Towards Active Chromatin Structure

  • Henryk Eisenberg


Nucleic acids and proteins are major protagonists in the continuously ongoing drama of life1. According to the now classical dogma, almost always respected and followed, DNA makes RNA, RNA makes protein, and protein closes the circle by providing activator and control elements necessary for proper DNA and RNA operation. In addition, proteins (in the form of enzymes) provide the more mundane function of catalyzing a variety of metabolic reactions, which culminate in the synthesis of vital components for the molecules of life.


Globin Gene Core Histone High Order Structure Chromatin Fiber Linker Histone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.D.Watson, N.H. Hopkins, J.W. Roberts, J.A. Steitz and A.M. Weiner, “Molecular Biology of the Gene”, 4th Ed., Benjamin/Cummings, Menlo Park (1987).Google Scholar
  2. 2.
    E.M. Bradbury, N. Maclean and H.R. Matthews, “DNA, Chromatin and Chromosomes”, Wiley, New York (1981).Google Scholar
  3. 3.
    J.D. McGhee and G. Felsenfeld, Nucleosome structure, Ann. Rev. Biochem. 49: 1115 - 1156 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    R.D. Kornberg, Structure of chromatin, Ann. Rev. Biochem. 46: 931 - 954 (1977).PubMedCrossRefGoogle Scholar
  5. 5.
    D.M.J. Lilley and J.F. Pardon, Structure and function of chromatin, Ann. Rev. Genet. 13: 197 - 233 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    T.J. Richmond, J.T. Finch, B. Rushton, D. Rhodes and A. Klug, Structure of the nucleosome core particle at 7Å resolution, Nature 311: 532 - 537 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    K.Park and G.D. Fasman,The histone octamer, a conformationaly flexible structure, Biochemistry 26: 8042 - 8045 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    R.T.Simpson,Structure of the chromatosome, a chromatin particle, containing 160 base pairs of DNA and all the histones, Biochemistry 17: 5524 - 5531 (1978).PubMedCrossRefGoogle Scholar
  9. 9.
    J.T. Finch and A. Klug, Solenoidal model for superstructure in chromatin, Proc.Natl.Acad.Sci. USA 73: 1897 - 1901 (1976).PubMedCrossRefGoogle Scholar
  10. 10.
    J.D. McGhee, J.M. Nickol, G. Felsenfeld and D.C. Rau, Higher order structure of chromatin: Orientation of nucleosomes within the 30 nm chromatin solenoid is independent of species and spacer length, Cell 33: 831 - 841 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    S.P. Williams, B.D. Athey, L.J Muglia, R.S. Schappe, A.H. Gough and J.P. Langmore, Chromatin fibers are left-handed double helices with diameter and mass-per-unit length that depend on linker length, Biophys. J. 49: 233 - 248 (1986).PubMedCrossRefGoogle Scholar
  12. 12.
    M.H.J. Koch, M.C. Vega, Z. Sayers and A.M. Michon, The superstructure of chromatin and its condensation mechanism III: Effect of monovalent and divalent cations, X-ray solution scattering and hydrodynamic studies, Eur. Biophys. J. J. 14: 307 - 319 (1987).Google Scholar
  13. 13.
    D.S.Pederson, F. Thoma and R.T. Simpson, Core particle, fiber, and transcriptionally active chromatin structure, Ann. Rev. Cell Biol. 2: 117 - 147 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    G.Felsenfeld and J.D. McGhee, Structure of the 30nm chromatin fiber, Cell 44: 375 - 377 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    J.Ausio, N. Borochov, D. Seger and H. Eisenberg, Interaction of chromatin with NaCl and MgCl2, J. Mol. Biol. 177: 373 - 398 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    N.Borochov, J. Ausio and H. Eisenberg, Interaction and conformational changes of chromatin with divalent ions, Nucl. Acid Res. 12: 3089 - 3096 (1984).CrossRefGoogle Scholar
  17. 17.
    J.Widom, Physicochemical studies of the folding of the 100Å nucleosome filament into the 300Å filament. Cation dependence, J. Mol. Biol. 190: 411 - 424 (1986).PubMedCrossRefGoogle Scholar
  18. 18.
    J.P. Langmore and J.R. Paulson, Low angle X-ray diffraction studies of chromatin structure in vivo and in isolated nuclei and metaphase chromosomes, J. Cell Biol. 96: 1120 - 1131 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    J.Widom and A. Klug, Structure of the 300A chromatin filament: X-ray diffraction from oriented samples, Cell 43: 207 - 213 (1985).PubMedCrossRefGoogle Scholar
  20. 20.
    S.I. Dimitrov, I.V. Smirnov and V.L. Makarov, Optical anisotropy of chromatin. Flow linear dichroism and electric dichroism study. J. Biomol.Struct. Dyn. 5: 1135 - 1148 (1988).PubMedGoogle Scholar
  21. 21.
    P.J.G. Butler, The folding of chromatin, CRC Crit. Rev. Biochem. 15: 57 - 91 (1983).CrossRefGoogle Scholar
  22. 22.
    K.O. Greulich, E. Wachtel, J. Ausio, D. Seger and H. Eisenberg, Transition of chromatin from the “10 nm” lower order structure to the “30” higher order structure as followed by small angle X-ray scattering, J. Mol. Biol. 193: 709 - 721 (1987).PubMedCrossRefGoogle Scholar
  23. 23.
    J.Bordas, L. Perez-Grau, M.H. J. Koch, C. Nave and M.C. Vega, The superstructure of chromatin and its condensation mechanism I: Synchrotron radiation X-ray scattering results, Eur. Bioph. J. 13: 157 - 174 (1986).CrossRefGoogle Scholar
  24. 24.
    S.E.Gerchman and V. Ramakrishnan, Chromatin higher order structure studies by neutron scattering and scanning transmission electron microscopy, Proc.Natl.Acad.Sci. USA 84: 7802 - 7806 (1987).PubMedCrossRefGoogle Scholar
  25. 25.
    R.T. Simpson, F. Thomas and J.M. Brubaker, Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: A model system for study of higher order structure. Cell 42: 799 - 808 (1985).PubMedCrossRefGoogle Scholar
  26. 26.
    J.Allan, D.Z.Staynov and H. Gould, Reversible dissociation of linker histone from chromatin with preservation of internucleosomal repear, Proc.Natl.Acad.Sci. USA 77: 885 - 889 (1980).PubMedCrossRefGoogle Scholar
  27. 27.
    T.J.Richmond, M.A. Searles, and R.T. Simpson, Crystals of nucleosome core particle containing defined sequence DNA, J. Mol. Biol. 199: 161 - 170 (1988).PubMedCrossRefGoogle Scholar
  28. 28.
    G.Felsenfeld, B.M. Emerson, P.D. Jackson, C.D. Lewis, J.E. Hesse, M.R. Lieber and J.M. Nickol, Chromatin structure near an expressed gene, In: “New Frontiers in the Study of Gene Functions”, P. Poste and S.T. Crooke, Eds., Plenum, New York, 99 - 109 (1987).Google Scholar
  29. 29.
    W.I. Wood and G. Felsenfeld, Chromatin structure of the chicken -globin region: Sensitivity to DNasel, micrococcal nuclease, and Dnasell, J. Biol. Chem. 257: 7730 - 7736 (1982).PubMedGoogle Scholar
  30. 30.
    B.M.Emerson and G. Felsenfeld, Specific factors conferring nuclease hypersensitivity at the 5’ end of the chicken adult ß-globin gene, USA, 81: 95 - 99 (1984).Google Scholar
  31. 31.
    E.A. Fisher and G. Felsenfeld, A comparison of the folding of ß-globin and ovalbumin gene-containing chromatin from chicken oviduct and erythrocytes, Biochemistry 25: 8010 - 8016 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    T.Kimura, F.C. Mills, J. Allan and H. Gould, Selective unfolding of erythroid chromatin in the region of the active 9-globin gene, Nature 306: 709 - 712 (1983).PubMedCrossRefGoogle Scholar
  33. 33.
    A.Caplan, T. Kimura, H. Gould and J. Allan, Perturbation of chromatin structure in the region of the adult ß-globin gene in the chicken erythrocyte chromatin, J. Mol. Biol. 193: 57 - 70 (1987).PubMedCrossRefGoogle Scholar
  34. 34.
    S.M. Gasser and U.K. Laemmli, A glimpse at chromosomal order, TIG 3: 16 - 22 (1987).CrossRefGoogle Scholar
  35. 35.
    D.A. Jackson and P.R. Cook, Transcription occurs at the nucleoskeleton, EMBO J. 4: 919 - 925 (1985).PubMedGoogle Scholar
  36. 36.
    M. Roberge and E.M. Bradbury, Chromosomal loop/nuclear matrix organization of the transcriptionally active and inactive RNA polymerases in Hela nuclei, J. Cell Biochem. Suppl. 12D: 147 (1988).Google Scholar
  37. 37.
    R.Losa and D.D. Brown, A bacteriophage RNA polymerase transcribes in vitro through a nucleosome core without displacing it, Cell 50: 801 - 808 (1987).PubMedCrossRefGoogle Scholar
  38. 38.
    Y.Lorch, J.W. LaPointe and R.D. Kornberg, Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones, Cell 49: 203 - 210 (1987).PubMedCrossRefGoogle Scholar
  39. 39.
    J.L. Workman and J.P. Langmore, Efficient solubilization and partial purification of sea urchin histone genes as chromatin, Biochemistry 24: 4731 - 4738 (1985).PubMedCrossRefGoogle Scholar
  40. 40.
    D.S. Pederson, M. Venkatesan, F. Thoma and R.T. Simpson, Isolation of an episomal yeast gene and replication origin as chromatin, Proc.Natl.Acad.Sci. USA 83: 7206 - 7210 (1986).PubMedCrossRefGoogle Scholar
  41. 41.
    M.B. Schmid, Structure and function of the bacterial chromosome, TIBS 13: 131 - 135 (1988).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Henryk Eisenberg
    • 1
  1. 1.Polymer DepartmentThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations