Skip to main content

The Signaling Function of Calcium and Its Regulation

  • Chapter
Cell Function and Disease
  • 188 Accesses

Abstract

In the course of evolution Ca has become a signaling agent of universal significance, which controls a large number of cellular functions: prominent among them are the synthesis and release of hormones, muscle and non-muscle motility, and a multiplicity of membrane-linked processes (see Carafoli, 1987, for a recent comprehensive review). It is self evident that the signaling function of Ca demands its maintenance within cells at a very low free concentration, and mechanisms to efficiently modulate it in the cell compartments where the targets of the signaling function are located. Other signaling agents are regulated within cells by biosynthesis and breakdown. Since this is impossible in the case of Ca, evolution has selected an entirely different control mechanism, i.e., the reversible complexation by specific proteins, which are either soluble, organized in non membranous structures, or intrinsic to membranes. These proteins “buffer” intracellular Ca at a concentration which is at least 10,000 fold lower than in the external spaces. The functional cycle of cells requires both short and long term regulation of Ca. The rapid and precise modulation is performed by intracel1ular Ca binding proteins but also (in fact mostly, see below) by high Ca affinity membrane intrinsic proteins. The Ca-filtering function of the plasma membrane, which depends on the operation of membrane-intrinsic Ca binding proteins, is responsible for the long term maintenance of the Ca gradient between cells and medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babu, Y.S., Sack, J.S., Greenhough, T.J., Bugg, C.E., Means, A.R., and Cook, W.J., 1985, Three-dimensional structure of calmodulin, Nature, 315: 37.

    Article  PubMed  CAS  Google Scholar 

  • Borsotto, M., Norman, R.I., Fosset, M., and Lazdunski, M., 1984, Eur. J. Biochem., 14: 449.

    Article  Google Scholar 

  • Carafoli, E, 1979, The calcium cycle of mitochondria, FEBS Letters, 104: 1.

    Article  PubMed  CAS  Google Scholar 

  • Carafoli, E., 1982, The transport of calcium across the inner membrane of mitochondria, in: “Membrane Transport of Calcium”, E. Carafoli, ed., Academic Press, London, pp 109.

    Google Scholar 

  • Carafoli, E., 1982, Membrane transport and the regulation of the cell calcium levels, in: “Pathophysiology of Shock, Anoxia, and Ischemia”, R.A. Cowley, and B.F. Trump, eds., Williams and Wilkins, pp 95.

    Google Scholar 

  • Carafoli, E., 1987, Intracellular calcium homeostasis, Ann. Rev. Biochem., 56: 395.

    Article  PubMed  CAS  Google Scholar 

  • Carafoli, E., Tiozzo, G., Lugli, F., Crovetti, F., and Kratzing, C., 1974, The release of calcium from heart mitochondria by sodium, J. Molec. Cell. Cardiol., 6: 361.

    Article  CAS  Google Scholar 

  • Caroni, P., and Carafoli, E., 1981, Regulation of Ca2+ -pumping ATPase of heart sarcolemma by a phosphorylation-dephosphorylation process, J. Biol. Chem., 256: 9371.

    PubMed  CAS  Google Scholar 

  • Caroni, P., and Carafoli, E., 1983, The regulation of the Na+/Ca2+ exchanger of heart sarcolemma, Eur. J. Biochem., 132: 451.

    Article  PubMed  CAS  Google Scholar 

  • Crompton, M., Moser, R., Lüdi, H., and Carafoli, E., 1978, The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues, Eur. J. Biochem., 82: 25.

    Article  PubMed  CAS  Google Scholar 

  • Crompton, M., Sigel, E., Salzmann, M., and Carafoli, E., 1976, A kinetic study of the energy-linked influx of Ca into heart mitochondria, Eur. J. Biochem., 69: 429.

    Article  CAS  Google Scholar 

  • Curtis, B.M., and Catterall, W.A., 1985, Phosphorylation of the calcium antagonist receptor of the voltage-sensitive calcium channel by cAMP-dependent protein kinase, Proc. Nat. Acad. Sci., USA, 82: 2528.

    Article  CAS  Google Scholar 

  • Denton, R.M., Randle, P.J., and Martin, B.R., 1972, Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase, Biochem. J., 128: 161.

    PubMed  CAS  Google Scholar 

  • Denton, R.M., Richards, D.A., and Chin, J.G., 1978, Calcium ions and the regulation of NAD+ -linked isocitrate dehydrogenase from the mitochondria of rat heart and other tissues, Biochem. J., 176: 899.

    PubMed  CAS  Google Scholar 

  • Fabiato, A., and Fabiato, F., 1975, Contractions induced by a calcium triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells, J. Physiol., 249: 457.

    Google Scholar 

  • Fleckenstein, A., 1973, Calcium antagonism in heart and smooth muscle, John Wiley, New York.

    Google Scholar 

  • Grand, R.J.A., Perry, S.V., and Weeks, R.A., 1979, Troponin-C like proteins (calmodulin) from mammalian smooth muscle and other tissues, Biochem. J., 177: 521.

    PubMed  CAS  Google Scholar 

  • Herzberg, 0., and James, M.N.G., 1985, Structure of the calcium regulatory muscle protein troponin-C at 2.8. A resolution, Nature, 313: 665.

    Article  Google Scholar 

  • Krause, K.H., Volpe, P., Zorzato, F., Hashimoto, S., Pozzan, T., Meldolesi, J., and Lew, P.D., 1987, Calciosomesi evidence for a new type of organelle regulating intracellular Ca, Seventh Intern. Washington Spring Symposium, Abstract 64.

    Google Scholar 

  • Kretsinger, R.H., and Nelson, D.J., 1977, Calcium in biological systems, Coord. Chem. Rev., 18: 29.

    Article  Google Scholar 

  • Kretsinger, R.H., and Nockolds, C.E., 1973, Carp muscle calcium-binding protein, J. Biol. Chem., 248: 3313.

    PubMed  CAS  Google Scholar 

  • Longoni, S. and Carafoli, E., 1987, Identification of the Na+/Ca2+ exchanger of calf heart sarcolemma with the help of specific antibodies, Biochem. Biophys. Res. Commun., 145: 1059.

    Article  PubMed  CAS  Google Scholar 

  • MacLennan, D.H., 1970, Purification an3 properties of an adenosine triphosphatase from sarcoplasmic reticulum, J. Biol. Chem., 245: 4508.

    PubMed  CAS  Google Scholar 

  • MacLennan, D.H., Brandl, C.J., Korczak, B., and Green, N.M., 1985, Amino-acid sequence of a Ca2+ + Mg2+ -dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence, Nature, 316: 696.

    Article  PubMed  CAS  Google Scholar 

  • McCormack, J.G., and Denton, R.M., 1979, The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex, Biochem. J., 180: 533.

    PubMed  CAS  Google Scholar 

  • Meissner, G., and Henderson, J.S., 1987, Rapid calcium release from sarcoplasmic reticulum vesicles is dependent on calcium and is modulated by Mg2+, adenine nucleotide, and calmodulin, J. Biol. Chem. 262: 3065.

    PubMed  CAS  Google Scholar 

  • Niggli, V., Adunyah- Penniston, J.T., and Carafoli, E., 1981, Purified (Ca2+-Mg2+)-ATPase of the erythrocyte membrane; reconstitution and effect of calmodulin and phospholipids, J. Biol. Chem., 256: 395.

    PubMed  CAS  Google Scholar 

  • Nilius, B., Hess, P., Lansmann, J.B., and Tsien, R.W., 1985, A novel type of cardiac calcium channel in ventricular cells, Nature, 316: 443.

    Article  PubMed  CAS  Google Scholar 

  • Philipson, K.D., 1985, Sodium-calcium exchange in plasma membrane vesicles, Ann. Rev. Physiol., 47: 561.

    Article  CAS  Google Scholar 

  • Reeves, J.P., and Sutko, J.L., 1979, Sodium-calcium exchange in cardiac membrane vesicles, Proc. Nat. Acad. Sci. USA, 76: 590.

    Article  PubMed  CAS  Google Scholar 

  • Reuter, H., 1984, Ion channels in cardiac cell membranes, Ann. Rev. Physiol., 46: 473.

    Article  CAS  Google Scholar 

  • Reuter, H., Stevens, C.F., Tsien, R.W., and Yellen, G., 1982, Properties of single calcium channels in cardiac cell culture, Nature, 297: 501.

    Article  PubMed  CAS  Google Scholar 

  • Schatzmann, H., 1982, The calcium pump of erythorcytes and other animal cells, in “Membrane Transport of Calcium”, E. Carafoli, ed., Academic Press, London, pp 41.

    Google Scholar 

  • Somlyo, A.V., Bond, M., Somlyo, A.P., and Scarpa, A., 1985, Inositol tris phosphate-induced calcium release and contraction in vascular smooth muscle, Proc. Nat. Acad. Sci., 82: 5231.

    Article  PubMed  CAS  Google Scholar 

  • Somlyo, A.P., Somlyo, A.V., and Shuman, H., 1979, Electron probe analysis of vascular smooth muscle, composition of mitochondria, nuclei, and cytoplasm, J. Cell Biol., 81: 316.

    Article  PubMed  CAS  Google Scholar 

  • Streb, H., Irvine, R.F., Berridge, M.J., and Schulz, I., 1983, Release of Ca2+ from a non-mitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate, Nature, 306: 66.

    Article  Google Scholar 

  • Szebenyi, D.M.E., Obendorf, S.K., and Moffat, K., 1981, Structure of vitamin D-dependent calcium binding protein from bovine intestine, Nature, 294: 327.

    Article  PubMed  CAS  Google Scholar 

  • Tada, M., Kirchberger, M.A., and Katz, A.M., 1975, Phosphorylation of 22.000-Dalton component of the cardiac sarcoplasmic reticulum by adenosine 3″:5″-monophosphate-dependent protein kinase, J. Biol. Chem., 250: 2640.

    PubMed  CAS  Google Scholar 

  • Tanabel, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangaura, K., Kojima, M., Matsuo, H., Hirose, T., and Numa, S., 1987, Primary structure of the receptor for calcium channel blockers from skeletal muscle, Nature, 328: 313.

    Article  Google Scholar 

  • Vaghy, P.L., Johnson, J.D., Matlib, M.A., Wang, T., and Schwarz, A., 1982, Selective inhibition of Na+-induced Ca2+ release from heart mitochondria by diltiazem and certain other Ca2+ antagonist drugs, J. Biol. Chem., 257: 6000.

    PubMed  CAS  Google Scholar 

  • Volpe, P., Krause, K.H., Hashimoto, G., Zorzato, F., Pozzan, T., Meldolesi, J., and Lew, D.P., 1988, “Calcisome”, a cytoplasmic organelle: the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of non-muscle cells? Proc. Nat. Acad. Sci., U.S.A., 85: 1091.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Carafoli, E. (1988). The Signaling Function of Calcium and Its Regulation. In: Cañedo, L.E., Todd, L.E., Packer, L., Jaz, J. (eds) Cell Function and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0813-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0813-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8095-8

  • Online ISBN: 978-1-4613-0813-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics