transferase, in: “Clinical Biochemistry”, H.C. Curtius and M. Roth Eds., Walter de Gruyter, Berlin (1978) pp 1151–1156.Google Scholar
  19. 19.
    Van Pilsum, J. F., Taylor, D., Zaikis, B. and McCormick, P., Simplified assay for transamidinase activities of rat kidney homogenates, Anal. Biochem. 35 (1970) 277–286.CrossRefGoogle Scholar
  20. 20.
    Lowry, O. J., Rosenbrough, N. J., Farr, A. and Randall, R. J., Protein measurement with folin-phenol reagent, J. Biol. Chem. 193 (1951) 265–275.Google Scholar
  21. 21.
    Schimke, R. T., Differential effects of fasting and protein-free diets on levels of urea cycle enzymes in rat liver, J. Biol. Chem. 237 (1962) 1921–1924.Google Scholar
  22. 22.
    Ratner, S., Enzymes of ornithine and urea synthesis, in: “Advances in enzymology”, A. Meister Ed., John Wiley and Sons, New York, Vol. 39 (1973) pp 1–90.Google Scholar
  23. 23.
    Stewart, P. M. and Walser, M., Short-term regulation of ureagenesis, J. Boil. Chem. 255 (1989) 5270–5280.Google Scholar
  24. 24.
    Rogers, Q. R. and Phang, J. M., Deficiency of pyrroline-5-carboxvlate synthase in the intestinal mucosa of the cat, J. Nutr. 115 (1985) 146–150.Google Scholar
  25. 25.
    Windmuller, H. G., Glutamine utilization by the small intestine, in: “Advances in enzymology”, A. Meister Ed., John Wiley and Sons, New York, Vol. 53 (1982) pp 201–237.Google Scholar
  26. 26.
    Milner J. A. and Visek, W. J., Dietary protein intake and arginine requirement in the rat, J. Nutr. 108 (1978) 382–391.Google Scholar
  27. 27.
    Leoschke, W. L. and Elvehjem, C. A., The importance of arginine and methionine for the growth and fur development of minks fed purified diets, J. Nutr. 69 (1959) 147–150.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Devendra R. Deshmukh
    • 1
  1. 1.Department of Pediatrics and Biological ChemistryUniversity of MichiganAnn ArborUSA

Personalised recommendations