Skip to main content

Magnetic Resonance Relaxation Times and Imaging in the Pathophysiology of Muscles

  • Chapter
Cell Function and Disease
  • 190 Accesses

Abstract

Magnetic resonance (MR) is one of the sophisticated techniques that are becoming enormously important in modern medical practice and research. Due to its ability to provide valuable information on any selected region of the human body in a noninvasive and risk free manner, MR has recently emerged as a powerful diagnostic modality for the detection and evaluation of a number of disorders. 1,2,3,4,5,6 Moreover, it is now the modality of choice in the diagnosis of the neurological diseases. 1,3–5 In general, the medical application of MR has revolved around two complimentary aspects. The first, and by far the widest application is concerned with the anatomic depiction of the living organism at any region of interest in the form of cross sectional images. It utilizes the protons, particularly those in water, and is referred to as magnetic resonance imaging (MRI). The second application involves acquisition of spectra which may provide quantitative assessment of major metabolites, particularly those containing phosphorus and protons. Significant insights into the biochemical alterations that are caused by disease may be observed by this technique, appropriately called magnetic resonance spectroscopy (MRS). Although MRS holds great promise for the future, progress in the field was delayed until high field spectrometers and localization techniques were developed. A discussion of MRS is outside the scope of this review; however, a number of excellent reviews, 7,8,9,10,11,12,13 published recently, summarize the rapid advancement that may expedite the realization of its potential in diagnostic medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. G. Taylor, R. Inamdar, and M. C. Bushell, NMR imaging in theory and practice, Phys. Med. Biol 33: 635 (1988).

    Article  PubMed  CAS  Google Scholar 

  2. J. D. R. Miller and L. Starr, Information explosion in radiology, J. Can. Assoc. Radiologists 39: 33 (1988).

    CAS  Google Scholar 

  3. A. R. Margulis and L. E. Crooks, Present and future status of MR imaging, AJR 150: 487 (1988)

    PubMed  CAS  Google Scholar 

  4. R. E. Steiner, Magnetic Resonance Imaging: Its impact on diagnostic radiology, AJR 145: 883 (1985).

    PubMed  CAS  Google Scholar 

  5. A. R. Margulis and M. R. Fisher, Present clinical status of Magnetic Resonance Imaging, Mag. Res. Med 2: 309 (1985).

    Article  CAS  Google Scholar 

  6. W. G. Bradley, Jr., I. R. Young, and R. L. Nunnally, Society of magnetic resonance in medicine meeting in Montreal: Impressions and comments, AJR 148: 1030 (1987).

    Google Scholar 

  7. O. A. C. Petroff, Biological 1H NMR spectroscopy, Comp. Biochem. Physiol 90B: 249 (1988).

    CAS  Google Scholar 

  8. A. M. Margulis, The promise of Magnetic Resonance Spectroscopy for medical diagnosis, Invest. Radiol 23: 253 (1988).

    Article  Google Scholar 

  9. B. M. Hitzig, J. W. Prichard, H. L. Kantor, W. R. Ellington, J. S. Ingwall, C. T. Burt, S. I. Helman, and J. Koutcher, NMR spectroscopy as an investigative technique in physiology, FASEB J. 1: 22 (1987).

    PubMed  CAS  Google Scholar 

  10. S. R. Williams and W. G. Gadian, Tissue Metabolism studies in vivo by nuclear magnetic resonance, Quarterly J. Exp. Physiol 71: 335 (1986).

    CAS  Google Scholar 

  11. M J. Avison, H. P. Hetherington, and R. G. Shulman, Application of NMR to studies of tissue metabolism, Ann. Rev. Biophys. Chem 15: 377 (1986).

    Article  CAS  Google Scholar 

  12. G. K. Radda and D. J. Taylor, Applications of nuclear magnetic resonance spectroscopy in pathology, Int. Rev. Exp. Path 27: 1 (1985).

    PubMed  CAS  Google Scholar 

  13. P. J. Bore, The role of magnetic resonance spectroscopy in clinical medicine, Mag. Reson. Imaging 3: 407 (1985).

    Article  CAS  Google Scholar 

  14. R. Mathur-De Vre, Biomedical implications of the relaxation behavior of water related to NMR imaging, Br. J. of Radiol 57: 955 (1984).

    Article  CAS  Google Scholar 

  15. L. E. Crooks, N. M. Hylton, D. A. Ortendahl, J. P. Rosin, and L. Kaufman, The value of relaxation times and density measurements in clinical MRI, Invest. Radiol 22: 159 (1987).

    Article  Google Scholar 

  16. R. G. Evens, R. G. Jost, and R. G. Evens, Jr., Economic and utilization analysis of magnetic resonance imaging units in the United States in 1985, AJR 145: 393 (1985).

    PubMed  CAS  Google Scholar 

  17. K. M. Peddecord, E. A. Janon, and J. M. Robins, Use of MR Imaging in an outpatient clinic, AJR 148: 809 (1987).

    PubMed  CAS  Google Scholar 

  18. D. A. Durick, M. L. W. Phillips, Diffusion of an innovation: Adoption of MRI, Radiologic Technology 59: 239 (1988).

    PubMed  CAS  Google Scholar 

  19. G. M. Bydder, J. M Pennock, R. E. Steiner, J. S. Orr, D. R. Bates, I. R. Young, The NMR diagnosis of cerebral tumors, Mag. Reson. Med 1: 5 (1984).

    Article  CAS  Google Scholar 

  20. G. M. Bydder, R. E. Steiner, I. R. Young, A. S. Mall, D. J. Thomas, J. Marshall, C. A. Pellis, N. J. Legg, The NMR diagnosis of cerebral tumors, AJR 139: 215 (1982).

    PubMed  CAS  Google Scholar 

  21. M. A. Johnson and G. M. Bydder, NMRI imaging of the brain in children, Br. Med. Bull 40: 175 (1984).

    PubMed  CAS  Google Scholar 

  22. M. T. Mc Namara and C. B. Higgins, Cardiovascular applications of magnetic resonance imaging, Mag. Reson. Imaging 2: 167 (1984).

    Article  CAS  Google Scholar 

  23. R. E. Steiner, Nuclear magnetic resonance imaging of the heart and mediastinum, Br. Med. Bull 40: 191 (1984).

    PubMed  CAS  Google Scholar 

  24. F. W. Smith, A. Reed, J. R. Mallard, J. M. S. Hutchison, D. A. Power, G. R. D. Catto, Nuclear magnetic resonance tomographic imaging in renal disease, Diagnostic Imaging 51: 209 (1982).

    PubMed  CAS  Google Scholar 

  25. F. M. Doyle, J. M. Pennock, L. M. Banks, M. J. McDonnell, G. M. Bydder, R. E. Steiner, I. R. Young, G. J. Clarke, T. Passmore, and D. J. Gilderdale, Nuclear magnetic resonance imaging of the liver: initial evidence, AJR 138: 193 (1982).

    PubMed  CAS  Google Scholar 

  26. M. Gronskill, R. M. Henkelman, P. Y. Poon, M. B Gunes N. Ege, et al, Magnetic Resonance imaging, computed tomography and radionuclide scintigraphy of liver metastases, J. Can. Assoc. Radiologists 39: 3 (1988).

    Google Scholar 

  27. K. L. Moon, Jr., H. K. Genant, C. A. Helms, N. I Chafetz, L. E. Crooks, and L Kaufman, Musculoskeletal applications of nuclear magnetic resonance, Radiology 147: 161 (1983).

    PubMed  Google Scholar 

  28. M. R. Fisher. G. C. Dooms, H. Hricak, C. Reinhold, and C. B. Higgins, Magnetic resonance imaging of the normal and pathologic muscular system, Mag. Reson. Imaging 4: 491 (1986).

    Article  Google Scholar 

  29. C. R. Ling and M. A. Foster, Changes in NMR relaxation time associated with local inflammatory response, Phys. Med. Biol 27: 853 (1982).

    Article  PubMed  CAS  Google Scholar 

  30. H. Paajanen, W. Grodd, D. Revel, B. Engelstad, and R. C. Brasch, Gadolinium-DPTA enhanced MR Imaging of intramuscular abscesses, Mag. Reson. Imaging 5: 109 (1987).

    Article  CAS  Google Scholar 

  31. J. D. Reeder and S. Andelman, The rotator cuff tear: MR evaluation, Mag. Reson. Imaging 5: 331 (1987).

    Article  CAS  Google Scholar 

  32. P. A. Narayana, W. W. Brey, M. Y. Kulkarni, and L. K. Misra, In vivo proton spin- lattice relaxation times of normal and dystrophic muscles, Mag. Reson. Imaging 4: 153 (1987).

    CAS  Google Scholar 

  33. P. A. Bottomley, C. J. Hardy, R. E. Argersinger, and G. Allen-Moore, A review of 1H nuclear magnetic resonance relaxation in pathology: Are T1 and T2 diagnostic?, Med. Phys 14: 1 (1987).

    Article  PubMed  CAS  Google Scholar 

  34. B. W. Wilson, W. R. Randall, G. T. Patterson, R. K. Entrikin, Major physiologic and histochemical characteristics of inherited dystrophy of the chicken, Ann. NY Acad. Sci 317: 224 (1979).

    PubMed  CAS  Google Scholar 

  35. E. Cosmos, J. Butler, E. P. Allard, and J. Mazliah, Factors that influence the phenotypic expression of genetically normal and dystrophic muscles, Ann. NY Acad. Sci 317: 571 (1979).

    PubMed  CAS  Google Scholar 

  36. J. R. Mendell, R. Higgins, Z. Sahenk, and E. Cosmos, Relevance of genetic animal models of muscular dystrophy to human muscular dystrophies, Ann. NY Acad. Sci 317: 409 (1979).

    PubMed  CAS  Google Scholar 

  37. B. W. Wilson, R. K. Entrikin, J. Sketelj, G. T. Patterson, and W. R. Randall, Genetics, cell biology and pharmacology of inherited muscular dystrophy if the chicken, in Muscular Dystrophy, Proceedings of the International Symposium on Muscular Dystrophy, S. Ebashi, ed. University of Tokyo Press, Tokyo, pp. 3–17 (1983).

    Google Scholar 

  38. M. A. Foster, J. M. S. Hutchison, J. R. Mallard, M. Fuller, Nuclear magnetic resonance pulse sequence and discrimination of high- and low-fat tissues, Mag. Reson. Imaging 2: 187 (1984).

    Article  CAS  Google Scholar 

  39. W. D. Middleton, J. B. Kneeland, G. F. Carrera, J. D. Cates, G. M. Kellman, N. G. Campagna, A. Jesmanowicz, W. Froncisz, and J. S. Hyde, High-resolution MR imaging of the normal rotator cuff, AJR 148: 559 (1987).

    PubMed  CAS  Google Scholar 

  40. W. D. Middleton, J. B. Kneeland, G. F. Carrera, J. D. Cates, G. M. Kellman, N. G. Campagna, A. Jesmanowicz, W. Froncisz, and J. S. Hyde, High-resolution MR imaging of the normal rotator cuff, AJR 148: 559 (1987).

    PubMed  CAS  Google Scholar 

  41. L. K. Misra and G. Elizondo-Riojas, MRI of muscle hypertrophy and atrophy, Avian Dis. (submitted).

    Google Scholar 

  42. R. Damadian, Tumor detection by nuclear magnetic resonance, Science 171: 1151 (1971).

    Article  PubMed  CAS  Google Scholar 

  43. P. A. Bottomley, T. H. Foster, R. E. Argersinger, and L. M. Pfeifer, A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: Dependence on tissue type, NMR frequency, temperature, species, excision, and age, Med. Phys 11: 425 (1984).

    Article  PubMed  CAS  Google Scholar 

  44. L. K. Misra, W. Vijjeswarrapur, G. W. Parker, D. W. Bearden, C. F. Hazlewood, Effects of evolutionary disuse, genetic selection, and severity of disease on muscle T1 and T2, Mag. Reson. Imaging 4: 128 (1986).

    Article  Google Scholar 

  45. J. F. Polak, F. A. Jolesz, D. F. Adams, NMR of skeletal muscle: Differences in Relaxation parameters related to extracellular/intracellular fluid spaces, Invest. Radiol 23: 107 (1988).

    Article  PubMed  CAS  Google Scholar 

  46. I. A. Mardini, R. J. M. McCarter, and G. D. Fullerton, NMR relaxation times of skeletal muscle: dependence on fiber type and diet, Mag. Reson. Imaging 4: 393 (1986).

    Article  Google Scholar 

  47. L. K. Misra, S. R. Kasturi, S. K. Kundu, Y. Harati, C. F. Hazlewood, M. G. Luthra, W. S. Yamanachi, R. P. Munjaal, and S. R. Amtey, Evaluation of muscle degeneration in inherited muscular dystrophy by nuclear magnetic resonance techniques, Mag. Reson. Imaging 1: 79 (1982).

    Google Scholar 

  48. T. F. Egan, D. W. Bearden, C. F. Hazlewood, L. K. Misra, Changes in the proton spin- lattice relaxation times in muscular dystrophy, Soc. Mag. Reson. Med. Meeting, 1986, Abstracts 2: 1182.

    Google Scholar 

  49. L. K. Misra and R. K. Entrikin, Corticosteroid therapy in avian muscular dystrophy:Evaluation by magnetic resonance relaxation times, Expt. Neurol, (in press).

    Google Scholar 

  50. P. S. Belton and R. G. Ratcliffe, NMR and compartmentation in biological tissues, Prog. in NMR Spectrosc. 17:241 (1985).

    Article  CAS  Google Scholar 

  51. E. Le Rumeur, J. De Certaines, P. Toulouse, and P. Rochcongar, Water phases in rat striated muscles as determined by T2 proton NMR relaxation times, Mag. Reson. Imaging 2: 267 (1987).

    Article  Google Scholar 

  52. J. L. Fleckenstein, R. C. Canby, R. W. Parkey, and R. M. Peshock, Acute effects of exercise on MR imaging of skeletal muscle in normal volunteers, AJR 151: 231 (1988).

    PubMed  CAS  Google Scholar 

  53. A. Von Bezold, Untersuchungen uber die verteilung von vasser, organischer materie, und anorganischen verbindungen im thierreiche, Zeit. Wissenchaften Zoologic 8: 487 (1857).

    Google Scholar 

  54. L. K. Misra, N. K. R. Smith, D. C. Chang, R. L. Sparks, I. L. Cameron, P. T. Beall, R. Harrist, B. L. Nichols, R. C. Fanguy, and C. F. Hazlewood, Intracellular concentration of elements in normal and dystrophic skeletal muscles of the chicken, J. Cell. Physiol 103: 193 (1980).

    Article  PubMed  CAS  Google Scholar 

  55. C. F. Hazlewood, B. L. Nichols, D. C. Chang, and B. Brown, On the state of water in developing muscle: A study of the major phases of ordered water in skeletal muscle and its relationship to sodium concentration, Johns Hopkins Med. J 128: 117 (1971).

    PubMed  CAS  Google Scholar 

  56. L. K. Misra, P. A. Narayana, P. T. Beall, S. R. Amtey, and C. F. Hazlewood, Developmental changes in Tt relaxation times of muscle water protons in muscular dystrophy, Mag. Reson. Med 1: 205 (1984).

    Google Scholar 

  57. K. Matsumura, I Nakano, N. Fukuda, H. Ikehira, Y. Tateno, and Y. Aoki, Proton spin- lattice relaxation time of duchenne dystrophy skeletal muscle by magnetic resonance imaging, Muscle Nerve 11: 97 (1988).

    Article  PubMed  CAS  Google Scholar 

  58. D. C. Chang, L. K. Misra, P. T. Beall, R. C. Fanguy, and C. F. Hazlewood, Nuclear magnetic resonance study of muscle water protons in muscular dystrophy of chickens, J. Cell. Physiol 107: 139 (1981).

    Article  PubMed  CAS  Google Scholar 

  59. L. Borghi, F. Savoldi, R. Scelsi, and M. Villa, Nuclear magnetic resonance of protons in normal and pathological human muscles, Expt. Neurol 81: 89 (1983).

    Article  CAS  Google Scholar 

  60. S. G. Wu, D. R. Courtney, C. F. Hazlewood, and L. K. Misra, Multiexponential behavior of proton T1 relaxation times of slow, fast, and degenerating muscles, Fed. Proc 2: A958 (1988).

    Google Scholar 

  61. R. Barthwal, M. Hohn-Berlage, and K. Gersonde, In vitro proton T1 and T2 studies in rat liver: Analysis of multiexponential relaxation processes, Mag. Reson. Med 3: 863 (1986).

    Article  CAS  Google Scholar 

  62. D. Grucker, Y. Mauss, and J. Sterbel, Effect of interpulse delay on NMR transverse relaxation rate of tissues, Mag. Reson. Imaging 4: 441 (1986).

    Article  Google Scholar 

  63. K. R. Metz, P. J. Stankiewicz, J. W. Sassani, and R. W. Briggs, Pulse techniques for the suppression of individual components in multiexponential relaxation curves, Mag. Reson. Med 3: 575 (1986).

    Article  CAS  Google Scholar 

  64. L. K. Misra, T. F. Egan, D. R. Courtney, L. Chen, D. W. Bearden, and C. F. Hazlewood, NMR relaxation times of muscles reflect modifications in expression of dystrophic gene, Mag. Reson. Imaging 5: 15 (1987).

    Article  Google Scholar 

  65. L. K. Misra, P. A. Narayana, In vivo T1 characterization of genetically-induced muscle atrophy, Mag. Reson. Imaging (submitted).

    Google Scholar 

  66. H. F. Bennett, H. W. Swartz, R. D. Brown, and S. H. Koenig, Modification of relation of lipid protons by molecular oxygen and nitroxides, Invest. Radiol 22: 502 (1987).

    Article  PubMed  CAS  Google Scholar 

  67. L. K. Misra, R. K. Entrikin, and C. F. Hazlewood, Effects of therapeutic intervention in NMR relaxation times of dystrophic muscles, Proc. 12th Int. Conf. Mag. Reson. Biol. System p136 (1986).

    Google Scholar 

  68. P. T. Beall and L. K. Misra, Effects of estrogen status on NMR relaxation times in tissues of female animals, Biophys. J 45: 253 (1984).

    Article  Google Scholar 

  69. R. M. Kawamoto and R. J. Baskin, Isolation and characterization of sarcoplasmic reticulum from normal and dystrophic chicken, Muscle Nerve 9: 248 (1986).

    Article  PubMed  CAS  Google Scholar 

  70. R. P. Munjaal, J. R. Dedman, and L. K. Misra, Elevation of calmodulin in avian muscular dystrophy, Cell Calcium 6: 481 (1985).

    Article  PubMed  CAS  Google Scholar 

  71. J. R. Zimmerman and W. E. Brittin, Nuclear magnetic resonance studies in multiple phase systems: Lifetime of a water molecule in an absorbing phase on silica gel, J. Phys. Chem 61: 1328 (1957).

    Article  CAS  Google Scholar 

  72. G. D. Fullerton, J. L. Potter, and N. C. Dornbluth, NMR relaxation of protons in tissues and other macromolecular water solutions, Mag. Resort. Imaging 1: 209 (1982).

    Article  CAS  Google Scholar 

  73. L. K. Misra, P. A. Narayana, D. W. Bearden, T. F. Egan, R. P. Munjaal, and C. F. Hazlewood, Reduction in the proton NMR relaxation times of dystrophic muscles following functional improvement, Mag. Resort. Imaging 2: 205 (1984).

    Article  Google Scholar 

  74. S. H. Koenig and R. D. Brown, III, Determinants of proton relaxation rates in tissue, Mag. Reson. Med 1: 437 (1984).

    Article  CAS  Google Scholar 

  75. S. H. Koenig and R. D. Brown III, The importance of the motion of water for magnetic resonance imaging, Invest. Radiol 20: 297 (1985).

    Article  PubMed  CAS  Google Scholar 

  76. S. H. Koenig, Theory of relaxation of mobile water protons induced by protein NH moieties, with application to rat heart muscle and calf lens homogenates, Biophys. J 53: 91 (1988).

    Article  PubMed  CAS  Google Scholar 

  77. H. E. Rorschach and C. F. Hazlewood, Protein dynamics and the NMR relaxation time T1 of water in biological systems, J. Mag. Reson 70: 79 (1986).

    CAS  Google Scholar 

  78. G. Schauer, R. Kimmich, and W. Nusser, Deuteron field-cycling relaxation spectroscopy and translational water diffusion in protein hydration shells, Biophys. J 53: 397 (1988).

    Article  PubMed  CAS  Google Scholar 

  79. R. M. Kroeker and R. M. Henkelman, Analysis of biological NMR relaxation data with continuous distributions of relaxation times, J. Mag. Reson 69: 218.

    Google Scholar 

  80. L. K. Misra, M. G. Luthra, S. R. Amtey, G. Elizondo-Riojas, S. H. Swezey, and L. E. Todd, Enhanced T, differentiation between normal and dystrophic muscles, Mag. Reson. Imaging 2: 33 (1984).

    Article  CAS  Google Scholar 

  81. L. E. Crooks, M. Arakawa, J. C. Hoenningar, B. McCarten, J. Watts, and L. Kaufman, Magnetic resonance imaging: Effects of magnetic field strength, Radiology 151: 127 (1984).

    PubMed  CAS  Google Scholar 

  82. V. M. Runge, J. A. Clanton, C. M. Lukehart, C. L. Partin, and A. E. James, Jr., Paramagnetic agents for contrast-enhanced NMR imaging: a review, AJR 141: 1209 (1983).

    PubMed  CAS  Google Scholar 

  83. R. B. Buxton, G. L. Wismer, T. J. Brady, and B. R. Rosen, Quantitative proton chemical-shift imaging, Mag. Reson. Med 3: 881 (1986).

    Article  CAS  Google Scholar 

  84. C. J. Hardy and C. L. Dumoulin, Lipid and water supression by selective 1H homonuclear polarization transfer, Mag. Reson. Med 5: 58 (1987).

    Article  CAS  Google Scholar 

  85. L. K. Misra, J. W. Frazer, C. F. Hazlewood, and L. W. Dennis, 1H NMR spectra of normal and dystrophic muscles, Soc. Mag. Reson. Med., Book of Abstracts p553 (1987).

    Google Scholar 

  86. W. M Brooks, J. Field, M. G. Irving, and D. M. Doddrel, In vivo Determination of 31P spin relaxation times (T1,T2,T1rho) in rat leg muscle. Use if an off-axis solenoid coil, Magn. Reson. Imaging 4:245 (1986).

    Article  PubMed  CAS  Google Scholar 

  87. P. A. Narayana, J. L. Delayre, and L. K. Misra, In vivo 31P NMR studies of avian dystrophic muscles, Mag. Reson. Med 3: 549 (1986).

    Article  CAS  Google Scholar 

  88. D. W. Kormos and H. N. Yeung, NMR imaging of 13C in animal tissues, Mag. Reson. Med 4: 500 (1987).

    Article  CAS  Google Scholar 

  89. S. W. Lee. S. K. Hilal, and Z. H. Cho, A multinuclear magnetic resonance imaging technique-simultaneous proton and sodium imaging, Mag. Reson. Imaging 4: 343 (1986).

    Article  CAS  Google Scholar 

  90. D. B. Sprague, D. G. Gadian, S. R. Williams, E. Proctor, and A. W. Goode, Intracellular metabolites in rat muscle following trauma: a 31P and 1H nuclear magnetic resonance study, J. Roy. Soc. Med 80: 495 (1987).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Misra, L.K., Kim, E.E., Hazlewood, C.F., Dennis, L.W. (1988). Magnetic Resonance Relaxation Times and Imaging in the Pathophysiology of Muscles. In: Cañedo, L.E., Todd, L.E., Packer, L., Jaz, J. (eds) Cell Function and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0813-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0813-3_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8095-8

  • Online ISBN: 978-1-4613-0813-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics