Skip to main content

Molecular Basis Of Radioprotection By Aminothiols

  • Chapter

Abstract

It is now well established that aminothiols are radioprotector agents, and in some cases anticancer drugs1–6. Aminothiols which belong to the radioprotector family are able to reduce the radiation damage when administrated to animals or cellular cultures before irradiationwith ionizing radiation. These drugs are characterized by their dose reduction factor (DRF = ratio of lethal dose of irradiation for 50% of animals treated with radioprotector to lethal dose of irradiation for 50% of control animals). On another hand, it was shown that both in vivo and in vitro conditions, ionizing radiation (UV, X or γ rays) induce, by intermediate radicals or hydrated electrons, single breaks and double breaks of DNA backbone and base modifications7–10.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. C. Jocelyn, “Biochemistry of the SH group”, Academic Press, New York (1972).

    Google Scholar 

  2. W. O. Foye, Mechanisms of Radiation Protection by the Amino- thiols, Int. 3. Sulfur Chem., 8: 161 (1973).

    CAS  Google Scholar 

  3. Z. M. Bacq, “Sulfur Containing Radioprotective Agents”, Pergamon, New York (1975).

    Google Scholar 

  4. J. M. Yuhas, On the Potential Application of Radioprotective drugs in solid tumor radiotherapy, in “Radiation-Drug Interactions in the Treatment of Cancer”, G.H. Sokol and R.P. Maickel, eds., Wiley, New York (1980).

    Google Scholar 

  5. M. Fatome, La Radioprotection Chimique, Radioprotection, 16: 113 (1981).

    CAS  Google Scholar 

  6. O. F. Nygaard and M.G. Simic, “Radioprotectors and Anticarcinogens”, Academic Press, New York (1983).

    Google Scholar 

  7. M. Vorlickova and E. Palecek, A study of changes in DNA Conformation caused by Ionizing and Ultra-violet Radiation by means of Pulse Polarography and Circular Dichroism, Int. 3. Radiat. Biol., 26: 363 (1974).

    Article  CAS  Google Scholar 

  8. J. F. Ward, Molecular Mechanisms of Radiation-Induced Damage to Nucleic Acids, Adv. Rad. Biol., 5: 181 (1975).

    CAS  Google Scholar 

  9. R. Frey and V. Hägen, Changes in DNA Secondary Structure after γ -Irradiation, Rad. Environ. Biophys., 12: 111 (1975).

    Article  CAS  Google Scholar 

  10. J. M. Sequaris, P. Valenta, H.W. Nürnberg and B. Malfoy, Voltametric Studies on the Bioelectrochemical Behaviour of Ultrasound Sonicated and γ -Irradiated Native DNA, Bioelectrochem. Bioenerg., 5: 483 (1978).

    Article  CAS  Google Scholar 

  11. J. W. Purdie, A Comparative Study of the Radioprotective Effects of Cysteamine, WR-2721 and WR-1065 in Cultured Human Cells, Radiat. Res., 77: 303 (1979).

    Article  PubMed  CAS  Google Scholar 

  12. J. M. Yuhas and J.B. Storer, Differential Chemoprotection of Normal and Malignant Tissues, 3. Natl. Cancer Inst., 42: 331 (1969).

    CAS  Google Scholar 

  13. J. M. Yuhas, J.M. Spellman and F. Culo, The Role of WR-2721 in Radiotherapy and/or Chemotherapy, Cancer Clin. Trials, 3: 211 (1980).

    PubMed  CAS  Google Scholar 

  14. J. M. Yuhas and F. Culo, Selective Inhibition of the Nephrotoxicity of cis-Dichloroammineplatinium (II) by WR-2721 Without Alterning its Antitumor Properties, Cancer Treat. Rep., 64: 57 (1980).

    PubMed  CAS  Google Scholar 

  15. F. Lespinasse, J. Oiry, M. Fatome, P. Ardouin, J. Imbach, E.P. Malaise and M. Guichard, Radioprotection of EMT6 Tumor by a New Class of Radioprotectors Based on a PseudoPeptide Cysteamine Combination, Int. 3. Rad. Oncol. Biol. Phys., 11: 1035 (1985).

    Article  CAS  Google Scholar 

  16. O. Imbach, personnal communication.

    Google Scholar 

  17. A. Meister, Selective Modification of Glutathione Metabolism, Science, 220: 472 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. J. M. Yuhas and T.L. Phillips, Pharmacokinetics and Mechanisms of action of WR-2721 and other protective agents, in: “Radioprotectors and Anticarcinogens”, O.F. Nygaard and M.G. Simic, eds, Academic Press, New York (1983).

    Google Scholar 

  19. D. Schulte-Frohlinde, Kinetics and Mechanisms of Polynucleotide and DNA strand break formation, in: “Radioprotectors and Anticarcinogens”, O.F. Nygaard and M.G. Simic, eds, Academic Press, New York (1983).

    Google Scholar 

  20. J. F. Ward, Chemical Aspects of DNA radioprotection, in: “Radioprotectors and Anticarcinogens”, O.F. Nygaard and M.G. Simic, eds, Academic Press, New York (1983).

    Google Scholar 

  21. M. A. Rix-Montel, D. Vasilescu and H. Sentenac, Dielectric, Potentiometric and Spectrophotometric Measurements of the Interaction between DNA and Cysteamine, Stud. Biophys., 69: 209 (1978).

    CAS  Google Scholar 

  22. D. Vasilescu and M.A. Rix-Montel, Interaction of Sulfur- Containing Radioprotectors with DNA: A Spectrophotometric Study, Physiol. Chem. Phys., 12: 51 (1980).

    CAS  Google Scholar 

  23. D. Vasilescu, H. Broch and M.A. Rix-Montel, Mechanism of Aminothiol Radioprotectors Action at the Molecular Level, 3. Mol. Structure (Theochem), 134: 367 (1986).

    Article  Google Scholar 

  24. D. Vasilescu and R. Viani, Molecular Similarity in Amino- thiol Radioprotectors: A Randic Graph Approach, Int. J. Quantum Chem., Quantum Biology Symposium, 14: 149 (1987).

    Article  CAS  Google Scholar 

  25. M. Randic and C.L. Wilkins, Graph Theoretical Study of Structural Similarity in Benzomorphans, Int. 3. Quantum Chem., Quantum Biology Symposium, 6: 55 (1979).

    CAS  Google Scholar 

  26. M. Randic, Non-empirical Approach to Structure-Activity Studies, Int. J. Quantum Chem., Quantum Biology Symposium, 11: 137 (1984).

    Article  CAS  Google Scholar 

  27. M. Randic, Graph Theoretical Approach to Structure- Activity Studies: Search for Optimal Antitumors Compounds, in: “The Molecular Basis of Cancer”, R. Rein, ed., A.R. Liss, New York (1985).

    Google Scholar 

  28. S. C. Grossman, B. Jerman Blazic Dzonova and M. Randic, A Graph Theoretical Approach to Quantitative Structure- Activity Relationship, Int. 3. Quantum Chem., Quantum Biology Symposium, 12: 123 (1986).

    CAS  Google Scholar 

  29. A. Rix-Montel, H. Kranck and D. Vasilescu, Electrochemical Behaviour of Aminothiol Radioprotectors, Bioelectrochem. Bioenergetics, 16: 427 (1986).

    CAS  Google Scholar 

  30. H. Broch, D. Cabrol and D. Vasilescu, Electrostatic Properties of Some Sulfur Containing Radioprotectors, Int. 3. Quantum Chem., Quantum Biology Symposium, 9: 111 (1982).

    CAS  Google Scholar 

  31. H. Broch and D. Vasilescu, Conformation and Electrostatic Properties Quantum Determination of the New Radioprotector and Anticancer Drug 1-102, Int. 3. Quantum Chem., Quantum Biology Symposium, 13: 81 (1986).

    CAS  Google Scholar 

  32. H. Broch, D. Cabrol and D. Vasilescu, Quantum Mechanical Simulation of the Interaction between the Radioprotector Cysteamine and DNA, Int. 3. Quantum Chem., Quantum Biology Symposium, 7: 283 (1980).

    CAS  Google Scholar 

  33. D. Vasilescu, Sur une Notation Rationalisée des Paramètres Caractéristiques d’un Electrolyte 1.1 en Solution, 3. Chim. Phys., 7 – 8: 1131 (1974).

    Google Scholar 

  34. D. Vasilescu, H. Grassi and M.A. Rix-Montel, DNA as a Polyelectrolyte: Recent Investigations on the Na-DNA System, in: “Polyelectrolytes and their Applications”, A. Rembaum and E. Selegny, eds, Reidel, Dordrecht (1975).

    Google Scholar 

  35. G. S. Manning, Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions.I.Colligative Properties, 3. Chem.Phys., 51: 924 (1969).

    CAS  Google Scholar 

  36. G. S. Manning, On the Application of Polyelectrolyte “Limiting Laws” to the Helix-Coil Transition of DNA.I. Excess Univalent Cations, Biopolymers, 11: 937 (1972).

    Article  PubMed  CAS  Google Scholar 

  37. M. Le Bret and B. Zimm, Monte Carlo Determination of the Distribution of Ions about a Cylindrical Polyelectrolyte, Biopolymers, 23: 271 (1984).

    Article  PubMed  Google Scholar 

  38. M. Le Bret and B. Zimm, Distribution of Counterions around a Cylindrical Polyelectrolyte and Manning’s Condensation Theory, Biopolymers, 23: 287 (1984).

    Article  Google Scholar 

  39. M. L. Bleam, C.F. Anderson and T. Record 3r., Relative Binding Affinities of Monovalent Cations for Double-Stranded DNA, Proc. Natl. Acad. USA, 77: 3085 (1980).

    Article  CAS  Google Scholar 

  40. D. Vasilescu and G. Mallet, Demonstration of the Interaction of Cysteamine with DNA using Na NMR Technique, Biopolymers, 24: 1845 (1985).

    Article  PubMed  CAS  Google Scholar 

  41. C. Hornick and G. Weill, Electrooptical Study of the Electric Polarizability of Rod-like Fragments of DNA, Biopolymers, 10: 2345 (1971).

    Article  PubMed  CAS  Google Scholar 

  42. J. C. Bernengo, Doctoral Thesis, Lyon University (1970).

    Google Scholar 

  43. C. T. O’Konski and S. Krause, Electric Birefringence and Relaxation in Solutions of Rigid Macromolecules, in: “Molecular Electro-optics, part I”, C.T. , ed., M. Dekker,. Inc., New York (1976).

    Google Scholar 

  44. C. Marion, B. Roux and M. Hanss, Orientational Interactions in Low-Concentration DNA Solutions, Biopolymers, 22: 2353 (1983).

    Article  PubMed  CAS  Google Scholar 

  45. G. Weill and C. Hornick, Electric Polarizability of Rigid Polyelectrolytes, in: “Polyelectrolytes”, E. Selegny, ed., D. Reidel, Dordrecht (1974).

    Google Scholar 

  46. N. Stellwagen, Electric Birefringence of Restriction Enzyme Fragments of DNA: Optical Factor and Electric Polarizability as a Function of Molecular Weight, Biopolymers, 20: 399 (1981).

    Article  PubMed  CAS  Google Scholar 

  47. G. Mallet, J. Lematre, M. Leca and D. Vasilescu, Interaction of DNA with the Radioprotectors Cysteamine and WR-1065. A Kerr Effect Study, Applied Physics Comm., 7: 57 (1987).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Vasilescu, D. (1988). Molecular Basis Of Radioprotection By Aminothiols. In: Cañedo, L.E., Todd, L.E., Packer, L., Jaz, J. (eds) Cell Function and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0813-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0813-3_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8095-8

  • Online ISBN: 978-1-4613-0813-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics