Skip to main content

Vectorisation Techniques and Dynamic Electron Corrections

  • Chapter
Scientific Computing on Supercomputers
  • 69 Accesses

Abstract

Some of the vectorisation techniques are discussed, which are of major importance in the development of a numerical procedure to solve the “time- dependent Hartree-Fock” (TDHF) equation for the homogeneous electron gas. This equation accounts for the dynamical exchange effects in the dielectric function. Mathematically, the problem to be solved amounts to the solution of an integral equation in two variables with a singular kernel. The general outline of the analytical and numerical techniques, as well as the physical aspects of the problem have been described elsewhere, and are only briefly summarised. The present paper merely deals with the global vectorisation, realised in the program, and discusses some examples in quite some detail in order to illustrate the procedures used.

Work supported by the Supercomputer Project of the NFWO (National Fund for Scientific Research, Belgium).

Partially performed in the framework of the collaboration between the Management Unit of the Maritime Environment (MUMM) of the North Sea (Ministry of Public Health ad Environment) and the “ALPHA”-Superscomputer-front-end project (NFWO-UIA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. F. Brosens, J. T. Devreese, phys. stat. sol. (b) 147, 173–183 (1988).

    Article  ADS  Google Scholar 

  2. F. Brosens, L. F. Lemmens and J. T. Devreese, phys. stat. sol. (b)74, 45 (1976)

    Google Scholar 

  3. F. Brosens, J. T. Devreese and L. F. Lemmens, phys. stat. sol. (b)81, 99 (1977)

    Google Scholar 

  4. J. T. Devreese, F. Brosens and L. F. Lemmens, Phys. Rev. B21, 1349 (1980)

    Google Scholar 

  5. F.Brosens, J. T. Devreese and L. F. Lemmens, Phys. Rev. B21, 1366 (1980)

    Google Scholar 

  6. F. Brosens and J. T. Devreese in. Devreese in “Proceedings of the 1981 NATO Advanced Study Institute on Electron Correlations in Solids, Molecules and Atoms”, Eds. J. T. Devreese and F. Brosens (Plenum, New York, 1983), p. 143; F. Brosens and J. T. Devreese, Helv. Phys. Acta 56, 223 (1983).

    Google Scholar 

  7. C. H. Reinsch, Numer. Math. 10, 177 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Lindhard, Kong. Danske Vid. Selsk., Mat.-fys. Medd. 24, nr. 8, (1954).

    Google Scholar 

  9. D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. P. E. Batson, C. H. Chen and J. Silcox, Phys. Rev. Lett. 37, 937 (1976).

    Article  ADS  Google Scholar 

  11. P. C. Gibbons, S. E. Schnatterly, J. J. Ritsko and J. R. Field, Phys. Rev. B13, 2451 (1976).

    ADS  Google Scholar 

  12. S. Schnatterly in “Proceedings of the 1981 NATO Advanced Study Institute on Electron Correlations in Solids, Molecules and Atoms”, Eds. J. T. Devreese and F. Brosens (Plenum, New York, 1983), p. 1;

    Google Scholar 

  13. J A. J. Glick and R. A. Ferrell, Ann. of Phys. 11, 359 (1960).

    Article  ADS  Google Scholar 

  14. J. Hubbard, Proc. Roy. Soc. A240, 539 (1957); A243, 336 (1958).

    Google Scholar 

  15. For an overview: see e.g. G. Niklasson in in “Proceedings of the 1981 NATO Advanced Study Institute on Electron Correlations in Solids, Molecules and Atoms”, Eds. J. T. Devreese and F. Brosens (Plenum, New York, 1983), p. 99;

    Google Scholar 

  16. W. E. Brittin and W. E. Chappell, Rev. Mod. Phys. 34, 620 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. M. C. Dharma-wardana and R. Taylor, J. Phys. F: Metal Phys. 10, 2217 (1980).

    Article  ADS  Google Scholar 

  18. A. W. Overhauser, Phys. Rev. B2, 874 (1970).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Brosens, F., Devreese, J.T. (1989). Vectorisation Techniques and Dynamic Electron Corrections. In: Devreese, J.T., Van Camp, P.E. (eds) Scientific Computing on Supercomputers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0819-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0819-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8098-9

  • Online ISBN: 978-1-4613-0819-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics