Skip to main content

Constancy and Change in Bacterial Genomes

  • Chapter
Bacteria in Nature

Part of the book series: Bacteria in Nature ((BANA,volume 3))

Abstract

This chapter discusses general properties of the bacterial genome. The attributes that tend to remain the same and the mechanisms for introducing change are contrasted. The two opposing tendencies for constancy and change contribute to a dynamic condition in which genetic variants arise, providing diversity to bacterial populations, but at the same time conservative tendencies are at work maintaining the fitness of the organism and the essential genetic identity of each bacterial species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An, G., and Frisen, J. D., 1980, The nucleotide sequence of tufBand Four nearby tRNA structural genes of Escherichia coli, Gene 12: 33 – 39.

    PubMed  CAS  Google Scholar 

  • Anagnostopoulos, C., 1976, Genetic analysis of Bacillus subtilis strains carrying chromosomal rearrangements, in: Modern Trends in Bacterial Transformation and Transfection( A. Portoles, R. Lopez, and M. Espinosa, eds.), pp. 211 – 230, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Anderson, E. S., 1968, The ecology of transferable drug resistance in the Enterobacteriae, Annu. Rev. Microbol. 22: 131 – 180.

    CAS  Google Scholar 

  • Anilionis, A., and Riley, M., 1980, Conservation and variation of nucleotide sequences within related bacterial genomes: Escherichia coliI strains, J. Bacteriol. 143: 355 – 365.

    PubMed  CAS  Google Scholar 

  • Anilionis, A., Ostapchuk, P., and Riley, M., 1980, Identification of a second cryptic lambdoid prophage locus in the E. coliK12 chromosome, MoL Gen. Gent. 180: 479 – 481.

    CAS  Google Scholar 

  • Bachmann, B. J., 1983, Linkage map of Escherichia coliK-12, edition 7, Microbiol. Rev. 47: 180 – 230.

    PubMed  CAS  Google Scholar 

  • Barsomian, G. D., Robillard, N. J., and Thorne, Curtis B., 1984, Chromosomal mapping of Bacillus thuringiensisby transduction, J. Bacteriol. 157: 746 – 750.

    PubMed  CAS  Google Scholar 

  • Bautsch, W., Grothnes, E., and Tummler, B., 1988, Genome fingerprinting of Pseudomonas aeruginosaby two-dimensional field inversion gel electrophoresis, FEMS Microbiol. Lett. 52: 255 – 258.

    CAS  Google Scholar 

  • Bencini, P. A., Houghton, J. E., Hoover, T. A., Foltermann, K. F., Wild, J. R., and O’Donovan, G. A., 1983, The DNA sequence of arglfrom Escherichia coliK12, Nucl. Acids Res. 11: 8509 – 8518.

    PubMed  CAS  Google Scholar 

  • Beringer, J. E., and Hirsch, P. R., 1984, Genetic adaptation to the environment, in: Current Perspectives in Microbial Ecology( M.J. Klug and C. A. Reddy, eds.), pp. 63 – 70, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Berry, J. O., and Atherly, A. G., 1984, Induced plasmid-genome rearrangements in Rhizobium japonicum, J. Bacteriol. 157: 218 – 224.

    PubMed  CAS  Google Scholar 

  • Bouche, J. P., Galugne, J. P., Louarn, J., and Louarn, L. M., 1982, Physical map of a 470 x 103 base-pair region flanking the terminus of DNA, J. Mol. Biol. 154: 21 – 32.

    PubMed  CAS  Google Scholar 

  • Brenner, D. J., and Falkow, S., 1971, Molecular relationship among members of the enterobacteriaceae, in: Advances in Genetics, Vol. 16 ( E. W. Caspari, ed.), pp. 35 – 51, Academic, New York.

    Google Scholar 

  • Brenner, D. J., 1973, Deoxribonucleic acid reassociation in the taxonomy of enteric bacteria, Int. J. Syst. Bacteriol. 23: 298 – 307.

    CAS  Google Scholar 

  • Brewer, B. J., 1988, When polymerase collide: Replication and the transcriptional organization of the E. colichromosome, Cell 53: 679 – 686.

    PubMed  CAS  Google Scholar 

  • Brody, H., Greener, A., and Hill, C. W., 1985, Excision and reintegration of the Escherichia coliK-12 chromosomal element el4, J. Bacteriol. 161: 1112 – 1117.

    PubMed  CAS  Google Scholar 

  • Buvinger, W. E., Lampel, K. A., Bojanowski, R. J., and Riley, M., 1984, Location and analysis of nucleotide sequences at one end of a putative lactransposon in the Escherichia colichromosome, J. Bacteriol. 159: 618 – 623.

    PubMed  CAS  Google Scholar 

  • Buvinger, W. E., and Riley, M., 1985a, Nucleotide sequence of Klebsiella pneumoniae lac genes, J. Bacteriol. 163:850–857.

    Google Scholar 

  • Buvinger, W. E., and Riley, M., 1985b, Regulatory region of the divergent Klebsiella pneumoniae lac operon, J. Bacteriol. 163:858–862.

    Google Scholar 

  • Cairns, J., Overbaugh, J., and Miller, S., 1988, The origin of mutants, Nature (Lond.) 335: 142 – 145.

    CAS  Google Scholar 

  • Calos, M. P., and Miller, J., 1980, Transposable elements, Cell 20: 579 – 595.

    PubMed  CAS  Google Scholar 

  • Casse, F., Pascal, M. C., and Chippaux, M., 1973, Comparison between the chromosomal maps of E. coliand S. typhimurium. Length of the inverted segment in the trpregion, Mol. Gen. Genet. 124: 253 – 257.

    PubMed  CAS  Google Scholar 

  • Caugant, D. A., Levin, B. R., and Selander, R. K., 1981, Genetic diversity and temporal variation in the£. colipopulation of a human host, Genetics 98: 467 – 490.

    PubMed  CAS  Google Scholar 

  • Chumley, F. G., and Roth, J. R., 1980, Rearrangement of the bacterial chromosome using TnlO as a region of homology, Genetics 94: 1–14.

    Google Scholar 

  • Coetzee, J. N., 1979, Genetic circularity of the Proteus mirabilislinkage map, J. Gen. Microbiol. 110: 171 – 176.

    PubMed  CAS  Google Scholar 

  • Cornelis, G., Ghosal, D., and Saedler, H, 1978, Tn951: A new transposon carrying a lactose operon, Mol. Gen. Genet. 160: 215 – 224.

    PubMed  CAS  Google Scholar 

  • Cornelis, G., Sommer, H., and Saedler, H., 1981, Transposon Tn951 is defective and related to Tn3, Mol. Gen. Genet. 184: 241 – 248.

    PubMed  CAS  Google Scholar 

  • Crawford, I., Nichols, B. P., and Yanofsky, C., 1980, Nucleotide sequence of the trpBgene in Escherichia coliand in Salmonella typhimurium, J. Mol. Biol. 142: 489 – 502.

    PubMed  CAS  Google Scholar 

  • Davey, R. B., and Reanny, D. C., 1980, Extrachromosomal genetic elements and adaptive evolution of bacteria, in: Evolutionary Biology, Vol. 13 ( M. K. Hecht, W. C. Steere, B. Wallace, eds.), pp. 113 – 147, Plenum, New York.

    Google Scholar 

  • Dean, H. F., and Morgan, A. F., 1983, Integration of R91-5: Transposon 501 into the PseudomonasputidaPPN chromosome and genetic circularity of the chromosomal map, J. Bacteriol. 153: 485 – 497.

    PubMed  CAS  Google Scholar 

  • Defez, R., and De Felice, M., 1981, Cryptic operons for p-glucoside metabolism in Escherichia coliK12: Genetic evidence for a regulatory protein, Genetics 97: 11 – 25.

    PubMed  CAS  Google Scholar 

  • Deonier, R., 1987, Locations of Native Insertion Sequence Elements, in: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology ( J. L. Ingraham, B. Magasanik, M. Schaechter, K. B. Low, F. C. Neidhart, H. E. Umbarger, eds.), pp. 982 – 989, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Diaz, R., Barnsley, P., and Pritchard, R. H., 1979, Location and characterization of a new replication origin in the E. coliK-12 chromosome, Mol. Gen. Genet. 175: 151 – 157.

    PubMed  CAS  Google Scholar 

  • Doolittle, W. F., 1982, Selfish DNA after 14 months, in: Genome Evolution( G. A. Dover and R. B. Flavell, eds.), pp. 3 – 28, Academic, Orlando, Florida.

    Google Scholar 

  • Doolittle, W. F., and Sapienza, C., 1980, Selfish genes, the phenotype paradigm and genome evolution, Nature (Lond.) 284: 601 – 603.

    CAS  Google Scholar 

  • DuBose, R. F., Dykhuizen, D. E., and Hartl, D. L., 1988, Genetic exchange among natural isolates of bacteria: Recombination within the phoA gene of Escherichia coli, Proc. Natl. Acad. Sci. USA 85: 7036 – 7040.

    PubMed  CAS  Google Scholar 

  • Dykhuizen, D. E., and Green, L., 1986, DNA sequence variation, DNA phylogeny, and recombination in E. coli, Genetics 113: s71.

    Google Scholar 

  • Dykhuisen, D. D., Sawyer, S. A., Green, L., Miller, R. D., and Hartl, D. L., 1985, Joint distribution of insertion elements IS4 and IS5 in natural isolates of Escherichia coli, Genetics 111: 219 – 231.

    Google Scholar 

  • Dykstra, C., Prashner, D., and Kushner, S. R., 1984, Physical and biochemical analysis of the cloned recBand recCgenes of Escherichia coliK-12, J. Bacteriol. 157: 211 – 27.

