Photopyroelectric Spectroscopy (P2ES) of a-Si:H Thin Semiconducting Films on Quartz

  • A. Mandelis
  • R. E. Wagner
  • K. Ghandi
  • R. Baltman
  • Phat Dao


Photopyroelectric Spectroscopy has proven to be a sensitive qualitative [1] and quantitative [2] technique for thin film spectroscopic applications. An important feature of this back-surface detection technique, not shared with the more conventional front-surface photothermal detection methods (Photothermal Deflection Spectroscopy, PDS; and Photoacoustic Spectroscopy, PAS) is its ability to measure directly and separately two independent spectrally-varying parameters: the optical absorption coefficient [3] and the nonradiative quantum efficiency. PDS of thin semiconducting films of amorphous hydrogenated Si [4] readily yields information about the product of the optical absorption coefficient, α(λ), and the nonradiative quantum efficiency, η(λ). The standard assumption is, however, that η(λ) is not a sensitive function of the exciting photon energy. This assumption is generally wrong, and nonradiative quantum efficiencies have been found photoacoustically to vary by one order of magnitude [5] across the optical gap in Ge doped As 2 Se 3 chalcogenide glasses. PAS yields amorphous thin film spectra similar to PDS [6]. The working assumption has been that PA spectra are essentially accurate above the optical gap, as η(λ) is expected to be independent of photon energy. Kitamura et al. [5] were able to derive extended η(λ) spectra of (As 2 Se 3 )100-x Ge x glasses upon combining PA spectra with optical absorption coefficient information obtained in an independent spectrophotometric experiment using ordinary polished bulk samples. These authors, however, were not able to guarantee that the glasses and the bulk samples had the same (or even nearly similar) α(λ) spectra.


Optical Absorption Coefficient Plasma Enhance Chemical Vapor Deposition Chalcogenide Glass Thin Limit Photothermal Deflection Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Coufal, Appl. Phys. Lett. 45, 516 (1984).CrossRefGoogle Scholar
  2. 2a.
    K. Tanaka, in Photoacoustic and Thermal Wave Phenomena in Semiconductors, edited by A. Mandelis (North-Holland, New York, 1987); Chap. 16;Google Scholar
  3. 2b.
    K. Tanaka, Y. Ichimura, and K. Sindoh, J. Appl. Phys. 63, 1815 (1988).CrossRefGoogle Scholar
  4. 3.
    A. Mandelis and M.M. Zver, J. Appl. Phys. 57, 4421 (1985).CrossRefGoogle Scholar
  5. 4.
    N.M. Amer and W.B. Jackson, in Semiconductors and Semimetals, Vol. 21B, edited by J.I. Pankove (Academic Press, New York, 1984); Chap. 3.Google Scholar
  6. 5.
    M. Kitamura, T. Ogawa, and T. Arai, J. Phys. Soc. Jpn 52, 2561 (1983).CrossRefGoogle Scholar
  7. 6.
    S. Yamasaki, Phil. Mag. B, 56, 79 (1987).CrossRefGoogle Scholar
  8. 7.
    A.F.S. Penna, J. Shah, A.E. DiGiovanni, A.Y. Cho, and A.C. Gossard, Appl. Phys. Lett. 47, 591 (1985).CrossRefGoogle Scholar
  9. 8.
    J.D. Winefordner and M. Rutledge, Appl. Spectrosc. 39, 311 (1985).CrossRefGoogle Scholar
  10. 9.
    W.B. Jackson, N.M. Amer, A.C. Boccara, and D. Fournier, Appl. Opt 20, 1333 (1981).PubMedCrossRefGoogle Scholar
  11. 10.
    L.C. Aamodt and J.C. Murphy, J. Appl. Phys. 52,4903 (1981).CrossRefGoogle Scholar
  12. 11.
    F. Abeles, in Advanced Optical Techniques, edited by A.C.S. van Heel (North-Holland, Amsterdam, 1967); Chap. 5.Google Scholar
  13. 12.
    R.E. Denton, R.D. Campbell, and S.G. Tomiin, J. Phys. D: Appl. Phys. 5, 852 (1972).CrossRefGoogle Scholar
  14. 13.
    J.C. Manifacier, J. Gasiot, and J.P. Fillard, J. Phys. E: Sci. Instrum. 9, 1002 (1976).CrossRefGoogle Scholar
  15. 14.
    T.C. Paulick, Appl. Opt. 25, 562 (1986).PubMedCrossRefGoogle Scholar
  16. 15.
    K.A. Epstein, D.K. Misemer, and G.D. Vernstrom, Appl. Opt. 26, 294 (1987).PubMedCrossRefGoogle Scholar
  17. 16.
    G.D. Cody, in Semiconductors and Semimetals, Vol. 21B, edited by J.I. Pankove (Academic Press, New York, 1984); Chap. 2.Google Scholar
  18. 17.
    D.T. Pierce and W.E. Spicer, Phys. Rev. B 5, 3017 (1972).CrossRefGoogle Scholar
  19. 18.
    H J. Coufal, R.K. Grygier, D.E. Home, and J.E. Fromm, J. Vac. Sci. Technol. A 5, 2875 (1987).CrossRefGoogle Scholar
  20. 19.
    PVDF KynarR film with standard Ni-Al electrodes were purchased from Pennwalt Corp., Piezo Film Dept., 950 Forge Avenue, Valley Forge, PA. 19482.Google Scholar
  21. 20.
    K. Driss-Khodja, A. Gheorghiu, and M.-L. Theye, Opt. Commun. 55, 169 (1985).CrossRefGoogle Scholar
  22. 21.
    S.K. Bahl and S.M. Bhagat, J. Non-Cryst Solids 17, 409 (1975).CrossRefGoogle Scholar
  23. 22.
    C. F. Gerald, Applied Numerical Analysis, 2nd Ed. (Addison-Wesley, Reading, 1980); p. 3.Google Scholar
  24. 23.
    A. Mandelis, E.K.M. Siu and S. Ho, Appl. Phys. A 33, 153 (1984).CrossRefGoogle Scholar
  25. 24.
    A. Mandelis, J. Appl. Phys. 54, 3404 (1983).CrossRefGoogle Scholar
  26. 25a.
    T. Dioszeghy and A. Mandelis, J. Phys. Chem. Solids 47, 1115 (1986);CrossRefGoogle Scholar
  27. 25b.
    D.D. McCracken and W.S. Dorn, Numerical Methods and FORTRAN Programming (Wiley, New York, 1964).Google Scholar
  28. 26.
    A.C. Bento, H. Vargas, M.M.F. Aguiar and L.C.M. Miranda, Phys. Chem. Glasses 29, 127 (1987).Google Scholar
  29. 27.
    R.A. Street, Phys. Rev. B. 21, 5775 (1980).CrossRefGoogle Scholar
  30. 28.
    M. Tajima, S. Yamasaki, H. Okushi, and K. Tanaka, Phys. Rev. B 33, 8522 (1986).CrossRefGoogle Scholar
  31. 29.
    M.H. Brodsky, R.S. Title, K. Weiser, and G.D. Pettit, Phys. Rev. B 1, 2632 (1970).CrossRefGoogle Scholar
  32. 30.
    N.F. Mott, Advan. Phys. 16, 49 (1967).CrossRefGoogle Scholar
  33. 31.
    W.B. Jackson and N.M. Amer, Phys. Rev. B 25, 5559 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • A. Mandelis
    • 1
  • R. E. Wagner
    • 1
  • K. Ghandi
    • 1
  • R. Baltman
    • 1
  • Phat Dao
    • 2
  1. 1.Photoacoustic and Photothermal Sciences Laboratory Department of Mechanical Engineering, and Ontario Laser and Lightwave Research CenterUniversity of TorontoTorontoCanada
  2. 2.Corporate Analytical LaboratoryEastman Kodak Research LaboratoriesRochesterUSA

Personalised recommendations