    Google Scholar 

  • Enomoto, M., Oosawa, K., and Momota, H., 1983, Mapping of the pinlocus coding for a site-specific recombinase that causes flagella-phase variation in Escherichia coliK-12, J. Bacteriol. 156: 663 – 668.

    PubMed  CAS  Google Scholar 

  • Espion, D., Kaiser, K., and Dambly-Chaudiere, C., 1983, A third defective lambdoid prophage of Escherichia coliK-12 defined by the λ derivative λ qinIII, J. Mol. Biol. 170: 611 – 633.

    PubMed  CAS  Google Scholar 

  • Falkow, S., 1975, Infectious Multiple Drug Resistance, Pion Ltd., London.

    Google Scholar 

  • Freter, R., 1984, Factors affecting conjugal plasmid transfer in natural bacterial communities, in: Current Perspectives in Microbial Ecology( M. J. Klug and C. A. Reddy, eds.), pp. 105 – 114, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Gouy, M., and Gautier, C., 1982, Codon usage in bacteria: correlation with gene expressivity, Nucleic Acids Res. 10: 7055 – 7074.

    PubMed  CAS  Google Scholar 

  • Graham, J. B., and Istock, C. A., 1979, Gene exchange and natural selection cause Bacillus subtilisto evolve in soil cultures, Science 204: 637 – 639.

    PubMed  CAS  Google Scholar 

  • Graham, J. B., and Istock, C. A., 1981, Parasexuality and microevolution in experimental populations of Bacillus subtilis, Evolution 35: 954 – 963.

    Google Scholar 

  • Grantham, R., Gautier, C., Gouy, M., Jacobzone, M., and Mercier, R., 1981, Codon catalog usage is a genome strategy modulated for gene expressivity, Nucl. Acids Res. 9: r43 – r74.

    PubMed  CAS  Google Scholar 

  • Guiso, N., and Ullman, A., 1976, Expression and regulation of lactose genes carried by plasmids, J. Bacteriol. 127: 691 – 697.

    PubMed  CAS  Google Scholar 

  • Hall, B. G., 1988, Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence, Genetics 120: 887 – 897.

    PubMed  CAS  Google Scholar 

  • Hall, B. G., Yokoyama, S., and Calhoun, D., 1984, Role of cryptic genes in microbial evolution, Mol Biol. Evol. 1: 109 – 124.

    Google Scholar 

  • Harshman, L., and Riley, M., 1980, Conservation and variation of nucleotide sequences in Escherichia colistrains isolated from nature, J. Bacteriol. 144: 560 – 568.

    PubMed  CAS  Google Scholar 

  • Harayama, S., Lehrbach, P. R., and Timmis, K. N., 1984, Transposon mutagenesis analysis of meta-cleavage pathway operon genes of the TOL plasmid of Pseudomonas putidamt-2, J. Bacteriol. 160: 251 – 255.

    PubMed  CAS  Google Scholar 

  • Hedrick, P, W., and Thomson, G., 1986, A two-locus neutrality test: Applications to humans, E. coliand lodgepole pine, Genetics 112: 135 – 156.

    PubMed  CAS  Google Scholar 

  • Henner, D. J. and Hoch, J. A., 1980, The Bacillus subtilischromosome, Microbiol. Rev. 44: 57 – 82.

    PubMed  CAS  Google Scholar 

  • Herdman, M., 1985, The evolution of bacterial genomes, in: The Evolution of Genome Size( T. Cavalier-Smith, ed.), pp. 37 – 68, Wiley, New York.

    Google Scholar 

  • Hiestand-Nauer, R., and Iida, S., 1983, Sequence of the site-specific recombinase gene cinand of its substrates serving in the inversion of the C segment of bacteriophage P1, EMBO J. 2: 1733 – 1740.

    PubMed  CAS  Google Scholar 

  • Highton, P., Chang, YU., Marcotte, Jr., W., and Schnaitman, C., 1985, Evidence that the outer membrane protein gene nmpCof Escherichia coliK-12 lies within the defective qsr'prophage, J. Bacteriol. 162: 256 – 262.

    PubMed  CAS  Google Scholar 

  • Hill, C. W., and Gray, J. W., 1988, Effects of chromosomal inversion on cell fitness in Escherichia coliK-12, Genetics 119: 771 – 778.

    PubMed  CAS  Google Scholar 

  • Hill, C. W., and Harnish, B. W., 1981, Inversions between ribosomal RNA genes of Escherichiacolil, Proc. Natl. Acad. Sci. USA 78: 7069 – 7072.

    PubMed  CAS  Google Scholar 

  • Hill, C. W., and Harnish, B. W., 1982, Transposition of a chromosomal segment bounded by redundant rRNA genes into other rRNA genes in Escherichia coli, J. Bacteriol. 149: 449 – 457.

    PubMed  CAS  Google Scholar 

  • Holloway, B. W., Krishnapillai, V., and Morgan, A. F., 1979, Chromosomal genetics of Pseudomonas, Microbiol. Rev. 43: 73 – 102.

    PubMed  CAS  Google Scholar 

  • Holloway, B. W., 1979, Plasmids that mobilize bacterial chromosomes, Plasmid 2: 1 – 19.

    PubMed  CAS  Google Scholar 

  • Holloway, B., and Morgan, A. F., 1986, Genome organization in Pseudomonas, Annu. Rev. Microbiol. 40: 79 – 105.

    PubMed  CAS  Google Scholar 

  • Hoover, T. A., Roof, W. D., Foltermann, K. F., O’Donovan, G. A., Bencini, D. A., and Wild, J. R., 1983, Nucleotide sequence of the structural gene (pyrB) that encodes the catalytic polypeptide of aspartate transcarbamorylase of Escherichia coli, Proc. Natl. Acad. Sci. USA 77: 2462 – 2466.

    Google Scholar 

  • Hooykaas, P. J. J., Peerbolte, R., Regensburg-Tuink, A. J. G., de Vries, P., and Schilperoort, R. A., 1982, A chromosomal linkage map of Agrobacterium tumefaciensand a comparison with the maps of RhizobiumSPP, Mol. Gen. Genet. 188: 12 – 17.

    CAS  Google Scholar 

  • Horowitz, H., Van Arsdell, J., and Piatt, T., 1983, Nucleotide sequence of the trpDand trpCgene of Salmonella typhimurium, J. Mol. Biol. 169: 775 – 797.

    PubMed  CAS  Google Scholar 

  • Houghton, J. E., Bencini, D. E., O’Donovan, G. A., and Wild, J. R., 1984, Protein differentiation: A comparison of aspartate transcarbamoylase and ornithine transcarbamoylase from Escherichia coliK12, Proc. Natl. Acad. Sci. USA 81: 4864 – 4868.

    PubMed  CAS  Google Scholar 

  • Hu, S., Ptashne, K., Cohen, S. M., and Davidson, N., 1975, αβ sequence of F is IS3, J. Bacteriol. 123:687–692.

    Google Scholar 

  • Hu, M., and Deonier, R., 1981a, Comparison of IS 1, IS2, and IS3 copy number in Escherichia colistrains K12, B and C, Gene 16: 161 – 170.

    CAS  Google Scholar 

  • Hu, M., and Deonier, R., 1981b, Mapping of IS1 elements flanking the argFgene region on the Escherichia coliK-12 chromosome, Mol. Gen. Genet. 181: 222 – 229.

    CAS  Google Scholar 

  • Ikemura, T., 1981, Correlation between the abundance of Escherichia colitransfer RNAs and the occurrence of the respective codon in its protein genes: A proposal for a synonymous codon choice that is optimal for the E. colitranslational system, J. Mol. Biol. 151: 389 – 409.

    PubMed  CAS  Google Scholar 

  • Kaiser, K., 1980, The origin of Q-independent derviatives of phage X, Mol. Gen. Genet. 179: 547 – 554.

    PubMed  CAS  Google Scholar 

  • Kaiser, K., and Murray, N. E., 1979, Physical characterization of the”Rac-prophage“in E. coliK12, Mol. Gen. Genet. 175: 159 – 174.

    PubMed  CAS  Google Scholar 

  • Kamp, D., and Kahmann, R., 1981, The relationship of two invertible segments in bacteriophage Mu and Salmonella typhimuriumDNA, Mol. Gen. Genet. 184: 564 – 566.

    PubMed  CAS  Google Scholar 

  • Kaplan, J. B., Goncharoff, P., Seibold, A. M., and Nichols, B., 1984, Nucleotide sequence of the Acinetobac- ter caleoaceticus trpGDCgene cluster, Mol. Biol. Evol. 1: 456 – 472.

    PubMed  CAS  Google Scholar 

  • Kleckner, N., 1981, Transposable elements in prokaryotes, Annu. Rev. Genet. 15: 341 – 404.

    PubMed  CAS  Google Scholar 

  • Kricker, M., and Hall, B. G., 1984, Directed evolution of cellobiose utilization in Escherichia coliK12, Mol. Biol. Evol. 1: 171 – 182.

    PubMed  CAS  Google Scholar 

  • Kronstad, J. W., and Whitely, H. R., 1984, Inverted repeat sequences flank a Bacillus thurigiensiscrystal protein gene, J. Bacteriol. 160: 95 – 102.

    PubMed  CAS  Google Scholar 

  • Kutsukake, K., Nakao, T., and lino, T., 1985, A gene for DNA invertase and an invertible DNA in Escherichia coliK-12, Gene 34: 343 – 350.

    PubMed  CAS  Google Scholar 

  • Lam, S., and Roth, J. R., 1983, IS200: A Salmonella-specific insertion sequence, Cell 34: 951 – 960.

    PubMed  CAS  Google Scholar 

  • Lampel, K. A., and Riley, M., 1982, Discontinuity of homology of Escherichia coliand Salmonella typhimuriumDNA in the lacregion, Mol. Gen. Genet. 186: 82 – 86.

    PubMed  CAS  Google Scholar 

  • Lawther, R. P., Calhoun, D. H., Adams, C. W., Hauser, C. A., Gray, J., and Hatfield, G. W., 1981, Molecular basis of valine resistance in Escherichia coliK-12, Proc. Natl. Acad. Sci. USA 78: 922 – 925.

    PubMed  CAS  Google Scholar 

  • Lin, R.-J., Capage, M., and Hill, C. W., 1984, A repetitive sequence, rhs, responsible for duplications within the Escherichia coliK12 chromosome, J. Mol. Biol. 177: 1 – 18.

    PubMed  CAS  Google Scholar 

  • Link, C. D., and Reiner, A. M., 1982, Inverted repeats surround the ribitol—arabitol genes of E. coli C. Nature (Lond.) 298: 94 – 96.

    CAS  Google Scholar 

  • Link, C. D., and Reiner, A. M., 1983, Genotypic exclusion: A novel relationship between the ribitol—arabitol and galactitol genes of E. coli, Mol. Gen. Genet. 189: 337 – 339.

    PubMed  CAS  Google Scholar 

  • Louarn, J. M., Bouche, J. P., Legendre, F., Louarn, J., and Patte, J., 1985, Characterization and properties of very large inversions of the E. colichromosome along the origin-to-terminus axis, Mol. Gen. Genet. 201: 467 – 476.

    PubMed  CAS  Google Scholar 

  • Maguin, E., Brody, H., Hill, C. W., and D’Ari, R., 1986, SOS-associated division inhibition gene sfiC is part of excisable element el4 in Escherichia coli, J. Bacteriol. 168: 464 – 466.

    PubMed  CAS  Google Scholar 

  • Mahan, M. J., and Roth, J. R., 1988, Reciprocality of recombination events that rearrange the chromosome, Genetics 120: 23 – 35.

    PubMed  CAS  Google Scholar 

  • McMahon, P. C., 1973, Mapping the chromosome of Yersinia pseudotuberculosisby interrupted mating, J. Gen. Microbiol. 77: 61 – 69.

    PubMed  CAS  Google Scholar 

  • Meyer, T. F., Mlawer, N., and So., M., 1982, Pilus expression in N. gonorrhoeaeinvolves chromosome rearrangement, Cell 30: 45 – 52.

    PubMed  CAS  Google Scholar 

  • Meyer, T. F., Billyard, E., Haas, R., Storzbach, S., and So, M., 1984, Pilus genes of Neisseria gonorrhoeae: Chromosomal organization and DNA sequence, Proc. Natl. Acad. Sci. USA 81: 6110 – 6114.

    PubMed  CAS  Google Scholar 

  • Michiels, T., and Cornelis, G., 1984, Detection and characterization of Tn2501, a transposon included within the lactose transposon Tn951, J. Bacteriol. 158: 866 – 871.

    PubMed  CAS  Google Scholar 

  • Middleton, R. B., and Mojica-a, T., 1971, Homology in the Enterobateriaceae based on intercrosses between species, in: Advances in Genetics, Vol. 16 ( E. W. Caspari, ed.), pp. 53 – 79, Academic, Orlando, Florida.

    Google Scholar 

  • Milkman, R., and Crawford, I. P., 1983, Clustered third-base substitutions among wild strains of Escherichia coli, Science 221: 378 – 380.

    PubMed  CAS  Google Scholar 

  • Milkman, R., and Stolzfus, A., 1988, Molecular evolution of the Escherichia colichromosome. II. Clonal segments, Genetics 120: 359 – 366.

    PubMed  CAS  Google Scholar 

  • Mizuno, T,. Chou, M. Y., and Inouye. M., 1983, A comparative study on the genes for three porins of the Escherichia coliouter membrane: DNA sequence of the osmoregulated ompCgene, J. Biol. Chem. 258: 6932 – 6940.

    Google Scholar 

  • Neimark, H., and London, J., 1982, Origins of the mycoplasmas: Sterol non-requiring mycoplasmas evolved from streptococci, J. Bacteriol. 150: 1259 – 1265.

    PubMed  CAS  Google Scholar 

  • Nichols, B., and Yanofsky, C., 1979, Nucleotide sequences of trpAof Salmonella typhimuriumand Escherichia coli: An evolutionary comparison, Proc. Natl. Acad. Sci. USA 76: 5244 – 5248.

    PubMed  CAS  Google Scholar 

  • Nichols, B. P., Blumenberg, M., and Yanofsky, C., 1981, Comparison of the nucleotide sequence of trpA and sequences immediately beyond the trpopcron of Klebsiella aerogenes, Salmonella typhimuriumand Escherichia coli, Nucl. Acids. Res. 9: 1743 – 1755.

    PubMed  CAS  Google Scholar 

  • Nichols, B. P., Miozzari, G. F., van Cleemput, M., Bennett, G. N., and Yanofsky, C., 1980, Nucleotide sequences of the trpGregions of Escherichia coli, Shigella dysenteriae, Salmonella typhimuriumand Serratia marcescens, J. Mol. Biol. 142: 503 – 517.

    PubMed  CAS  Google Scholar 

  • Nyman, K., Nakamura, K., Ohtsubo, H., and Ohtsubo, E., 1981, Distribution of the insertion element IS1 in gram-negative bacteria, Nature (Lond.) 289: 602 – 612.

    Google Scholar 

  • Nyman, K., Ohtsubo, H., Davison, D., and Ohtsubo. E., 1983, Distribution of insertion element IS1 in natural isolates of Escherichia coli, Mol. Gen Genet. 189: 516 – 518.

    PubMed  CAS  Google Scholar 

  • Ochman, H., Whittam, T. S., Caugant, D. A., and Selander, R. K., 1983, Enzyme polymorphism and genetic population structure in Escherichia coliand Shigella, J. Gen. Microbiol. 129: 2715 – 2726.

    PubMed  CAS  Google Scholar 

  • Ogasawara, N., Moriya, S., von Meyenburg, K., Hansen, F. G., and Yoshikawa, H., 1985, Conservation of genes and their organization in the chromosomal replication origin region of Bacillus subtilisand Escherichia coli, EMBO J. 4: 3345 – 3350.

    PubMed  CAS  Google Scholar 

  • Orgel, C. E., and Crick, F. H. C., 1980, Selfish DNA: The ultimate parasite, Nature (Lond.) 284: 604 – 607.

    CAS  Google Scholar 

  • Parker, L. L., and Hall, B. G., 1988, A fourth E. coligene system with the potential to evolve β-glucosidase utilization, Genetics 119: 485 – 490.

    PubMed  CAS  Google Scholar 

  • Perlak, F. J., and Thorne, C. B., 1981, Genetic map of Bacillus lichenformis, in: Sporulation and Germination( H. S. Levinson, A. L. Sonensheim, and D. J. Tipper, eds.), pp. 78 – 82, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Pischl, D. C., and Farrand, S. K., 1984, Characterization of transposon Tn5-facilitated donor strains and development of a chromosomal linkage map for Agrobacterium tumefaciens, J. Bacteriol. 159: 1 – 8.

    PubMed  CAS  Google Scholar 

  • Plasterk, R. H. A., and van de Putte, P., 1985, The invertible P-DNA segment in the chromosome of Escherichia coli, EMBO J. 4: 237 – 242.

    PubMed  CAS  Google Scholar 

  • Reanny, D. C., Roberts, W. P., and Kelly, W. J., 1982, genetic interactions among microbial communities, in: Microbial Interactionsand Communities, Vol. 1 (A. T. Bull and J. H. Slater, eds.), pp. 287–322, Academic, Orlando, Florida.

    Google Scholar 

  • Rebollo, J. E., Francois, V., and Louarn, J. M., 1988, Detection and possible role of two large non-divisible zones on the E. colichromosome, Proc. Natl. Acad. Sci. USA 85: 9391 – 9395.

    PubMed  CAS  Google Scholar 

  • Reynolds, A. E., Felton, J., and Wright A., 1981, Insertion of DNA activates the cryptic bgloperon in E. coliK12, Nature (Lond.) 293: 625 – 629.

    CAS  Google Scholar 

  • Reynolds, A. E., Mahadevan, S., LeGrice, S. F. J., and Wright, A., 1986, Enhancement of bacterial gene expression by insertion elements or by mutation in a CAP-cAMP binding site, J. Mol. Biol. 191: 85 – 95.

    PubMed  CAS  Google Scholar 

  • Richmond, M. H., 1973, Resistance factors and their ecological importance to bacteria and to man, in: Prog. Nucl. Acid Res. Mol. Biol. 13: 191 – 248.

    CAS  Google Scholar 

  • Riley, M., 1985, Discontinuous processes in the evolution of the bacterial genome, in: Evolutionary Biology, Vol. 19 ( M. Hecht, G. Prance, and B. Wallace, eds.), pp. 1 – 36, Plenum, New York.

    Google Scholar 

  • Riley, M., and Anilionis, A., 1978, Evolution of the bacterial genome, Annu. Rev. Microbiol. 32: 519 – 560.

    PubMed  CAS  Google Scholar 

  • Riley, M., 1984, Arrangement and rearrangement of bacterial genomes, in: Microorganisms as Model Systems for Studying Evolution( R. P. Mortlock, ed.), pp. 285 – 315, Plenum, New York.

    Google Scholar 

  • Riley, M., and Krawiec, S., 1987, Genome organization, in: Escherichia coliand Salmonella typhimurium: Cellular and Molecular Biology( J. L. Ingraham, B. Magasanik, M. Schaechter, K. B. Low, F. C. Neidhart, and H. E. Umbarger, eds.), pp. 967 – 981, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Rowley, D. J., 1953, Interrelationships between amino acids in the growth of coliform organisms, J. Gen. Microbiol. 9: 37 – 43.

    PubMed  CAS  Google Scholar 

  • Ryder, T. B., Davison, D. B., Rosen, J. I., Ohtsubo, E., and Ohtsubo, H., 1982, Analysis of plasmid genome evolution based on nucleotide sequence comparison of two related plasmids of Escherichia coli, Gene 17: 299 – 310.

    PubMed  CAS  Google Scholar 

  • Sanderson, K. E., 1976, Genetic relatedness in the family Enterobacteriaceae, Annu. Rev. Microbiol. 30: 327 – 349.

    PubMed  CAS  Google Scholar 

  • Sanderson, K. E., and Roth, J. R., 1983, Linkage map of Salmonella typhimurium, edition VI, Microbiol. Rev. 47: 410 – 453.

    PubMed  CAS  Google Scholar 

  • Savić, D., Romac, S. P., and Ehrlich, S. D., 1983, Inversion in the lactose region of Escherichia coliK-12: Inversion termini map within IS3 elements α3 β3 and α5 β5, J. Bacteriol. 155: 943 – 946.

    PubMed  Google Scholar 

  • Schaeffer, S., and Malamy, A., 1969, Taxonomic investigations on expressed and cryptic phospho-β- glucosidases in Enterobacteriacea, J. Bacteriol. 99: 422 – 433.

    Google Scholar 

  • Schmid, M. B., and Roth, J. R., 1983a, Genetic Methods for analysis and manipulation of inversion mutations in bacteria, Genetics 105:517–537.

    Google Scholar 

  • Schmid, M. B., and Roth, J. R., 1983b, Selection and end point distribution of bacterial inversion mutations, Genetics 105:539–557.

    Google Scholar 

  • Schnaitman, C., Smith, D., and Forn de Salsas, M., 1975, Temperate bacteriophage which causes the production of a new major outer membrane protein by Escherichia coli, J. Virol. 15: 1121 – 1130.

    PubMed  CAS  Google Scholar 

  • Schneider, A. M., and Anagnostopoulos, C., 1983, Bacillus subtilisstrains carrying two nontandem duplications of the trpE-ilvAand the purB-treregions of the chromosome, J. Gen. Microbiol. 129: 687 – 701.

    PubMed  CAS  Google Scholar 

  • Schupp, T., Hutter, R., and Hopwood, D. A., 1975, Genetic recombination in Nocardia mediterranei, J. Bacteriol. 121: 128 – 136.

    PubMed  CAS  Google Scholar 

  • Segal, E., Hagblom, P., Seifert, H., and So, M., 1986, Antigenic variation of gonococcal pilus involves assembly of separated silent gene segments, Proc. Natl, Acad. Sci. USA 83: 2177 – 2181.

    CAS  Google Scholar 

  • Selander, R. K., Caugant, D. A., and Whittam, T. S., 1987, Genetic structure and variation in natural populations of Escherichia coli, in: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology( J. L. Ingraham, B. Magasanik, M. Schaechter, K. B. Low, F. C. Neidhardt, H. E. Umbarger, eds.), pp. 1625 – 1648, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Selander, R. K., and Levin, B. R., 1980, Genetic diversity and structure in Escherichia colipopulations, Science 210: 545 – 547.

    PubMed  CAS  Google Scholar 

  • Shapiro, H. S., 1970, Distribution of purines and pyrimidines in nucleic acids, in: Handbook of Biochemistry: Selected Data for Molecular Biology, 2nd ed. ( H. A. Sober, ed.), pp. H24 – H79, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Sharp, P. A., Cohen, S. N., and Davidson, N., 1973, Electron microscope heteroduplex studies of sequence relations among plasmids of Escherichia coliII, Structure of drug resistance (R) factors and F factors, J. Mol. Biol. 75: 235 – 255.

    PubMed  CAS  Google Scholar 

  • Sharp, P. M., and Li, W.-H., 1987, The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias, Mol. Biol. Evol.: 220 – 230.

    Google Scholar 

  • Simon, M., Seig, J., Silverman, M., Mandel, G., and Doolittle, R., 1980, Phase variation: Evolution of controlling element, Science 209: 1370 – 1374.

    PubMed  CAS  Google Scholar 

  • Sinclair, M. I., and Holloway, B. W., 1982, A chromosomally located transposon in Pseudomonas aeruginosa, J. Bacteriol. 151: 569 – 579.

    PubMed  CAS  Google Scholar 

  • Sinclair, M. I., Maxwell, P. C., Lyon, B. R., and Holloway, B. W., 1986, Chromosomal location of TOL plasmid DNA in Pseudomonas putida, J. Bacteriol. 168: 1302 – 1308.

    PubMed  CAS  Google Scholar 

  • Slater, H. J., 1984, Genetic interactions in microbial communities, in: Current Perspectives in Microbial Ecology( M. J. Klug and C. A. Reddy, eds.), pp. 87 – 93, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Slater, H. J., 1985, Gene transfer in microbial communities, in: Engineered organisms in the environment: Scientific issues( H. O. Halvorson, D. Pramer and M. Rogul, eds.), pp. 89 – 98, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Smith, C. L., and Cantor, C. R., 1987, Purification, specific fragmentation, and separation of large DNA molecules, Methods Enzymol. 155: 449 – 467.

    PubMed  CAS  Google Scholar 

  • Southern, E., 1975, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol. 98: 504 – 517.

    Google Scholar 

  • Stackebrandt, E., 1985, Phylogeny and phylogenetic classification of prokaryotes, in: Evolution of Prokaryotes( K. H. Schleiber and E. Stackebrandt, eds.), pp. 309 – 334, Academic, Orlando, Florida.

    Google Scholar 

  • Stoltzfus, A., Leslie, J. F., and Milkman, R., 1988, Molecular evolution of the Escherichia colichromosome. I. Analysis of structure and natural variation in a previously uncharacterized region between trp and tonB, Genetics 120: 345 – 358.

    PubMed  CAS  Google Scholar 

  • Strathern, A., and Herskowitz, I., 1975, Defective prophage in E. coliK12 strains, Virology 67: 136 – 143.

    PubMed  CAS  Google Scholar 

  • Tanka, M., Yamamoto, T., and Sawai, T., 1983, Evolution of complex resistance transposons from an ancestral mercury transposon, J. Bacteriol. 153: 1432 – 1438.

    Google Scholar 

  • Timmons, M. S., Bogardus, A. M., and Deonier, R. C., 1983, Mapping of chromosomal IS5 elements that mediate type II F-prime plasmid excision in Escherichia coliK-12, J. Bacteriol. 153: 395 – 407.

    PubMed  CAS  Google Scholar 

  • Timmons, M. S., Spear, K., and Deonier, R. C., 1984, Insertion element IS 121 is near proAin the chromosomes of Escherichia coliK-12 strains, J. Bacteriol. 16): 1175 – 1177.

    Google Scholar 

  • Wallace, D. C., and Morowitz, H. J., 1973, Genome size and evolution, Chromosoma 40: 121 – 126.

    PubMed  CAS  Google Scholar 

  • Watanabe, T., 1963, Infectious heredity of multiple drug resistance in bacteria, Bacteriol. Rev. 27: 87 – 115.

    PubMed  CAS  Google Scholar 

  • Whittam, T. S., Ochman, H., and Selander, R. K., 1983, Multilocus genetic structure in natural populations of Escherichia coli, Proc. Natl. Acad. Sci. USA 80: 1751 – 1755.

    PubMed  CAS  Google Scholar 

  • Wiman, M., Bertani, G., Kelly, B., and Sasaki, I., 1970, Genetic map of Escherichia colistrain C, Mol. Gen. Genet. 107: 1 – 31.

    PubMed  CAS  Google Scholar 

  • Woese, C. R., Maniloff, J., and Zablen, L. B., 1980, Phylogenetic analysis of the mycoplasmas, Proc. Natl. Acad. Sci. USA 77: 494 – 498.

    PubMed  CAS  Google Scholar 

  • Xia, X.-M., and Enomoto, M., 1986, A naturally occurring chromosomal inversion in Escherichia coliK-12, Mol. Gen. Genet. 205: 376 – 379.

    PubMed  CAS  Google Scholar 

  • Yamagata, H., Nakamura, K., and Inouye, M., 1981, Comparison of the lipoprotein gene among the enterobac- teriacea, J. Biol. Chem. 256: 2194 – 2198.

    PubMed  CAS  Google Scholar 

  • Yanofsky, C., and Van Cleemput, M., 1982, Nucleotide Sequence of trpEof Salmonella typhimuriumand its homology with the corresponding sequence of E. coli, J. Mol. Biol. 155: 235 – 246.

    CAS  Google Scholar 

  • Yokota, T., Sugisaki, H., Takanami, M., and Kaziro, Y., 1980, The nucleotide sequence of the clones tufAgene of Escherichia coli, Gene 12: 25 – 31.

    PubMed  CAS  Google Scholar 

  • York, M. K., and Stodolsky, M., 1981, Characterization of PI argFderivatives from Escherichia coliK12 transduction, Mol. Gen. Genet. 181: 230 – 240.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Riley, M. (1989). Constancy and Change in Bacterial Genomes. In: Poindexter, J.S., Leadbetter, E.R. (eds) Bacteria in Nature. Bacteria in Nature, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0803-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0803-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8090-3

  • Online ISBN: 978-1-4613-0803-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics